1
|
Mussalo L, Afonin AM, Zavodna T, Krejcik Z, Honkova K, Fayad C, Shahbaz MA, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Jalava P, Lampinen R, Kanninen KM. Traffic-related ultrafine particles influence gene regulation in olfactory mucosa cells altering PI3K/AKT signaling. ENVIRONMENT INTERNATIONAL 2025; 199:109484. [PMID: 40273555 DOI: 10.1016/j.envint.2025.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Traffic-related ultrafine particles (UFPs) are an emerging health concern affecting the brain and increasing the risk of Alzheimer's disease (AD). PI3K/AKT signaling is known to contribute to neuronal survival and to be altered in AD. The nasal olfactory mucosa (OM) is a sensory tissue exposed directly to ambient air, and a starting point for olfactory neural circuits towards the brain. Evidence of air pollution-induced transcriptional regulation via microRNAs (miRNA) and DNA methylation (DNAmet) is accumulating and air pollutant-mediated disturbances in PI3K/AKT signaling have been reported. By utilizing a highly translational human-based in vitro model of OM, we aimed to investigate possible gene regulatory mechanisms in PI3K/AKT signaling induced by UFPs, and to compare the responses between cognitively healthy and individuals with AD. miRNA expression was analyzed using next-generation sequencing (NGS) and chip-based methylation analysis was performed to detect differentially methylated loci (DML). These data were combined with previously published transcriptomics analysis (mRNA) to construct an mRNA-miRNA-DNAmet-integrative network. Protein level changes were studied by immunoassays. We observed UFP-induced reductions in viability and increases in oxidative stress and DNA damage without eminent cell death. Integrative network analysis revealed multiple connections of miRNAs to differentially expressed genes in the PI3K/AKT pathway, and effects were most prominent in AD cells. Similarly, in AD cells DML were identified in transcription factor and apoptosis genes, downstream of PI3K/AKT signaling. Conclusively, traffic-related UFPs influence gene regulation of PI3K/AKT signaling to modulate OM cell survival, with existing AD pathology resulting in heightened vulnerability to UFP effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Alexey M Afonin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tana Zavodna
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Honkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Claire Fayad
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
2
|
Wang Y, Zhang Y, Wang W, Zhang Y, Dong X, Liu Y. Diverse Physiological Roles of Kynurenine Pathway Metabolites: Updated Implications for Health and Disease. Metabolites 2025; 15:210. [PMID: 40137174 PMCID: PMC11943880 DOI: 10.3390/metabo15030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Tryptophan is an essential amino acid critical for human health. It plays a pivotal role in numerous physiological and biochemical processes through its metabolism. The kynurenine (KYN) pathway serves as the principal metabolic route for tryptophan, producing bioactive metabolites, including KYN, quinolinic acid, and 3-hydroxykynurenine. Numerous studies are actively investigating the relationship between tryptophan metabolism and physiological functions. These studies are highlighting the interactions among metabolites that may exert synergistic or antagonistic effects, such as neuroprotective or neurotoxic, and pro-oxidative or antioxidant activities. Minor disruptions in the homeostasis of these metabolites can result in immune dysregulation, contributing to a spectrum of diseases. These diseases include neurological disorders, mental illnesses, cardiovascular conditions, autoimmune diseases, and chronic kidney disease. Therefore, understanding the physiological roles of the KYN pathway metabolites is essential for elucidating the contribution of tryptophan metabolism to health regulation. The present review emphasizes the physiological roles of KYN pathway metabolites and their mechanisms in disease development, aiming to establish a theoretical basis for leveraging dietary nutrients to enhance human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- Shandong Food Ferment Industry & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), No. 41, Jiefang Road, Jinan 250013, China
| |
Collapse
|
3
|
Zang S, Yang X, Ye J, Mo X, Zhou G, Fang Y. Quantitative phosphoproteomics explain cryopreservation-induced reductions in ram sperm motility. J Proteomics 2024; 298:105153. [PMID: 38438079 DOI: 10.1016/j.jprot.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.
Collapse
Affiliation(s)
- Shengqin Zang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, PR China
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China.
| |
Collapse
|
4
|
Xie H, Yang N, Yu C, Lu L. Uremic toxins mediate kidney diseases: the role of aryl hydrocarbon receptor. Cell Mol Biol Lett 2024; 29:38. [PMID: 38491448 PMCID: PMC10943832 DOI: 10.1186/s11658-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor that responds to pollutants. Subsequent research has revealed that AhR recognizes multiple exogenous and endogenous molecules, including uremic toxins retained in the body due to the decline in renal function. Therefore, AhR is also considered to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the activation of AhR is involved in cell differentiation and senescence, lipid metabolism and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all tissues and organs. The identification of the endogenous uremic toxin receptor opens the door to investigating the precise role and molecular mechanism of tissue and organ damage induced by uremic toxins. This review focuses on summarizing recent findings on the role of AhR activation induced by uremic toxins in chronic kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential clinical approaches to mitigate the effects of uremic toxins are explored herein, such as enhancing uremic toxin clearance through dialysis, reducing uremic toxin production through dietary interventions or microbial manipulation, and manipulating metabolic pathways induced by uremic toxins through controlling AhR signaling. This information may also shed light on the mechanism of uremic toxin-induced injury to other organs, and provide insights into clinical approaches to manipulate the accumulated uremic toxins.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Ninghao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|