1
|
Cong Y, Hu Y, Deng Z, Wu W, Wu T, Zhao Y, An Z. Genome-Wide Identification and Expression Analysis of GASA Genes in Hevea brasiliensis Reveals Their Involvement in Response to Cold Stress. Int J Mol Sci 2025; 26:3454. [PMID: 40244379 PMCID: PMC11990028 DOI: 10.3390/ijms26073454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The Gibberellic Acid Stimulated in Arabidopsis (GASA) gene family is regulated by gibberellins and plays a crucial role in regulating plant growth and development. Based on rubber tree genome data, 18 HbGASA genes, designated HbGASA1 to HbGASA18, were identified in Hevea brasiliensis. Comprehensive bioinformatics analyses were performed to characterize gene structures, chromosomal distributions, syntenic relationships, protein architectures, phylogenetic evolution, and expression profiles. The expression patterns of HbGASA genes under low-temperature stress were further validated by quantitative real-time polymerase chain reactions (qRT-PCR). The results demonstrated that the 18 HbGASA genes were unevenly distributed across 10 chromosomes. The encoded proteins ranged from 88 to 253 amino acids in length, and the number of exons varied from 2 to 4. Phylogenetic analysis clustered these genes into three distinct clades. Conserved motif analysis identified 10 conserved motifs, with Motif 1 and Motif 2 being highly conserved across all members. Promoter analysis revealed multiple hormone-responsive and stress-related regulatory cis-acting elements. Transcripts of the 18 HbGASA genes were detected in various tissues, and significant differences were observed in their expression levels. Under cold stress, qRT-PCR results showed that multiple HbGASA genes were significantly up-regulated. This study provides valuable insights into the structure, evolution, and functional diversification of GASA genes in the important tropical crop, H. brasiliensis.
Collapse
Affiliation(s)
- Yuying Cong
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
- School of Agriculture, Ludong University, Yantai 264025, China;
| | - Yanshi Hu
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
| | - Zhi Deng
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Wenguan Wu
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Tingkai Wu
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Yanhong Zhao
- School of Agriculture, Ludong University, Yantai 264025, China;
| | - Zewei An
- National Key Laboratory of Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.C.); (Y.H.); (Z.D.); (W.W.); (T.W.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
2
|
Zhang L, Yuan J, Pu T, Qu W, Lei X, Ma K, Qian K, Zhao Q, Liao C, Jin J. Chromosome-scale genome assembly of Phyllanthus emblica L. 'Yingyu'. DNA Res 2025; 32:dsaf006. [PMID: 40070358 PMCID: PMC12010035 DOI: 10.1093/dnares/dsaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 04/22/2025] Open
Abstract
Phyllanthus emblica L. is an edible plant with medicinal properties native to the dry-hot valley of Yunnan, China. Here, we report a de novo chromosome-scale genome of P. emblica wild type 'Yingyu'. 'Yingyu' is an octopoid plant with a total of 104 chromosomes. In total, we assembled and clustered 480 Mb of the genome and constructed 26 pseudochromosomes (haplotypes) of P. emblica wild type 'Yingyu' that encompass 97.9% of the genome and demonstrate to have relatively high integrity. We annotated 31,111 genes found in the genome of P. emblica. We screened 5 different tissues for searching the tissue-specific expression candidate genes. Four unknown function candidate genes were expressed at high levels in the flowers while genes relating to the biosynthesis of gibberellins and cellulose were specifically expressed in the fruits. The ascorbate biosynthesis-related genes were screened on P. emblica 'Yingyu' genome. The high expression level of 2 GDP-mannose epimerases and one L-galactono-1,4- lactone dehydrogenases in the fruit may be related to the activity of absorbate biosynthesis in the fruit. The chromosome-level genomic data for P. emblica we report will be important for the development of molecular markers to facilitate the selection of superior cultivars for processing and pharmaceuticals.
Collapse
Affiliation(s)
- Lumin Zhang
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Jianmin Yuan
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Tianlei Pu
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Wenlin Qu
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Xiao Lei
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Kaihua Ma
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Kunjian Qian
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Qiongling Zhao
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Chengfei Liao
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| | - Jie Jin
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, Yunnan, China
- National Germplasm Resource Nursery for Characteristic Crops in Dry-Hot Areas, Yuanmou 651300, Yunnan, China
| |
Collapse
|
3
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
4
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Gao C, Li Z, Zhang H, Li C, Sun H, Li S, Ma N, Qi X, Cui Y, Yang P, Hu T. Genome-Wide Identification and Characterization of the GASA Gene Family in Medicago truncatula, and Expression Patterns under Abiotic Stress and Hormone Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2364. [PMID: 39273848 PMCID: PMC11396804 DOI: 10.3390/plants13172364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Medicago truncatula is a key model plant for studying legume plants, particularly alfalfa (Medicago sativa), due to its well-defined genetic background. Plant-specific GASA (Gibberellic Acid Stimulated Arabidopsis) genes play various roles in plant growth and development, abiotic stress, and hormone responses. However, limited information is available on GASA research in Medicago. In this study, 26 MtGASAs were identified and analyzed for its structure, evolution, and expressions. Sequence alignments and phylogeny revealed that 26 MtGASAs containing conserved GASA domains were classified into three clades. The chromosomal locations and gene synteny revealed segmental and tandem repetition evolution. Analysis of cis-regulatory elements indicates that family members likely influence various hormone signaling pathways and stress-related mechanisms. Moreover, the RNA-seq and qRT-PCR analyses revealed that 26 MtGASAs were extensively involved in abiotic stresses and hormone responses. Notably, seven MtGASA genes (MtGASA1, 10, 12, 17, 23, 25 and 26) were all dramatically activated by NaCl and Mannitol treatments, and four MtGASAs (MtGASA7, 10, 23 and 24) were significant activated by GA3, PBZ, ABA, and MeJA treatments. Collectively, this study is the first to identify and describe GASA genes in Medicago on a genome-wide scale. The results establish a basis for functional characterization, showing that these proteins are essential in responding to various abiotic stresses and hormonal signals.
Collapse
Affiliation(s)
- Cai Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongxing Li
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hanwen Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chun Li
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Li
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangyu Qi
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yilin Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Nahirñak V, Almasia NI, Lia VV, Hopp HE, Vazquez Rovere C. Unveiling the defensive role of Snakin-3, a member of the subfamily III of Snakin/GASA peptides in potatoes. PLANT CELL REPORTS 2024; 43:47. [PMID: 38302779 DOI: 10.1007/s00299-023-03108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Natalia Inés Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Verónica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina.
| |
Collapse
|
7
|
Syed Nabi RB, Lee MH, Cho KS, Tayade R, Kim S, Kim JI, Kim MY, Lee E, Lee J, Kim SW, Oh E. Genome-Wide Identification and Comprehensive Analysis of the GASA Gene Family in Peanuts ( Arachis hypogaea L.) under Abiotic Stress. Int J Mol Sci 2023; 24:17117. [PMID: 38069439 PMCID: PMC10707693 DOI: 10.3390/ijms242317117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is a globally cultivated crop of significant economic and nutritional importance. The role of gibberellic-acid-stimulated Arabidopsis (GASA) family genes is well established in plant growth, development, and biotic and abiotic stress responses. However, there is a gap in understanding the function of GASA proteins in cultivated peanuts, particularly in response to abiotic stresses such as drought and salinity. Thus, we conducted comprehensive in silico analyses to identify and verify the existence of 40 GASA genes (termed AhGASA) in cultivated peanuts. Subsequently, we conducted biological experiments and performed expression analyses of selected AhGASA genes to elucidate their potential regulatory roles in response to drought and salinity. Phylogenetic analysis revealed that AhGASA genes could be categorized into four distinct subfamilies. Under normal growth conditions, selected AhGASA genes exhibited varying expressions in young peanut seedling leaves, stems, and roots tissues. Notably, our findings indicate that certain AhGASA genes were downregulated under drought stress but upregulated under salt stress. These results suggest that specific AhGASA genes are involved in the regulation of salt or drought stress. Further functional characterization of the upregulated genes under both drought and salt stress will be essential to confirm their regulatory roles in this context. Overall, our findings provide compelling evidence of the involvement of AhGASA genes in the mechanisms of stress tolerance in cultivated peanuts. This study enhances our understanding of the functions of AhGASA genes in response to abiotic stress and lays the groundwork for future investigations into the molecular characterization of AhGASA genes.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Myoung Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Kwang-Soo Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sungup Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Jung-In Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Min-Young Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Eunsoo Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Jungeun Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Sang-Woo Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| | - Eunyoung Oh
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea; (R.B.S.N.); (J.-I.K.)
| |
Collapse
|
8
|
Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress. Int J Mol Sci 2023; 24:ijms24065389. [PMID: 36982459 PMCID: PMC10049292 DOI: 10.3390/ijms24065389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
R2R3-type MYB transcription factors are implicated in drought stress, which is a primary factor limiting the growth and development of woody plants. The identification of R2R3-MYB genes in the Populus trichocarpa genome has been previously reported. Nevertheless, the diversity and complexity of the conserved domain of the MYB gene caused inconsistencies in these identification results. There is still a lack of drought-responsive expression patterns and functional studies of R2R3-MYB transcription factors in Populus species. In this study, we identified a total of 210 R2R3-MYB genes in the P. trichocarpa genome, of which 207 genes were unevenly distributed across all 19 chromosomes. These poplar R2R3-MYB genes were phylogenetically divided into 23 subgroups. Collinear analysis demonstrated that the poplar R2R3-MYB genes underwent rapid expansion and that whole-genome duplication events were a dominant factor in the process of rapid gene expansion. Subcellular localization assays indicated that poplar R2R3-MYB TFs mainly played a transcriptional regulatory role in the nucleus. Ten R2R3-MYB genes were cloned from P. deltoides × P. euramericana cv. Nanlin895, and their expression patterns were tissue-specific. A majority of the genes showed similar drought-responsive expression patterns in two out of three tissues. This study provides a valid cue for further functional characterization of drought-responsive R2R3-MYB genes in poplar and provides support for the development of new poplar genotypes with elevated drought tolerance.
Collapse
|
9
|
Li X, Zhang MS, Zhao LQ, Ling-Hu QQ, Xu G. The study on interacting factors and functions of GASA6 in Jatropha curcas L. BMC PLANT BIOLOGY 2023; 23:99. [PMID: 36800929 PMCID: PMC9938578 DOI: 10.1186/s12870-023-04067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The gibberellic acid-stimulated Arabidopsis (GASA) gene encodes a class of cysteine-rich functional proteins and is ubiquitous in plants. Most GASA proteins are influence the signal transmission of plant hormones and regulate plant growth and development, however, their function in Jatropha curcas is still unknown. RESULTS In this study, we cloned JcGASA6, a member of the GASA family, from J. curcas. The JcGASA6 protein has a GASA-conserved domain and is located in the tonoplast. The three-dimensional structure of the JcGASA6 protein is highly consistent with the antibacterial protein Snakin-1. Additionally, the results of the yeast one-hybrid (Y1H) assay showed that JcGASA6 was activated by JcERF1, JcPYL9, and JcFLX. The results of the Y2H assay showed that both JcCNR8 and JcSIZ1 could interact with JcGASA6 in the nucleus. The expression of JcGASA6 increased continuously during male flower development, and the overexpression of JcGASA6 was associated with filament elongation of the stamens in tobacco. CONCLUSION JcGASA6, a member of the GASA family in J. curcas, play an important role in growth regulation and floral development (especially in male flower). It is also involved in the signal transduction of hormones, such as ABA, ET, GA, BR, and SA. Also, JcGASA6 is a potential antimicrobial protein determined by its three-dimensional structure.
Collapse
Affiliation(s)
- Xue Li
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | | | - Qian-Qian Ling-Hu
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Gang Xu
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Zhang M, Wang Z, Jian S. Genome-Wide Identification and Functional Analysis of the GASA Gene Family Responding to Multiple Stressors in Canavalia rosea. Genes (Basel) 2022; 13:1988. [PMID: 36360226 PMCID: PMC9690345 DOI: 10.3390/genes13111988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/15/2023] Open
Abstract
In plants, the Gibberellic Acid-Stimulated Arabidopsis (GASA) gene family is unique and responds to ubiquitous stress and hormones, playing important regulatory roles in the growth and development of plants, as well as in the resistance mechanisms to biotic and abiotic stress. In this study, a total of 23 CrGASAs were characterized in C. rosea using a genome-wide approach, and their phylogenetic relationships, gene structures, conserved motifs, chromosomal locations, gene duplications, and promoter regions were systematically analyzed. Expression profile analysis derived from transcriptome data showed that CrGASAs are expressed at higher levels in the flowers or fruit than in the leaves, vines, and roots. The expression of CrGASAs also showed habitat- and environmental-stress-regulated patterns in C. rosea analyzed by transcriptome and quantitative reverse transcription PCR (qRT-PCR). The heterologous induced expression of some CrGASAs in yeast enhanced the tolerance to H2O2, and some CrGASAs showed elevated heat tolerance and heavy metal (HM) Cd/Cu tolerance. These findings will provide an important foundation to elucidate the biological functions of CrGASA genes, especially their role in the ecological adaptation of specific plant species to tropical islands and reefs in C. rosea.
Collapse
Affiliation(s)
- Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|