1
|
Almeida TAG, Dos Santos OP, Saddi VA, Pereira JX, da Costa Machado H, Santos Carneiro MA, de Paula HM, Figueiredo-Alves RR, Zeferino LC, Rabelo-Santos SH. Association of CD133, ALDH1, CD117 and OCT4 expression with prognosis of patients with cervical cancer. Virchows Arch 2025; 486:791-801. [PMID: 38981932 DOI: 10.1007/s00428-024-03862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Cancer stem cells (CSC), a small population of neoplastic cells, are associated with worse prognosis. The aim of this study was to evaluate the expression of ALDH1, CD117, CD133 and OCT4; potential markers of CSC; and their associations with the prognosis of women diagnosed with cervical cancer. This retrospective cohort study included 126 women diagnosed with cervical cancer whose biopsies were analyzed by immunohistochemistry. Median values of marked cells were used to define cutoff points for low and high expression. For specific survival, multivariate analyses showed statistical significance for lymph node metastases (HR 8.15; 95% CI 3.00-22.18) and borderline significance for high CD133 expression (p = 0.058). For overall survival, multivariate analyses showed statistical significance for IIA-IVB staging (HR 4.60; 95% CI 1.46-14.56), lymph node metastases (HR 5.13; 95% CI 12.02-13.03) and high CD133 expression (2.67; 95% CI 1.11-6.43). Considering only women with SCC, the same clinicopathological variables were associated with worse specific and overall survival in univariate analyses. However, higher expression of CD 133 (HR 11.10; 95% CI 2.42-50.94 and 6.00; 95% CI 2.02-17.87) and staging IIA-IVB (HR 5.96; 95% CI 1.30-27.34 and HR 12.47; 95% CI 2.45-63.54) respectively impacted negatively specific and overall survival, as multivariate analyses showed. Secondarily, it was observed that ALDH1 expression was associated with adenocarcinoma and CD117 expression with squamous cells carcinoma. Higher expression of CD133 was associated with worse specific and overall survival, indicating that it could have relevance as a clinical marker and therapeutic target.
Collapse
Affiliation(s)
| | - Odeony Paulo Dos Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
- Center for Social Sciences, Health and Technology, Federal University of Maranhão, Imperatriz, Brazil
| | | | - Jonathas Xavier Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | - Luiz Carlos Zeferino
- Department of Obstetrics and Gynecology, State University of Campinas, São Paulo, Brazil
| | - Silvia Helena Rabelo-Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
- School of Pharmacy, Federal University of Goiás, S/N - Setor Leste Universitário, Rua 240, esquina com a 5ª Avenida, s/nº, Goiânia, 74605-170, Brazil.
| |
Collapse
|
2
|
Cao XZ, Zhang YF, Song YW, Yuan L, Tang HL, Li JY, Qiu YB, Lin JZ, Ning YX, Wang XY, Xu Y, Lin SQ. DNA methyltransferase 1/miR-342-3p/Forkhead box M1 signaling axis promotes self-renewal in cervical cancer stem-like cells in vitro and nude mice models. World J Stem Cells 2025; 17:99472. [PMID: 40160685 PMCID: PMC11947898 DOI: 10.4252/wjsc.v17.i3.99472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) stem cell-like cells (CCSLCs), defined by the capacity of differentiation and self-renewal and proliferation, play a significant role in the progression of CC. However, the molecular mechanisms regulating their self-renewal are poorly understood. Therefore, elucidation of the epigenetic mechanisms that drive cancer stem cell self-renewal will enhance our ability to improve the effectiveness of targeted therapies for cancer stem cells. AIM To explore how DNA methyltransferase 1 (DNMT1)/miR-342-3p/Forkhead box M1 (FoxM1), which have been shown to have abnormal expression in CCSLCs, and their signaling pathways could stimulate self-renewal-related stemness in CCSLCs. METHODS Sphere-forming cells derived from CC cell lines HeLa, SiHa and CaSki served as CCSLCs. Self-renewal-related stemness was identified by determining sphere and colony formation efficiency, CD133 and CD49f protein level, and SRY-box transcription factor 2 and octamer-binding transcription factor 4 mRNA level. The microRNA expression profiles between HeLa cells and HeLa-derived CCSLCs or mRNA expression profiles that HeLa-derived CCSLCs were transfected with or without miR-342-3p mimic were compared using quantitative PCR analysis. The expression levels of DNMT1 mRNA, miR-342-3p, and FoxM1 protein were examined by quantitative real-time PCR and western blotting. In vivo carcinogenicity was assessed using a mouse xenograft model. The functional effects of the DNMT1/miR-342-3p/FoxM1 axis were examined by in vivo and in vitro gain-of-activity and loss-of-activity assessments. Interplay among DNMT1, miR-342-3p, and FoxM1 was tested by methylation-specific PCR and a respective luciferase reporter assay. RESULTS CCSLCs derived from the established HeLa cell lines displayed higher self-renewal-related stemness, including enhanced sphere and colony formation efficiency, increased CD133 and CD49f protein level, and heightened transcriptional quantity of stemness-related factors SRY-box transcription factor 2 and octamer-binding transcription factor 4 in vitro as well as a stronger tumorigenic potential in vivo compared to their parental cells. Moreover, quantitative PCR showed that the miR-342-3p level was downregulated in HeLa-derived CCSLCs compared to HeLa cells. Its mimic significantly decreased DNMT1 and FoxM1 mRNA expression levels in CCSLCs. Knockdown of DNMT1 or miR-342-3p mimic transfection suppressed DNMT1 expression, increased miR-342-3p quantity by promoter demethylation, and inhibited CCSLC self-renewal. Inhibition of FoxM1 by shRNA transfection also resulted in the attenuation of CCSLC self-renewal but had little effect on the DNMT1 activity and miR-342-3p expression. Furthermore, the loss of CCSLC self-renewal exerted by miR-342-3p mimic was inverted by the overexpression of DNMT1 or FoxM1. Furthermore, DNMT1 and FoxM1 were recognized as straight targets by miR-342-3p in HeLa-derived CCSLCs. CONCLUSION Our findings suggested that a novel DNMT1/miR-342-3p/FoxM1 signal axis promotes CCSLC self-renewal and presented a potential target for the treatment of CC through suppression of CCSLC self-renewal. However, this pathway has been previously implicated in CC, as evidenced by prior studies showing miR-342-3p-mediated downregulation of FoxM1 in cervical cancer cells. Additionally, research on liver cancer further supports the involvement of miR-342-3p in suppressing FoxM1 expression. While our study contributed to this body of knowledge, we did not present a completely novel axis but reinforced the therapeutic potential of targeting the DNMT1/miR-342-3p/FoxM1 axis to suppress CCSLC self-renewal in CC treatment.
Collapse
Affiliation(s)
- Xiao-Zheng Cao
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, Guangdong Province, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong Province, China
| | - Yao-Feng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Yu-Wei Song
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lei Yuan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, Guangdong Province, China
| | - Hui-Li Tang
- Central Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan 528000, Guangdong Province, China
| | - Jin-Yuan Li
- Department of Pelvic Radiotherapy, Meizhou People's Hospital, Meizhou 514030, Guangdong Province, China
| | - Ye-Bei Qiu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jia-Zhi Lin
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Ying-Xia Ning
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Yu Wang
- Central Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan 528000, Guangdong Province, China
| | - Yong Xu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong Province, China
| | - Shao-Qiang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, Guangdong Province, China
- Central Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan 528000, Guangdong Province, China.
| |
Collapse
|
3
|
Obisi JN, Abimbola ANJ, Babaleye OA, Atidoglo PK, Usin SG, Nwanaforo EO, Patrick-Inezi FS, Fasogbon IV, Chimezie J, Dare CA, Kuti OO, Uti DE, Omeoga HC. Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations. Discov Oncol 2025; 16:373. [PMID: 40120008 PMCID: PMC11929669 DOI: 10.1007/s12672-025-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stem cells (CSCs), are a critical subpopulation within tumours, and are defined by their capacity for self-renewal, differentiation, and tumour initiation. These unique traits contribute to tumour progression, metastasis, and resistance to conventional treatments like chemotherapy and radiotherapy, often resulting in cancer recurrence and poor patient outcomes. As such, CSCs have become focal points in developing advanced cancer therapies. This review highlights progress in CSC-targeted treatments, including chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy, molecular targeting, and nanoparticle-based drug delivery systems. Plant-derived compounds and gene-editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR), are explored for their potential to enhance precision and minimize side effects. Metabolic pathways integral to CSC survival, such as mitochondrial dynamics, mitophagy (regulated by dynamin-related protein 1 [DRP1] and the PINK1/Parkin pathway), one-carbon metabolism, amino acid metabolism (involving enzymes like glutaminase (GLS) and glutamate dehydrogenase (GDH]), lipid metabolism, and hypoxia-induced metabolic reprogramming mediated by hypoxia-inducible factors (HIF-1α and HIF-2α), are examined as therapeutic targets. The adaptability of CSCs through autophagy, metabolic flexibility, and epigenetic regulation by metabolites like α-ketoglutarate, succinate, and fumarate is discussed. Additionally, extracellular vesicles and nicotinamide adenine dinucleotide (NAD⁺) metabolism are identified as pivotal in redox balance, DNA repair, and epigenetic modifications. Addressing challenges such as tumour heterogeneity, immune evasion, and treatment durability requires interdisciplinary collaboration. Advancing CSC-targeted therapies is essential for overcoming drug resistance and preventing cancer relapse, paving the way for transformative cancer treatments. This review underscores the importance of leveraging innovative technologies and fostering collaboration to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | | | - Oluwasegun Adesina Babaleye
- Center for Human Virology and Genomics, Department of Microbiology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Peter Kwame Atidoglo
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Saviour God'swealth Usin
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eudora Obioma Nwanaforo
- Environmental Health Science Department, School of Heath Technology, Federal University of Technology Owerri, Owerri, Nigeria
| | | | | | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Daniel Ejim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | | |
Collapse
|
4
|
Čikeš Botić M, Marijan S, Radan M, Novak I, Glumac M, Pilkington LI, Odak Z, Barker D, Reynisson J, Čikeš Čulić V. Thieno[2,3- b]pyridines as a Novel Strategy Against Cervical Cancer: Mechanistic Insights and Therapeutic Potential. Int J Mol Sci 2025; 26:2651. [PMID: 40141292 PMCID: PMC11942470 DOI: 10.3390/ijms26062651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Cervical cancer is the fourth leading cause of cancer mortality in women worldwide, with limited therapeutic options for advanced or recurrent cases. In this study, the effects of a recent thieno[2,3-b]pyridine derivative, (E)-3-amino-5-(3-bromophenyl)acryloyl)-N-(3-chloro-2-methylphenyl)-6-methylthieno[2,3-b]pyridine-2-carboxamide (compound 1), on two cervical cancer cell lines, HeLa and SiHa, are investigated. Cytotoxicity was assessed by MTT assay, apoptosis rates were measured by flow cytometry, and metabolic profiling was performed by GC-MS. The study also examined the expression of eight glycosphingolipids (GSLs) in cancer stem cells (CSCs) and non-CSCs to assess glycophenotypic changes. Compound 1 showed significant cytotoxicity in both cell lines, with apoptosis identified as the primary mechanism of cell death. A significant reduction in the CSC population was observed, particularly in the SiHa cell line. Compound 1 treatment altered GSL expression and decreased GM2 levels in both CSCs and non-CSCs in the SiHa cell line and Gg3Cer levels in the HeLa cell line. Metabolic profiling identified 23 and 21 metabolites in the HeLa and SiHa cell lines, respectively, with significant differences in metabolite expression after treatment. These results underscore the potential of compound 1 as a promising therapeutic candidate for cervical cancer and warrant further investigation in preclinical and clinical settings.
Collapse
Affiliation(s)
- Monika Čikeš Botić
- Department of Gynecology and Obstetrics, University Hospital of Split, 21000 Split, Croatia;
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (V.Č.Č.)
| | - Mila Radan
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Ivana Novak
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (I.N.); (M.G.)
| | - Mateo Glumac
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (I.N.); (M.G.)
| | - Lisa I. Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (L.I.P.); (D.B.)
- Te Pūnaha Matatini, Auckland 1042, New Zealand
| | - Zdravko Odak
- Department of Gynecology and Obstetrics, University Hospital of Split, 21000 Split, Croatia;
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (L.I.P.); (D.B.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Jóhannes Reynisson
- School of Allied Health Professions and Pharmacy, Keele University, Staffordshire ST5 5BG, UK;
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (S.M.); (V.Č.Č.)
| |
Collapse
|
5
|
Gies S, Melchior P, Molnar I, Olmes G, Stroeder R, Tänzer T, Pohlers M, Schäfer M, Theobald L, Sester M, Solomayer EF, Walch-Rückheim B. PD-L1 + CD49f + CD133 + Circulating tumor cells predict outcome of patients with vulvar or cervical cancer after radio- and chemoradiotherapy. J Transl Med 2025; 23:321. [PMID: 40083005 PMCID: PMC11908062 DOI: 10.1186/s12967-025-06277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Monitoring individual therapy responses of patients with cancer represents a major clinical challenge providing the basis to early identify metastases and cancer relapse. We previously demonstrated that radio- or chemoradiotherapy affects the systemic cellular milieu of patients with vulvar or cervical cancer and creates individual post-therapeutic environments associated with cancer relapse. Circulating tumor cells (CTCs) in the systemic milieu are related to metastases and relapse; however, their quantitative and phenotypic characteristics during therapy of patients with vulvar and cervical cancer are still unknown. METHODS In this prospective, longitudinal study, we verified the presence of CTCs via immunofluorescence and systemically characterized CTCs by flow cytometry from the blood of 40 patients with vulvar and 115 patients with cervical cancer receiving surgery, adjuvant radiotherapy (aRT), chemoradiotherapy (aCRT) or primary chemoradiotherapy (pCRT) and linked the presence of different CTC subpopulations with individual outcome of disease. RESULTS Pre-therapeutic cytokeratin+ CD45- CTC numbers significantly correlated with tumor FIGO stages, lymph node metastases and relapse. While surgery only did not significantly alter CTC occurrence, aRT and aCRT as well as pCRT differentially decreased or increased CTCs in patients with both tumor entities compared to baseline levels. Therapy-mediated increased CTC numbers were directly linked with subsequent cancer recurrence on follow-up. Phenotypic characterization of CTCs revealed enhanced expression of the stem cell marker CD133 as well as the integrin α6 (CD49f) after aRT, aCRT and pCRT. Furthermore, the aRT, aCRT and pCRT cohorts exhibited increased proportions of Programmed Cell Death Protein Ligand (PD-L1) expressing cells among post-therapeutic CTCs. Notably, post-therapeutic PD-L1+ CD49f+ CD133+ numbers ≥ 5/ml in patients with vulvar cancer and ≥ 2/ml in patients with cervical cancer were associated with reduced recurrence-free survival on follow-up. CONCLUSION Our study unravels individual therapy-induced changes in CTC phenotypic characteristics and occurrence in the patients' blood and their association with cancer relapse. Our results may help to explain differences in the individual courses of disease of patients with vulvar and cervical cancer and suggest PD-L1, CD49f and CD133 as targets for immunotherapy in vulvar and cervical cancer.
Collapse
Affiliation(s)
- Selina Gies
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany
- Experimental Gynaecological Oncology, Gynecology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Istvan Molnar
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gregor Olmes
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Russalina Stroeder
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tanja Tänzer
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany
| | - Maike Pohlers
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany
| | - Moritz Schäfer
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany
- Experimental Gynaecological Oncology, Gynecology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg/Saar, Germany
| | - Erich Franz Solomayer
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Barbara Walch-Rückheim
- Center of Human and Molecular Biology (ZHMB) Kirrbergerstraße, Institute of Virology, Saarland University, Building 47, D-66421, Homburg/Saar, Germany.
- Experimental Gynaecological Oncology, Gynecology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
6
|
Mitranovici MI, Caravia LG, Moraru L, Pușcașiu L. Targeting Cancer Stemness Using Nanotechnology in a Holistic Approach: A Narrative Review. Pharmaceutics 2025; 17:277. [PMID: 40142941 PMCID: PMC11945010 DOI: 10.3390/pharmaceutics17030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Increasing evidence shows that a very small population of cancer stem cells (CSCs) is responsible for cancer recurrence, drug resistance, and metastasis. CSCs usually reside in hypoxic tumor regions and are characterized by high tumorigenicity. Their inaccessible nature allows them to avoid the effects of conventional treatments such as chemotherapy, radiotherapy, and surgery. In addition, conventional chemo- and radiotherapy is potentially toxic and could help CSCs to spread and survive. New therapeutic targets against CSCs are sought, including different signaling pathways and distinct cell surface markers. Recent advances in nanotechnology have provided hope for the development of new therapeutic avenues to eradicate CSCs. In this review, we present newly discovered nanoparticles that can be co-loaded with an apoptosis-inducing agent or differentiation-inducing agent, with high stability, cellular penetration, and drug release. We also summarize the molecular characteristics of CSCs and the signaling pathways responsible for their survival and maintenance. Controlled drug release targeting CSCs aims to reduce stemness-related drug resistance, suppress tumor growth, and prevent tumor relapse and metastases.
Collapse
Affiliation(s)
- Melinda-Ildiko Mitranovici
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Laura Georgiana Caravia
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Liviu Moraru
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Lucian Pușcașiu
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
7
|
Kevat S, Mistry A, Oza N, Majmudar M, Patel N, Shah R, Ramachandran AV, Chauhan R, Haque S, Parashar NC, Tuli HS, Parashar G. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01666-w. [PMID: 39843681 DOI: 10.1007/s12013-025-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24- cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.
Collapse
Affiliation(s)
- Sakshi Kevat
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Archie Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Naman Oza
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Mohit Majmudar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Netra Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Rushabh Shah
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School Of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | | | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India.
| |
Collapse
|
8
|
Cao X, Hu X, Xu X, Zhu W, Lin Q, Le Y, Feng W, Xu Y, Lin S. Casticin suppresses self-renewal related stemness via miR-342-3p-mediated FoxM1 downregulation in cervical cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156036. [PMID: 39277988 DOI: 10.1016/j.phymed.2024.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Casticin (CAS), a natural flavonoid found in Viticis Fructus, Viticis Cannabifoliae Fructus, and Semen Euphorbiae, shows anti-inflammatory activity and efficacy against various cancers. However, its effect on stemness associated with self-renewal in cervical cancer (CC) cells remains unclear, as well as the underlying mechanism. PURPOSE The primary objective of this study was to examine the effect of CAS on CC stemness and to explore the underpinning regulatory mechanism. METHODS HeLa cells underwent treatment with varying concentrations of CAS (0, 10, 30, 100 nM). To evaluate the impacts of CAS on CC stemness and tumorigenicity, sphere- and colony-formation assays and a xenograft model were employed. The study involved screening for changes in miRNAs and their target genes. The miRNA array identified an upregulation in miRNAs, whereas the mRNA array detected a downregulation of specific target genes. The latter genes were found to regulate stem cell-related genes through miR-342-3p in HeLa cells administered CAS. Next, whether miR-342-3p directly targets FOXM1 when upregulated by CAS was assessed by the luciferase reporter assay. qRT-PCR was performed to analyze miR-342-3p expression. Additionally, immunoblotting was conducted to assess the protein amounts of FoxM1 and stemness-related factors (CD133, CD49f, Nanog, and Sox2). Function rescue experiments were conducted to determine the mechanism of CAS in stemness regulation. These experiments involved utilizing a miR-342-3p inhibitor and overexpressing FOXM1 in HeLa cells. RESULTS CAS decreased in vitro stemness, suppressing sphere- and colony-formation capabilities of CC. It also dose-dependently downregulated the expression of stemness-associated proteins, including CD133, CD49f, Nanog, and Sox2. Moreover, CAS inhibited in vivo carcinogenesis, remarkably reducing tumor growth in mice bearing HeLa cell xenografts. Analysis revealed downregulated FOXM1 expression in HeLa cells treated with CAS. In the luciferase reporter assay, miR-342-3p was found to directly target FOXM1 in CAS-treated HeLa cells. Additionally, miR-342-3p inhibitor transfection successfully rescued CAS' suppressive impact on stemness. Furthermore, overexpression of FOXM1 did not induce changes in miR-342-3p expression. However, it effectively rescued CAS' suppressive effects on stemness. Moreover, CAS also inhibited stemness, upregulated miR-342-3p, and lowered FOXM1 expression in the SiHa cell line. CONCLUSION CAS suppresses self-renewal-associated stemness by targeting FOXM1 via miR-342-3p upregulation. These findings suggest CAS is promising as a novel therapeutic candidate in CC.
Collapse
Affiliation(s)
- Xiaozheng Cao
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China; Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Xiping Hu
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China
| | - Xiaona Xu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Weiting Zhu
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China
| | - Qinghua Lin
- Department of Obstetrics and Gynecology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong 528305, China
| | - Yijie Le
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan 410081, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yong Xu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.
| | - Shaoqiang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China; Central Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong 528305, China.
| |
Collapse
|
9
|
Liu S, Wei Z, Ding H. The role of the SOX2 gene in cervical cancer: focus on ferroptosis and construction of a predictive model. J Cancer Res Clin Oncol 2024; 150:509. [PMID: 39580372 PMCID: PMC11585523 DOI: 10.1007/s00432-024-05973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The intricate interplay between stemness markers and cell death pathways significantly influences the pathophysiology of cervical cancer. SOX2, a pivotal regulator of stem cell pluripotency, has recently been implicated in the modulation of ferroptosis, a specialized form of iron-dependent cell death, in cancer dynamics. This study delineates the role of SOX2 in the ferroptotic landscape of cervical carcinoma. OBJECTIVE To delineate the association between SOX2 expression and ferroptosis in cervical cancer and develop a robust, SOX2-centric model for predicting prognosis and enhancing personalized treatment. METHODS A multidimensional approach integrating advanced bioinformatics, comprehensive molecular profiling, and state-of-the-art machine learning algorithms was employed to assess SOX2 expression patterns and their correlation with ferroptosis marker expression patterns in cervical cancer tissues. A prognostic model incorporating the expression levels of SOX2 and ferroptosis indicators was meticulously constructed. RESULTS This investigation revealed a profound and intricate correlation between SOX2 expression and ferroptotic processes in cervical cancer, substantiated by robust molecular evidence. The developed predictive model based on SOX2 expression exhibited superior prognostic accuracy and may guide therapeutic decision-making. CONCLUSION This study underscores the critical role of SOX2 in orchestrating the ferroptosis pathway in cervical cancer and presents a novel prognostic framework. The SOX2-centric predictive model represents a significant advancement in prognosis evaluation, offering a gateway to personalized treatment for gynaecologic cancers.
Collapse
Affiliation(s)
- Shenping Liu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Zhi Wei
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Huiqing Ding
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
10
|
He L, Qian H, Seyiti A, Yang C, Shi N, Chen C, Zhang P, Hou Y. CD133 +/ABCC5 + cervical cancer cells exhibit cancer stem cell properties. Heliyon 2024; 10:e37066. [PMID: 39296204 PMCID: PMC11408061 DOI: 10.1016/j.heliyon.2024.e37066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study explores the correlation between Forkhead box M1 (FOXM1) and ATP-binding cassette subfamily C member 5 (ABCC5) in relation to paclitaxel resistance in cervical cancer. It aims to identify potential cervical cancer stem cell markers, offering fresh perspectives for developing therapeutic strategies to overcome paclitaxel chemoresistance in cervical cancer. Methods Paclitaxel-resistant Hela cells (Hela/Taxol) were developed by intermittently exposing Hela cells to progressively increasing concentrations of paclitaxel. We assessed the biological properties of both Hela and Hela/Taxol cells using various assays: cell proliferation, clonogenic, cell cycle, apoptosis, scratch, and transwell. To determine which markers better represent tumor stem cells, we analyzed various known and potential stem cell markers in combination. Flow cytometry was employed to measure the proportion of positive markers in both parental and drug-resistant cell lines. Following statistical analysis to establish relative stability, CD133+ABCC5+ cells were sorted for further examination. Subsequent tests included sphere-forming assays and Western blot analysis to detect the presence of the stem cell-specific protein Sox2, aiding in the identification of viable cervical cancer stem cell markers. Results The Hela/Taxol cell line exhibited significantly enhanced proliferation, migration, and invasion capabilities compared to the Hela cell line, alongside a marked reduction in apoptosis rates (P < 0.01). Notably, proportions of CD44+, CD24+CD44+, ABCC5+, CD24+CD44+ABCC5+, CD44+ABCC5+, CD24+CD44+FOXM1+, CD44+FOXM1+, CD133+ABCC5+, and CD133+FOXM1+ were significantly higher (P < 0.05). Furthermore, the size and number of spheres formed byCD133+ABCC5+ cells were greater in the sorted Hela/Taxol line (P < 0.01), with increased expression of the stem cell marker Sox2 (P < 0.001). Conclusion The Hela/Taxol cells demonstrate increased tumoral stemness, suggesting that CD133+ABCC5+ may serve as a novel marker for cervical cancer stem cells.
Collapse
Affiliation(s)
- Lin He
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Hengjun Qian
- Yibin Second People's Hospital, Sichuan, 644002, PR China
| | - Ayinuer Seyiti
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, 830011, PR China
| | - Chengshaoxiong Yang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Ning Shi
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Chen Chen
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Pingxu Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Youxiang Hou
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, 830011, PR China
| |
Collapse
|
11
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Gu Y, Mu Q, Cheng D. Androgens in cervical cancer: Their role in epidemiology and biology. iScience 2024; 27:110155. [PMID: 39021790 PMCID: PMC11253156 DOI: 10.1016/j.isci.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
This comprehensive review delves into the significance of androgens in cervical cancer, examining both epidemiological evidence and the underlying biological mechanisms. Cervical cancer ranks as the fourth most prevalent cancer among women globally, with disproportionately higher incidence and mortality rates in less developed regions where cervical human papillomavirus (HPV) screening remains limited. Recent research highlights the previously underexplored role of androgens in cervical cancer. Notably, cervical tissues house androgen receptors, and elevated levels of endogenous androgens have been linked to an increased risk of cervical cancer. Androgens exert their influence on the development and progression of cervical cancer by impacting key cellular processes, including proliferation, apoptosis, differentiation, and epithelial cell transformation. Furthermore, specific HPV subtypes may interact with androgens, potentially modulating HPV-related cellular degeneration and transformation. In light of these findings, it is evident that androgens assume a crucial role in cervical cancer's pathogenesis. Consequently, further investigations are warranted to deepen our understanding of the intricate relationship between androgens and cervical cancer. Such knowledge advancements can facilitate improved strategies for early prevention and treatment of cervical cancer, especially in regions with limited HPV screening access. This review underscores the importance of considering androgens as a vital component of the multifaceted landscape of cervical cancer etiology and progression, ultimately contributing to more effective clinical interventions.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Qing Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Dali Cheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
13
|
Zhao J, Wu K, Yang Y, Liu D, Zhang C, Li X. Novel Pt(IV) complexes containing salvigenin ligand reverse cisplatin-induced resistance by inhibiting Rap1b-mediated cancer cell stemness in esophageal squamous cell carcinoma treatments. Bioorg Chem 2024; 147:107384. [PMID: 38643568 DOI: 10.1016/j.bioorg.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that is highly susceptible to metastasis, recurrence and resistance, and few therapeutic targets have been identified and proven effective. Herein, we demonstrated for the first time that Rap1b can positively regulate ESCC cell stemness, as well as designed and synthesized a novel class of Pt(IV) complexes that can effectively inhibit Raplb. In vitro biological studies showed that complex-1 exhibited stronger cytotoxicity than cisplatin and oxaliplatin against a variety of ESCC cells, and effectively reversed cisplatin-induced resistance of TE6 cells by increasing cellular accumulation of platinum and inhibiting cancer cell stemness. Significantly, complex-1 also exhibited strong ability to reversal cisplatin-induced cancer cell resistance and inhibit tumor growth in TE6/cDDP xenograft mice models, with a tumor growth inhibition rate of 73.3 % at 13 mg/kg and did not show significant systemic toxicity. Overall, Rap1b is a promising target to be developed as an effective treatment for ESCC. Complex-1, as the first Pt(IV) complex that can strongly inhibit Rap1b, is also worthy of further in-depth study.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Kai Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Yang Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Donglei Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Chunyang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, PR China.
| |
Collapse
|
14
|
Meng M, Guo Y, Chen Y, Li X, Zhang B, Xie Z, Liu J, Zhao Z, Liu Y, Zhang T, Qiao Y, Shang B, Zhou Q. Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways. Cell Oncol (Dordr) 2024; 47:657-676. [PMID: 37924456 PMCID: PMC11090944 DOI: 10.1007/s13402-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature. PURPOSE The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy. METHODS The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting. RESULTS CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine. CONCLUSION CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yan Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bin Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhijia Xie
- Department of Obstetrics and Gynecology, The Ninth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bingxue Shang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
15
|
Liu W, Wang Y, Xia L, Li J. Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients 2024; 16:797. [PMID: 38542707 PMCID: PMC10975298 DOI: 10.3390/nu16060797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the malignant diseases globally, cancer seriously endangers human physical and mental health because of its high morbidity and mortality. Conventional cancer treatment strategies, such as surgical resection and chemoradiotherapy, are effective at the early stage of cancer but have limited efficacy for advanced cancer. Along with cancer progress and treatment, resistance develops gradually within the population of tumor cells. As a consequence, drug resistance become the major cause that leads to disease progression and poor clinical prognosis in some patients. The mechanisms of cancer drug resistance are quite complex and involve various molecular and cellular mechanisms. Therefore, exploring the mechanisms and finding specific targets are becoming imperative to overcome drug resistance. In recent years, plant-derived natural products have been evaluated as potential therapeutic candidates against cancer with drug resistance due to low side effects and high anticancer efficacy. A growing number of studies have shown that natural products can achieve superior antitumor effects through multiple signaling pathways. The mechanisms include regulation of multiple drug resistance (MDR)-related genes, inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, induction of autophagy, and blockade of the cell cycle. This paper reviews the molecular and cellular mechanisms of cancer drug resistance, as well as the therapeutic effects and mechanisms of plant-derived natural products against cancer drug resistance. It provides references for developing therapeutic medication for drug-resistant cancer treatment with high efficacy and low side effects.
Collapse
Affiliation(s)
| | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| |
Collapse
|
16
|
Jafari A, Farahani M, Abdollahpour-Alitappeh M, Manzari-Tavakoli A, Yazdani M, Rezaei-Tavirani M. Unveiling diagnostic and therapeutic strategies for cervical cancer: biomarker discovery through proteomics approaches and exploring the role of cervical cancer stem cells. Front Oncol 2024; 13:1277772. [PMID: 38328436 PMCID: PMC10847843 DOI: 10.3389/fonc.2023.1277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Cervical cancer (CC) is a major global health problem and leading cause of cancer deaths among women worldwide. Early detection through screening programs has reduced mortality; however, screening compliance remains low. Identifying non-invasive biomarkers through proteomics for diagnosis and monitoring response to treatment could improve patient outcomes. Here we review recent proteomics studies which have uncovered biomarkers and potential drug targets for CC. Additionally, we explore into the role of cervical cancer stem cells and their potential implications in driving CC progression and therapy resistance. Although challenges remain, proteomics has the potential to revolutionize the field of cervical cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
17
|
Ding X, Wan A, Qi X, Jiang K, Liu Z, Chen B. ZNF695, A Potential Prognostic Biomarker, Correlates with Im mune Infiltrates in Cervical Squamous Cell Carcinoma and Endoce rvical Adenocarcinoma: Bioinformatic Analysis and Experimental Verification. Curr Gene Ther 2024; 24:441-452. [PMID: 38441026 DOI: 10.2174/0115665232285216240228071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/01/1970] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The role of Zinc Finger Protein 695 (ZNF695) is unclear in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). OBJECTIVE The objective of this study was to conduct a comprehensive analysis and experimental validation of ZNF695 in CESC. METHODS The study investigated the expression of ZNF695 in both pan-cancer and CESC, utilizing data from The Cancer Genome Atlas (TCGA) database to assess its diagnostic value. The present study investigated the association between ZNF695 expression levels and clinical characteristics, as well as prognosis, in patients with CESC. The study explored potential regulatory networks involving ZNF695, including its association with immune infiltration, immune score, stemness index based on mRNA expression (mRNAsi), and drug sensitivity in CESC. We explored the expression of ZNF695 in CESC single cells. ZNF695 expression was validated using GSE29570. RESULTS ZNF695 was found to be aberrantly expressed in pan-cancer and CESC. There was a significant correlation observed between an elevated level of ZNF695 expression in patients with CESC and histological grade (p = 0.017). Furthermore, a strong association was found between high ZNF695 expression in CESC patients and poorer overall survival (OS) (HR: 1.87; 95% CI: 1.17-3.00; p = 0.009), Progression-free Survival (PFS) (HR: 1.86; 95% CI: 1.16-2.98; p = 0.010), and Disease-specific Survival (DSS) (HR: 1.98; 95% CI: 1.15-3.42; p = 0.014). The expression of ZNF695 in CESC patients (p = 0.006) was identified as an independent prognostic determinant. ZNF695 was associated with steroid hormone biosynthesis, oxidative phosphorylation, and so on. ZNF695 expression correlated with immune infiltration, immune score, and mRNAsi in CESC. ZNF695 expression significantly and negatively correlated with AICA ribonucleotide, BIX02189, QL-XI-92, STF-62247, and SNX-2112 in CESC. ZNF695 gene was upregulated in CESC tissues and cell lines. ZNF695 was significantly upregulated in the CESC cell lines. CONCLUSION ZNF695 may be a potential prognostic biomarker and immunotherapeutic target for CESC patients.
Collapse
Affiliation(s)
- Xiaojuan Ding
- Graduate School, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, China
| | - Ailing Wan
- Graduate School, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, China
| | - Xin Qi
- Graduate School, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, China
| | - Ke'er Jiang
- Graduate School, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Zhao Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Buze Chen
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Huaihai Institute of Traditional Chinese Medicine, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| |
Collapse
|
18
|
Liu Y, Wang S, Liu J, Su M, Diao X, Liang X, Zhang J, Wang Q, Zhan Y. Characteristics of vaginal microbiota in various cervical intraepithelial neoplasia: a cross-sectional study. J Transl Med 2023; 21:816. [PMID: 37974192 PMCID: PMC10652498 DOI: 10.1186/s12967-023-04676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Precancerous lesions of cervical cancer exhibit characteristics indicative of natural progression. To prevent overtreatment of patients whose cervical intraepithelial neoplasia (CIN) in regression and to predict the onset of invasive cervical cancer at an early stage, we've identified the vaginal microbiome as a potential key factor, which is associated with both HPV infection and the various cervical intraepithelial neoplasia. This study aims to investigate the microbiome characteristics of patients with various cervical intraepithelial neoplasia. METHODS Utilizing high-throughput 16S ribosomal RNA (16S rRNA) sequencing technology, a description of the characteristics and community composition of Vaginal Microbiota (VMB) was conducted among 692 Chinese women infected with the High-risk Human Papillomavirus (HR-HPV). RESULTS As the grade of the lesions increased, the proportions of Lactobacillus and Pseudomonas demonstrated a significant declining trend, while the proportions of Gardnerella, Dialister, and Prevotella significantly increased. The diversity of the VMB was more significant in high-grade CIN. Furthermore, KEGG pathway enrichment analysis indicates that high-grade cervical intraepithelial neoplasia can inhibit various pathways, including those of phosphotransferase system, transcription factors, Fructose and mannose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism, which may contribute to the development of early cervical cancer symptoms. CONCLUSION Patients with CIN exhibit a distinct vaginal microbial profile characterized by a decrease in Lactobacillus and Pseudomonas, and an increase in Gardnerella, Prevotella, and Dialister. The proliferation and diminution of these two types of microbial communities are interrelated, suggesting a mutual restraint and balance among them. Disruption of this regulatory balance could potentially lead to the onset of cervical lesions and carcinogenesis. Retrospectively registered: This study was approved by the Ethics Committee of the Beijing Chaoyang Hospital affiliated with the Capital Medical University (NO.2023-S-415).
Collapse
Affiliation(s)
- Yiran Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Jun Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Mingrui Su
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Xiaoli Diao
- Department of Pathology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Xiaolong Liang
- Department of Pathology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Jianxin Zhang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Qiuxi Wang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Yuxin Zhan
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated With Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| |
Collapse
|
19
|
Jallah JK, Anjankar A, Nankong FA. Public Health Approach in the Elimination and Control of Cervical Cancer: A Review. Cureus 2023; 15:e44543. [PMID: 37789997 PMCID: PMC10544705 DOI: 10.7759/cureus.44543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Public health experts worldwide have emphasized cervical cancer since it is a substantial global health burden primarily affecting women. This article thoroughly reviews the public health approach to eradicating and managing cervical cancer. The public health community seeks to lower the prevalence, morbidity, and mortality linked to this preventable disease by integrating primary prevention by means of vaccination against the human papillomavirus (HPV), secondary prevention using screening and early identification, and tertiary prevention through improved therapy and supportive care. In order to accomplish broad vaccination coverage and ultimately effectively prevent cervical cancer, it remains crucial to address obstacles to vaccine accessibility, reluctance, and fair distribution. Early identification and subsequent treatments depend greatly on cervical cancer screening programs. This study explores several screening methods, such as Papanicolaou (Pap) tests based on cytology and cutting-edge technologies like molecular assays and HPV detection. The detection of precancerous lesions and early-stage malignancies, permitting prompt treatment, has shown significant promise when integrating these technologies into coordinated population-based screening programs. The study also underlines the significance of addressing cervical cancer burden inequities, particularly in resource-constrained areas where access to preventative and curative care is constrained. Innovative and affordable methods for addressing marginalized groups are studied, including community-based outreach programs, mobile health technology, and local healthcare practitioners and community leaders in awareness campaigns. The research also examines improvements in cervical cancer treatment procedures, such as surgery, radiation, chemotherapy, and immunotherapy. It improves therapeutic efficacy and patient survival rates by incorporating various modalities into a multidisciplinary strategy. Highlighted palliative care and psychological support are crucial for patients who have advanced cervical carcinoma.
Collapse
Affiliation(s)
- John Kessellie Jallah
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Francis A Nankong
- Department of Science and Technology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
20
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Naumova LA, Starodumova VA. Modern concepts in cervical carcinogenesis. BULLETIN OF SIBERIAN MEDICINE 2023; 22:145-155. [DOI: 10.20538/1682-0363-2023-2-145-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article discusses modern ideas about cervical carcinogenesis as a multi-stage process of multifactorial genesis. Currently, ideas about the pathogenesis of cervical cancer (CC) are based not only on understanding the role of high-risk oncogenic human papillomavirus (HPV) in this process and accumulation of genetic changes caused by it, but also on formation of a complex HPV interactome, or a network of intermolecular interactions of HPV oncoproteins with host cell proteins. Carcinogenesis also involves a wide range of epigenetic events and, above all, impairment of the regulatory function of miRNAs. An important role in cervical carcinogenesis is attributed to the concept of cancer stem cells (CSCs) formulated in recent years, which is closely related to the explanation of disease recurrence and treatment resistance, as well as to new approaches to treatment. The cervicovaginal microbiome and cervical microenvironment, which are responsible for natural clearance of HPV, regression of epithelial lesions, and modeling of the immune response, are becoming promising objects for research.The aim of the review was to present up-to-date information on the most important mechanisms of cervical carcinogenesis, as well as on new approaches to the treatment of CC, based, in particular, on the use of knowledge about regulatory miRNAs, CSC markers, and the state of the cervicovaginal microbiota.
Collapse
|
22
|
Jia Q, Wang H, Xiao X, Sun Y, Tan X, Chai J, Yang Y, Yin Z, Li M, Wang K, Liu J. UCHL1 acts as a prognostic factor and promotes cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract 2023; 247:154574. [PMID: 37257242 DOI: 10.1016/j.prp.2023.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The incidence and death rate of cervical cancer rank fourth among female malignant tumors worldwide. A growing number of researches are devoted to exploring more effective treatment methods and cancer stem cells (CSCs) are thought to be a potential therapeutic target in cervical cancer. In our study, we focused on the expression and function of UCHL1 in cervical squamous cell carcinoma (CESC). METHODS We detected and the expression of UCHL1 in 134 CESC patients through immunohistochemistry and further confirm UCHL1 was a prognostic factor by univariate and multivariate analysis. Then, according to TCGA database for CESC, we found that UCHL1 expression correlated with the markers associated with CSCs (CD133, ABCG2 and SOX2). Therefore, we used western blot and spheroid formation assays to future evaluate the function of UCHL1 on cancer stemness in C-33A and SiHa cell lines. At the same time, we detected the cell proliferation, migration and invasion change by CCK-8 assay, scratch assay and transwell assay, when UCHL1 was knockdown or overexpressed. Finally, xenograft models were used to examine the effect of UCHL1 in vivo. RESULTS We found the expression of UCHL1 in mRNA and protein was higher in tumor than in paired normal tissue and was a prognostic factor in CESC. The UCHL1 high expression group showed a shorter survival in the overall survival. According to TCGA database, the expression of UCHL1 was correlated with CD133, ABCG2 and SOX2. The results of sphere-forming ability and CSCs related markers expression were showed UCHL1 promoted cancer stemness in CESC. Similarly, CCK-8 assay, scratch assay and transwell assay were applied to demonstrate that overexpression of UCHL1 promoted the proliferation, migration and invasion in SiHa, but when UCHL1 was knockdown in C-33A, the function of UCHL1 displayed the opposite result. Finally, knockdown UCHL1 inhibited CESC tumor propagation in xenograft models. CONCLUSION Our results suggest that UCHL1 is a prognostic factor and correlated with cancer stemness, proliferation, migration and invasion of CESC, which may provide a novel therapeutic strategy for CESC treatment.
Collapse
Affiliation(s)
- Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongjie Wang
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xin Xiao
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Yameng Sun
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xiao Tan
- Center of Medical Security, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Ke Wang
- Department of Reproductive Medicine, Xi'an Gaoxin Hospital, Xi'an, China.
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
23
|
Guo L, Wang W, Xie X, Wang S, Zhang Y. Machine learning for genetic prediction of chemotherapy toxicity in cervical cancer. Biomed Pharmacother 2023; 161:114518. [PMID: 36906972 DOI: 10.1016/j.biopha.2023.114518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Locally advanced cervical cancer (LACC) is frequently treated with neoadjuvant chemotherapy (NACT), which includes paclitaxel and platinum. However, the development of severe chemotherapy toxicity is a barrier to successful NACT. Phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (AKT) pathway is related to the occurrence of chemotherapeutic toxicity. In this research work, we employ a random forest (RF) machine learning model to forecast NACT toxicity (neurological, gastrointestinal, and hematological reactions). MATERIALS AND METHODS Twenty-four single nucleotide polymorphisms (SNPs) in the PI3K/AKT pathway from 259 LACC patients were used to construct a dataset. Following the data preprocessing, the RF model was trained. The Mean Decrease in Impurity approach was adopted to evaluate the relevance of 70 selected genotypes' importance by comparing chemotherapy toxicity grades 1-2 vs. 3. RESULTS In the Mean Decrease in Impurity analysis, neurological toxicity was much more likely to occur in LACC patients with homozygous AA in Akt2 rs7259541 than in those with AG or GG genotypes. The CT genotype of PTEN rs532678 and the CT genotype of Akt1 rs2494739 increased the risk of neurological toxicity. The top three loci were rs4558508, rs17431184, and rs1130233, which were attributed to an elevated risk of gastrointestinal toxicity. LACC patients who had heterozygous AG in Akt2 rs7259541 exhibited an obviously greater risk of hematological toxicity than those who had AA or GG genotypes. And the CT genotype for Akt1 rs2494739 and the CC genotype in PTEN rs926091 showed a tendency to increase the risk of suffering from hematological toxicity. CONCLUSION Akt2 rs7259541 and rs4558508, Akt1 rs2494739 and rs1130233, PTEN rs532678, rs17431184, and rs926091 polymorphisms are associated with different toxic effects during the chemotherapy treatment of LACC.
Collapse
Affiliation(s)
- Lu Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- School of Computing and Mathematical Science, University of Leicester, Leicestershire LE1 7RH, UK
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuihua Wang
- School of Computing and Mathematical Science, University of Leicester, Leicestershire LE1 7RH, UK
| | - Yudong Zhang
- School of Computing and Mathematical Science, University of Leicester, Leicestershire LE1 7RH, UK.
| |
Collapse
|
24
|
Andalib KMS, Rahman MH, Habib A. Bioinformatics and cheminformatics approaches to identify pathways, molecular mechanisms and drug substances related to genetic basis of cervical cancer. J Biomol Struct Dyn 2023; 41:14232-14247. [PMID: 36852684 DOI: 10.1080/07391102.2023.2179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including in silico ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further in vitro and in vivo research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
25
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
26
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
27
|
Chien HJ, Liu CJ, Ying TH, Wu PJ, Wang JW, Ting YH, Hsieh YH, Wang SC. Timosaponin AIII Inhibits Migration and Invasion Abilities in Human Cervical Cancer Cells through Inactivation of p38 MAPK-Mediated uPA Expression In Vitro and In Vivo. Cancers (Basel) 2022; 15:cancers15010037. [PMID: 36612038 PMCID: PMC9817900 DOI: 10.3390/cancers15010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common gynecologic cancers globally that require novel approaches. Timosaponin AIII (TSAIII) is a steroidal saponin that displays beneficial effects in antitumor activities. However, the effect of TSAIII on human cervical cancer remains unknown. In this study, we found that TSAIII showed no influence on cell viability, cytotoxicity, cell cycle distribution and apoptosis induction in human cervical cancer cells. TSAIII was revealed to have a significant inhibitory effect on cell migration and invasion through the downregulation of invasion-related uPA expression and p38 MAPK activation in both human cervical cancer cells and cervical cancer stem cells (CCSCs), indicating that the p38 MAPK-uPA axis mediated the TSAIII-inhibited capacity of cellular migration and invasion. In a synergistic inhibition assay, a TSAIII plus p38 siRNA cotreatment revealed a greater inhibition of uPA expression, migration and invasion in human cervical cancer cells. In an immunodeficient mouse model, TSAIII significantly inhibited lung metastases from human cervical cancer SiHa cells without TSAIII-induced toxicity. These findings first revealed the inhibitory effects of TSAIII on the progression of human cervical cancer through its downregulation of p38 MAPK-uPA axis activation. Therefore, TSAIII might provide a potential strategy for auxiliary therapy in human cervical cancer.
Collapse
Affiliation(s)
- Hung-Ju Chien
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| | - Shih-Chiang Wang
- Department of Obstetrics and Gynecology, Chung-Kang Branch, Cheng Ching Hospital, Taichung 40764, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| |
Collapse
|
28
|
Zhang Y, Qin Y, Li D, Yang Y. A risk prediction model mediated by genes of APOD/APOC1/SQLE associates with prognosis in cervical cancer. BMC Womens Health 2022; 22:534. [PMID: 36536343 PMCID: PMC9764686 DOI: 10.1186/s12905-022-02083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies. Due to the high heterogeneity of cervical cancer accelerating cancer progression, it is necessary to identify new prognostic markers and treatment regimens for cervical cancer to improve patients' survival rates. We purpose to construct and verify a risk prediction model for cervical cancer patients. Based on the analysis of data from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA), differences of genes in normal and cancer samples were analyzed and then used analysis of WGCNA along with consistent clustering to construct single-factor + multi-factor risk models. After regression analysis, the target genes were obtained as prognostic genes and prognostic risk models were constructed, and the validity of the risk model was confirmed using the receiver operating characteristic curve (ROC) and Kaplan-Meier curve. Subsequently, the above model was verified on the GSE44001 data validation followed by independent prognostic analysis. Enrichment analysis was conducted by grouping the high and low risks of the model. In addition, differences in immune analysis (immune infiltration, immunotherapy), drug sensitivity, and other levels were counted by the high and low risks groups. In our study, three prognostic genes including APOD, APOC1, and SQLE were obtained, and a risk model was constructed along with validation based on the above-mentioned analysis. According to the model, immune correlation and immunotherapy analyses were carried out, which will provide a theoretical basis and reference value for the exploration and treatment of cervical cancer.
Collapse
Affiliation(s)
- Ya Zhang
- grid.413458.f0000 0000 9330 9891Department of Obstetrics and Gynecology, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guizhou, 550000 Guizhou Province China
| | - Yuankun Qin
- grid.413458.f0000 0000 9330 9891Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, 550025 Guizhou Province, China
| | - Danqing Li
- grid.413458.f0000 0000 9330 9891Department of Obstetrics and Gynecology, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guizhou, 550000 Guizhou Province China
| | - Yingjie Yang
- grid.413458.f0000 0000 9330 9891Department of Obstetrics and Gynecology, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guizhou, 550000 Guizhou Province China ,grid.413458.f0000 0000 9330 9891Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550001 China ,grid.413458.f0000 0000 9330 9891Tthe Affiliated Cancer Hospital of Guizhou Medical University, No.1 Beijing West Road, Guiyang, 550000 Guizhou Province China
| |
Collapse
|
29
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
30
|
New Advances in Cervical Cancer: From Bench to Bedside. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127094. [PMID: 35742340 PMCID: PMC9222371 DOI: 10.3390/ijerph19127094] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
Cervical cancer is the most common gynecologic malignancy and the fourth most common cancer in women worldwide. Over the last two decades, minimally invasive surgery (MIS) has emerged as the mainstay in the surgical management of early-stage cervical cancer, bringing advantages such as a lower operative morbidity and shorter hospital stay compared to open surgery, while maintaining comparable oncologic outcomes in numerous retrospective studies. Considering oncological patients, it is mandatory to assess the oncological outcomes and safety of this type of surgery. Moreover, there are different future outlooks on cervical cancer therapy, based on immunotherapy, target therapy, and poly-ADP-ribose polymerases (PARP) inhibitors in combination with each other, and in combination with standard chemotherapy and radiotherapy. The goal is to find an approach that is as personalized as possible.
Collapse
|