1
|
Zhang W, Zhang Y, Han L, Bo T, Qi Z, Zhong H, Xu H, Hu L, Chen S, Zhang S. Double-stranded DNA enhances platelet activation, thrombosis, and myocardial injury via cyclic GMP-AMP synthase. Cardiovasc Res 2025; 121:353-366. [PMID: 39302147 DOI: 10.1093/cvr/cvae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Elevated dsDNA levels in ST-elevated myocardial infarction (STEMI) patients are associated with increased infarct size and worse clinical outcomes. However, the direct effect of dsDNA on platelet activation remains unclear. This study aims to investigate the direct influence of dsDNA on platelet activation, thrombosis, and the underlying mechanisms. METHODS AND RESULTS Analysis of clinical samples revealed elevated plasma dsDNA levels in STEMI patients, which positively correlated with platelet aggregation and markers of neutrophil extracellular traps such as MPO-DNA and CitH3. Platelet assays demonstrated the activation of the cGAS-STING pathway in platelets from STEMI patients. DsDNA directly potentiated platelet activation and thrombus formation. Mechanistic studies using G150 (cGAS inhibitor), H151 (STING inhibitor), and MCC950 (NLRP3 inhibitor), as well as cGAS-/-, STING-/-, and NLRP3-/- mice, showed that dsDNA activated cGAS, a previously unreported DNA sensor in platelets, and induced activation of the STING/NLRP3/caspase-1/IL-1β axis. This cascade enhanced platelet activation and thrombus formation. Platelet cGAS depletion or Palbociclib, a cGAS-STING inhibitor, approved by the FDA for advanced breast cancer, ameliorated myocardial ischaemia-reperfusion injury in ApoE-/- mice fed with a high-fat diet for 12 weeks. CONCLUSIONS These results suggested that dsDNA is a novel driver of platelet activation and thrombus formation in STEMI patients.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Yan Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Liping Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tao Bo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Zhiyong Qi
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Haoxuan Zhong
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Huajie Xu
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| |
Collapse
|
2
|
Oliveira JD, Vieira-Damiani G, da Silva LQ, Leonardi GR, Vaz CO, Jacintho-Robison BC, Mazetto BM, de Paula EV, Monica FZ, Orsi FA. Impact of antiplatelets, anticoagulants and cyclic nucleotide stimulators on neutrophil extracellular traps (NETs) and inflammatory markers during COVID-19. J Thromb Thrombolysis 2025; 58:199-209. [PMID: 39546241 DOI: 10.1007/s11239-024-03057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
While the association between coronavirus disease-19 (COVID-19) and neutrophils extracellular traps (NETs) is recognized, uncertainties remain regarding its precise onset, timing of resolution and target therapy. To assess changes in inflammatory and NET markers during the first week of COVID-19 hospitalization, and the association with disease severity. "In vitro" experiments investigated the effect of antiplatelets, anticoagulants, and cyclic nucleotide stimulators on NETs release. Prospective cohort study, changes in interleukin (IL)-6, IL-8, IL-17, TNF-α, RANTES, PF4, and citrullinated-H3 (citH3) levels within each outcome group was evaluated using ANOVA. Differences between moderately ill, critically ill, and non-survivors were determined using Kruskal-Wallis and logistic regression. Healthy neutrophils were stimulated with phorbol-12-myristate-13-acetate (PMA) or COVID-19 sera and treated with unfractionated heparin (UFH), low molecular weight heparin (LMWH), aspirin (ASA), ticagrelor, cinaciguat, sildenafil, and milrinone. The proportion of NETosis was assessed using IncuCyte Cell Imager. Of the 125 patients, 40.8% had moderate COVID-19, 40.8% had critical COVID-19 but recovered, and 18.4% died. From admission to hospitalization day 8, IL-6 levels decreased in moderately and critically ill, but not in non-survivors, while citH3 levels increased in critically ill and non-survivors. IL-6, IL-8, and TNF-α levels were associated with critical and fatal COVID-19. The release of NETs by neutrophils stimulated with PMA or COVID-19 sera was decreased in the presence of ASA, UFH, LMWH and cyclic nucleotide stimulators in a dose-dependent manner. In the first week of hospitalization, NET markers rose later than inflammatory markers in severe COVID-19 cases. Cyclic nucleotide stimulators, ASA and heparin may emerge as treatment approaches as they may modulate NETosis.
Collapse
Affiliation(s)
- José D Oliveira
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- School of Medical Sciences, Department of Clinical Pathology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gislaine Vieira-Damiani
- Department of Biology, Federal Institute of Education Science and Technology of São Paulo, Capivari, Brazil
| | - Letícia Q da Silva
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme R Leonardi
- Department of Translational Medicine (Pharmacology), Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Camila O Vaz
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- School of Medical Sciences, Department of Clinical Pathology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna C Jacintho-Robison
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- School of Medical Sciences, Department of Clinical Pathology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna M Mazetto
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Erich V de Paula
- School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fabíola Z Monica
- Department of Translational Medicine (Pharmacology), Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda A Orsi
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
- School of Medical Sciences, Department of Clinical Pathology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, Brazil.
| |
Collapse
|
3
|
Kudriavtsev A, Pastor B, Mirandola A, Pisareva E, Gricourt Y, Capdevila X, Thierry AR, Cuvillon P. Association of the immediate perioperative dynamics of circulating DNA levels and neutrophil extracellular traps formation in cancer patients. PRECISION CLINICAL MEDICINE 2024; 7:pbae008. [PMID: 38699382 PMCID: PMC11062027 DOI: 10.1093/pcmedi/pbae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients. Methods We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI). Results The synergistic analytical information provided by these markers revealed that: (i) NETs formation contributes to post-surgery conditions; (ii) post-surgery cir-nDNA levels were highly associated with NE and MPO in colon cancer [r = 0.60 (P < 0.001) and r = 0.53 (P < 0.01), respectively], but not in prostate and breast cancer; (iii) each tumor type shows a specific pattern of cir-nDNA and NETs marker dynamics, but overall the pre- and post-surgery median values of cir-nDNA, NE, and MPO were significantly higher in cancer patients than in HI. Conclusion Taken as a whole, our work reveals the association of NETs formation with the elevated cir-nDNA release during a cancer patient's perioperative period, depending on surgical procedure or cancer type. By contrast, cir-mtDNA is poorly associated with NETs formation in the studied perioperative period, which would appear to indicate a different mechanism of release or suggest mitochondrial dysfunction.
Collapse
Affiliation(s)
- Andrei Kudriavtsev
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Brice Pastor
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Alexia Mirandola
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Ekaterina Pisareva
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
| | - Yann Gricourt
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| | - Xavier Capdevila
- Division of Anaesthesia Intensive Care, Pain and Emergency Medicine, Montpellier University Hospital, Montpellier 34090, France
- Montpellier NeuroSciences Institute, INSERM U1298, University of Montpellier, Montpellier 34295, France
| | - Alain R Thierry
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier 34298, France
- Institut régional du Cancer de Montpellier, Montpellier 34298, France
| | - Philippe Cuvillon
- Department of Anaesthesiology and Pain Management, Centre Hospitalo-Universitaire (CHU) Carémeau, Place du Professeur Debré,Nîmes 30400, France
- University of Montpellier, Montpellier 34298, France
| |
Collapse
|
4
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
5
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Córneo ES, Veras FP, Gomes GF, Schneider AH, Manuella B, Almeida CJLR, Silva CM, Martins RB, Batah SS, Simon CS, Prestes GDS, Alves-Filho JC, Arruda E, Louzada-Junior P, de Oliveira RDR, Fabro AT, Cunha TM, Cunha FQ, Dal-Pizzol F. Enoxaparin improves COVID-19 by reducing Neutrophils Extracellular Traps (NETs) production. Clin Immunol 2023; 257:109836. [PMID: 37951516 DOI: 10.1016/j.clim.2023.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.
Collapse
Affiliation(s)
- Emily S Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| | - Flavio Protasio Veras
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center; Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Ayda H Schneider
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Bruna Manuella
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Cicero J L R Almeida
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Camila M Silva
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | | | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carla S Simon
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriele da S Prestes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - José Carlos Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | | | - Paulo Louzada-Junior
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Internal Medicine, Division of Clinical Immunology and Division of Infectious Diseases
| | - Renê D R de Oliveira
- Internal Medicine, Division of Clinical Immunology and Division of Infectious Diseases
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Fernando Queiroz Cunha
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil; Departments of Pharmacology Research Center
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
7
|
Li S, Wang H, Shao Q. The central role of neutrophil extracellular traps (NETs) and by-products in COVID-19 related pulmonary thrombosis. Immun Inflamm Dis 2023; 11:e949. [PMID: 37647446 PMCID: PMC10461423 DOI: 10.1002/iid3.949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Extracellular trap networks (neutrophil extracellular traps [NETs]) of polymorphonuclear neutrophils are mesh-like substances that prevent the spread of pathogens. They primarily consist of DNA skeletons, histones, granule components, and cytoplasmic proteins. NETs formation requires a certain environment and there are different pathways for NETs production. However, it is still not clear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes NETs. NETs exert antiinflammatory effects through immune response, while they can also lead to certain adverse outcomes, such as the development of immunothrombosis. Coronavirus disease 2019 (COVID-19) is an inflammatory reaction affecting various organs caused by SARS-CoV-2, especially the lungs. NETs production and disease severity are linked with unique neutrophil clusters by single-cell RNA sequencing. NETs might exert an anti-inflammatory role in the initial stage of lung tissue inflammation. Nevertheless, numerous studies and cases have shown that they can also result in pulmonary thrombosis. There is mounting evidence that NETs are tightly related with COVID-19 pulmonary thrombosis, and many studies on the mechanisms are involved. The role and mechanism of NETs in the development of pulmonary thrombosis will be the main topics of this manuscript. Additionally, we address the potential targeting of NETs in COVID-19 patients.
Collapse
Affiliation(s)
- Shi Li
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Hui Wang
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Qixiang Shao
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
- Department of Medical Microbiology and Immunology, Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory MedicineJiangsu College of NursingHuai'anJiangsuChina
| |
Collapse
|
8
|
Rahi MS, Parekh J, Pednekar P, Mudgal M, Jindal V, Gunasekaran K. Role of Therapeutic Anticoagulation in COVID-19: The Current Situation. Hematol Rep 2023; 15:358-369. [PMID: 37367086 DOI: 10.3390/hematolrep15020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Thrombotic complications from COVID-19 are now well known and contribute to significant morbidity and mortality. Different variants confer varying risks of thrombotic complications. Heparin has anti-inflammatory and antiviral effects. Due to its non-anticoagulant effects, escalated-dose anticoagulation, especially therapeutic-dose heparin, has been studied for thromboprophylaxis in hospitalized patients with COVID-19. Few randomized, controlled trials have examined the role of therapeutic anticoagulation in moderately to severely ill patients with COVID-19. Most of these patients had elevated D-dimers and low bleeding risks. Some trials used an innovative adaptive multiplatform with Bayesian analysis to answer this critical question promptly. All the trials were open-label and had several limitations. Most trials showed improvements in the meaningful clinical outcomes of organ-support-free days and reductions in thrombotic events, mainly in non-critically-ill COVID-19 patients. However, the mortality benefit needed to be more consistent. A recent meta-analysis confirmed the results. Multiple centers initially adopted intermediate-dose thromboprophylaxis, but the studies failed to show meaningful benefits. Given the new evidence, significant societies have suggested therapeutic anticoagulation in carefully selected patients who are moderately ill and do not require an intensive-care-unit level of care. There are multiple ongoing trials globally to further our understanding of therapeutic-dose thromboprophylaxis in hospitalized patients with COVID-19. In this review, we aim to summarize the current evidence regarding the use of anticoagulation in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Mandeep Singh Rahi
- Division of Pulmonary Diseases and Critical Care Medicine, Yale-New Haven Health Lawrence and Memorial Hospital, New London, CT 06320, USA
| | - Jay Parekh
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, Bridgeport, CT 06610, USA
| | - Prachi Pednekar
- Department of Internal Medicine, Yale-New Haven Hospital, New Haven, CT 06510, USA
| | - Mayuri Mudgal
- Department of Medicine, Camden Clark Medical Center, Parkersburg, WV 26101, USA
| | - Vishal Jindal
- Department of Hematology and Oncology, Sinai Hospital, Baltimore, MD 21215, USA
| | - Kulothungan Gunasekaran
- Department of Pulmonary and Critical Care, Yuma Regional Medical Center, Yuma, AZ 85364, USA
| |
Collapse
|
9
|
Fan W, Fu D, Zhang L, Xiao Z, Shen X, Chen J, Qi X. Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages. J Orthop Surg Res 2023; 18:380. [PMID: 37221568 DOI: 10.1186/s13018-023-03865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE The implantation of PMMA bone cement results in an immune response and the release of PMMA bone cement particles causes an inflammatory cascade. Our study discovered that ES-PMMA bone cement can induce M2 polarization of macrophages, which has an anti-inflammatory immunomodulatory effect. We also delved into the molecular mechanisms that underlie this process. METHODS In this study, we designed and prepared samples of bone cement. These included PMMA bone cement samples and ES-PMMA bone cement samples, which were implanted into the back muscles of rats. At 3, 7, and 14 days after the operation, we removed the bone cement and a small amount of surrounding tissue. We then performed immunohistochemistry and immunofluorescence to observe the polarization of macrophages and the expression of related inflammatory factors in the surrounding tissues. The RAW264.7 cells were exposed to lipopolysaccharide (LPS) for 24 h to establish the macrophage inflammation model. Then, each group was treated with enoxaparin sodium medium, PMMA bone cement extract medium, and ES-PMMA bone cement extract medium, respectively, and cultured for another 24 h. We collected cells from each group and used flow cytometry to detect the expressions of CD86 and CD206 in macrophages. Additionally, we performed RT-qPCR to determine the mRNA levels of three markers of M1 macrophages (TNF-α, IL-6, iNOS) and two M2 macrophage markers (Arg-1, IL-10). Furthermore, we analyzed the expression of TLR4, p-NF-κB p65, and NF-κB p65 through Western blotting. RESULTS The immunofluorescence results indicate that the ES-PMMA group exhibited an upregulation of CD206, an M2 marker, and a downregulation of CD86, an M1 marker, in comparison to the PMMA group. Additionally, the immunohistochemistry results revealed that the levels of IL-6 and TNF-α expression were lower in the ES-PMMA group than in the PMMA group, while the expression level of IL-10 was higher in the ES-PMMA group. Flow cytometry and RT-qPCR analyses revealed that the expression of M1-type macrophage marker CD86 was significantly elevated in the LPS group compared to the NC group. Additionally, M1-type macrophage-related cytokines TNF-α, IL-6, and iNOS were also found to be increased. However, in the LPS + ES group, the expression levels of CD86, TNF-α, IL-6, and iNOS were decreased, while the expression of M2-type macrophage markers CD206 and M2-type macrophage-related cytokines (IL-10, Arg-1) were increased compared to the LPS group. In comparison to the LPS + PMMA group, the LPS + ES-PMMA group demonstrated a down-regulation of CD86, TNF-α, IL-6, and iNOS expression levels, while increasing the expression levels of CD206, IL-10, and Arg-1. Western blotting results revealed a significant decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 in the LPS + ES group when compared to the LPS group. Additionally, the LPS + ES-PMMA group exhibited a decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 levels when compared to the LPS + PMMA group. CONCLUSION ES-PMMA bone cement is more effective than PMMA bone cement in down-regulating the expression of the TLR4/NF-κB signaling pathway. Additionally, it induces macrophages to polarize towards the M2 phenotype, making it a crucial player in anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Jianchao Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
10
|
Suksawad N, Udompornpitak K, Thawinpipat N, Korwattanamongkol P, Visitchanakun P, Phuengmaung P, Saisorn W, Kueanjinda P, Leelahavanichkul A. Cyclic GMP-AMP Synthase (cGAS) Deletion Reduces Severity in Bilateral Nephrectomy Mice through Changes in Neutrophil Extracellular Traps and Mitochondrial Respiration. Biomedicines 2023; 11:biomedicines11041208. [PMID: 37189826 DOI: 10.3390/biomedicines11041208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Uremia-induced systemic inflammation is partly caused by the dissemination of microbial molecules such as lipopolysaccharide and bacterial double-stranded DNA from leaked gut damaged by immune cells in response to the microbial molecules. Cyclic GMP-AMP synthase (cGAS) can recognize fragmented DNA and induce cGAMP synthesis for the activation of the stimulator of interferon genes (STING) pathway. To study the effect of cGAS in uremia-induced systemic inflammation, we performed bilateral nephrectomy (BNx) in wild-type and cGAS knock-out mice and found that the gut leakage and blood uremia from both groups were similar. However, serum cytokines (TNF-α and IL-6) and neutrophil extracellular traps (NETs) decreased significantly in cGAS-/- neutrophils after stimulation with LPS or bacterial cell-free DNA. Transcriptomic analysis of LPS-stimulated cGAS-/- neutrophils also confirmed the down-regulation of neutrophil effector functions. The extracellular flux analysis showed that cGAS-/- neutrophils exhibited a higher respiratory rate than wild-type neutrophils despite having similar mitochondrial abundance and function. Our results suggest that cGAS may control effector functions and the mitochondrial respiration of neutrophils in response to LPS or bacterial DNA.
Collapse
Affiliation(s)
- Nattavong Suksawad
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanyarat Udompornpitak
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natchapon Thawinpipat
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pichaya Korwattanamongkol
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Grossi C, Capitani N, Benagiano M, Baldari CT, Della Bella C, Macor P, Tedesco F, Borghi MO, Maugeri N, D’Elios MM, Meroni PL. Beta 2 glycoprotein I and neutrophil extracellular traps: Potential bridge between innate and adaptive immunity in anti-phospholipid syndrome. Front Immunol 2023; 13:1076167. [PMID: 36700193 PMCID: PMC9868732 DOI: 10.3389/fimmu.2022.1076167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (β2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against β2GPI, both peripheral and tissue CD4+ β2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that β2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated β2GPI on NETs, and its ability to stimulate CD4+β2GPI-specific T cells. The aim of this review is to elucidate the role of β2GPI in the cross-talk between the innate and adaptive immunity in APS.
Collapse
Affiliation(s)
- Claudia Grossi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Nagaja Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Macor
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Division of Immunology, Transplantation & Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Institute, Milan, Italy
| | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| | - Pier Luigi Meroni
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Immuno-Rheumatology, Milan, Italy,*Correspondence: Pier Luigi Meroni, ; ; Mario Milco D’Elios,
| |
Collapse
|
12
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|