1
|
Jacob A, He J, Peck A, Jamil A, Bunya V, Alexander JJ, Ambrus JL. Metabolic changes during evolution of Sjögren's in both an animal model and human patients. Heliyon 2025; 11:e41082. [PMID: 39801970 PMCID: PMC11720936 DOI: 10.1016/j.heliyon.2024.e41082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Sjögren's (SS) involves salivary and lacrimal gland dysfunction. These studies examined metabolic profiles in the B6. Il14α transgene mouse model of SS and a cohort of human SS patients at different stages of disease. In B6. Il14α mice, products of glucose and fatty acid were common at 6 months of age, while products of amino acid metabolism were common at 12 months of age. Treating B6. Il14α mice with the glycolysis inhibitor 2-deoxyglucose from 6 to 10 months of age normalized salivary gland secretions, dacryoadenitis, hypergammaglobulinemia and physical performance, while treatment from 10 to 14 months of age failed to improve any of the clinical manifestations. Similarly, SS patients at an early stage of disease showed high glycolysis. SS patients with long-standing disease utilized predominantly amino acid metabolism, like B6. Il14α mice at 10-12 months of age. Additional studies are suggested to further define metabolic activities at the various disease stages.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital Beijing China, Beijing, China
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Ali Jamil
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Vatinee Bunya
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jessy J. Alexander
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
2
|
Sun M, Wei Y, Zhang C, Nian H, Du B, Wei R. Integrated DNA Methylation and Transcriptomics Analyses of Lacrimal Glands Identify the Potential Genes Implicated in the Development of Sjögren's Syndrome-Related Dry Eye. J Inflamm Res 2023; 16:5697-5714. [PMID: 38050559 PMCID: PMC10693829 DOI: 10.2147/jir.s440263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Purpose Sjögren's syndrome-related dry eye (SS-related dry eye) is an intractable autoimmune disease characterized by chronic inflammation of lacrimal glands (LGs), where epigenetic factors are proven to play a crucial role in the pathogenesis of this disease. However, the alteration of DNA methylation in LGs and its role in the pathogenesis of SS-related dry eye is still unknown. Here, we performed an integrated analysis of DNA methylation and RNA-Seq data in LGs to identify novel DNA methylation-regulated differentially expressed genes (MeDEGs) in the pathogenesis of SS-related dry eye. Methods The DNA methylation and transcription profiles of LGs in NOD mice at different stages of SS-related dry eye (4-, 8-, 12- and 16 weeks old) were generated by reduced representation bisulfite sequencing (RRBS) and RNA-Seq. The differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were analyzed by MethylKit R package and edgeR. Correlation analysis between methylation level and mRNA expression was conducted with R software. The functional correlation of DMGs and DEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, LG tissues from another litter of NOD mice were collected for methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) to validate the methylation and expression levels of key genes. CD4+ cell infiltration of LGs was detected by immunofluorescence staining. Results Hypermethylation of LGs was identified in NOD mice with the progression of SS-related dry eye and the DMGs were mainly enriched in the GTPases activation and Ras signaling pathway. RNA-seq analysis revealed 1321, 2549, and 3712 DEGs in the 8-, 12- and 16-week-old NOD mice compared with 4-week-old normal control mice. For GO analysis, the DEGs were mainly enriched in T cell immune responses. Further, a total of 140 MeDEGs were obtained by integrated analysis of methylome and transcriptome, which were primarily enriched in T cell activation, proliferation and differentiation. Based on the main GO terms and KEGG pathways of MeDEGs, 8 genes were screened out. The expression levels of these key genes, especially Itgal, Vav1, Irf4 and Icosl, were verified to elevate after the onset of SS-related dry eye in NOD mice and positively correlated with the extent of inflammatory cell infiltration in LGs. Immunofluorescence assay revealed that CD4+ cell infiltration dramatically increased in LGs of SS-related dry eye mice compared with the control mice. And the expression levels of four genes showed significantly positive correlation with the extent of CD4+ cell infiltration in LGs. MSP showed the hypomethylation of the Irf4 and Itgal promoters in NOD mice with SS-related dry eye compared to control group. Conclusion Our study revealed the critical role of epigenetic regulation of T cell immunity-related genes in the progression of SS-related dry eye and reminded us that DNA methylation-regulated genes such as Itgal, Vav1, Irf4 and Icosl may be used as new targets for SS-related dry eye therapy.
Collapse
Affiliation(s)
- Mei Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Chengyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Peck AB, Ambrus JL. Marginal Zone B (MZB) Cells: Comparison of the Initial Identification of Immune Activity Leading to Dacryoadenitis and Sialadenitis in Experimental Sjögren's Syndrome. Int J Mol Sci 2023; 24:12209. [PMID: 37569583 PMCID: PMC10419086 DOI: 10.3390/ijms241512209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Although multiple mouse strains have been advanced as models for Sjögren's syndrome (SS), which is a human systemic autoimmune disease characterized primarily as the loss of lacrimal and salivary gland functions, the C57BL/6.NOD-Aec1Aec2 recombinant inbred (RI) mouse derived from the NOD/ShiLtJ line is considered one of the more appropriate models exhibiting virtually all the characteristics of the human disease. This mouse model, as well as other mouse models of SS, have shown that B lymphocytes are essential for the onset and development of observed clinical manifestations. Recently, studies carried out in the C57BL/6.IL14α transgenic mouse have provided clear evidence that the marginal zone B (MZB) cell population is directly involved in the early pathological events initiating the development of the clinical SS disease, as well as late-stage lymphomagenesis resulting in B-cell lymphomas. Since MZB cells are difficult to study in vivo and in vitro, we carried out a series of ex vivo investigations that utilize temporal global RNA transcriptomic analyses to profile differentially expressed genes exhibiting temporal upregulation during the initial onset and subsequent development of pathophysiological events within the lacrimal and salivary gland tissues per se or associated with the leukocyte cell migrations into these glands. The initial transcriptomic analyses revealed that while the upregulated gene expression profiles obtained from lacrimal and salivary glands overlap, multiple genetic differences exist between the defined activated pathways. In the current study, we present a concept suggesting that the initial pathological events differ between the two glands, yet the subsequent upregulated TLR4/TLR3 signal transduction pathway that activates the type-1 interferon signature appears to be identical in the two glands and indicates an autoimmune response against dsRNA, possibly a virus. Here, we attempt to put these findings into perspective and determine how they can impact the design of future therapeutic protocols.
Collapse
Affiliation(s)
- Ammon B. Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Julian L. Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA;
| |
Collapse
|
4
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
5
|
Peck AB, Ambrus JL. A Temporal Comparative RNA Transcriptome Profile of the Annexin Gene Family in the Salivary versus Lacrimal Glands of the Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mouse. Int J Mol Sci 2022; 23:11709. [PMID: 36233010 PMCID: PMC9570365 DOI: 10.3390/ijms231911709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
A generally accepted hypothesis for the initial activation of an immune or autoimmune response argues that alarmins are released from injured, dying and/or activated immune cells, and these products complex with receptors that activate signal transduction pathways and recruit immune cells to the site of injury where the recruited cells are stimulated to initiate immune and/or cellular repair responses. While there are multiple diverse families of alarmins such as interleukins (IL), heat-shock proteins (HSP), Toll-like receptors (TLR), plus individual molecular entities such as Galectin-3, Calreticulin, Thymosin, alpha-Defensin-1, RAGE, and Interferon-1, one phylogenetically conserved family are the Annexin proteins known to promote an extensive range of biomolecular and cellular products that can directly and indirectly regulate inflammation and immune activities. For the present report, we examined the temporal expression profiles of the 12 mammalian annexin genes (Anxa1-11 and Anxa13), applying our temporal genome-wide transcriptome analyses of ex vivo salivary and lacrimal glands from our C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's Syndrome (SS), a human autoimmune disease characterized primarily by severe dry mouth and dry eye symptoms. Results indicate that annexin genes Anax1-7 and -11 exhibited upregulated expressions and the initial timing for these upregulations occurred as early as 8 weeks of age and prior to any covert signs of a SS-like disease. While the profiles of the two glands were similar, they were not identical, suggesting the possibility that the SS-like disease may not be uniform in the two glands. Nevertheless, this early pre-clinical and concomitant upregulated expression of this specific set of alarmins within the immune-targeted organs represents a potential target for identifying the pre-clinical stage in human SS as well, a fact that would clearly impact future interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|