1
|
Gu Y, Li Z, Zhou S, Han G. Recent advances in delivery systems of ginsenosides for oral diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156422. [PMID: 39951968 DOI: 10.1016/j.phymed.2025.156422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Ginsenosides, the principal active ingredients in ginseng, have anti-bacterial, anti-inflammatory, antioxidant, anticancer, osteogenic, cardioprotective, and neuroprotective properties. Oral diseases afflict about half of the world's population. Ginsenosides' multifunctional properties have led to substantial investigation into their potential to prevent and treat oral disorders. However, their low absorption and poor targeting limit their effectiveness. PURPOSE This review summarizes the latest research progress on ginsenoside-based drug delivery systems and the potential of ginsenosides in preventing and treating oral diseases to provide a theoretical basis for clinical applications. METHODS Using "ginsenoside", "drug delivery", "nanoparticles", "liposomes", "hydrogel", "oral disease", "toxicology", "pharmacology", "clinical translation" and combinations of these keywords in PubMed, Web of Science, and Science Direct. The search was conducted until December 2024. RESULTS The limitations of natural ginsenosides can be overcome by utilizing drug delivery systems to improve pharmacological activity, bioavailability and targeting. The multifunctional pharmacological activities of ginsenosides offer promising avenues for treating oral diseases. In addition, the susceptibility of the oral cavity to infection by pathogenic bacteria and the diluting effect of saliva pose significant challenges to treatment. The emergence of drug delivery marks a breakthrough in addressing these issues. CONCLUSION Ginsenoside-based drug delivery methods improve bioactivity, targeting, and reduce costs. This review emphasizes current advancements in ginsenosides within novel drug delivery systems, specifically on its potential in preventing and treating oral disorders. However, multiple well-designed clinical trials are needed to further evaluate the efficacy and safety of these drugs.
Collapse
Affiliation(s)
- Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China.
| |
Collapse
|
2
|
Zhang J, Li J, Huang J, Xiang X, Li R, Zhai Y, Lin S, Liu W. Psychological stress disturbs bone metabolism via miR-335-3p/Fos signaling in osteoclast. eLife 2025; 13:RP95944. [PMID: 39773351 PMCID: PMC11709429 DOI: 10.7554/elife.95944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
It has been well validated that chronic psychological stress leads to bone loss, but the underlying mechanism remains unclarified. In this study, we established and analyzed the chronic unpredictable mild stress (CUMS) mice to investigate the miRNA-related pathogenic mechanism involved in psychological stress-induced osteoporosis. Our result found that these CUMS mice exhibited osteoporosis phenotype that is mainly attributed to the abnormal activities of osteoclasts. Subsequently, miRNA sequencing and other analysis showed that miR-335-3p, which is normally highly expressed in the brain, was significantly downregulated in the nucleus ambiguous, serum, and bone of the CUMS mice. Additionally, in vitro studies detected that miR-335-3p is important for osteoclast differentiation, with its direct targeting site in Fos. Further studies demonstrated FOS was upregulated in CUMS osteoclast, and the inhibition of FOS suppressed the accelerated osteoclastic differentiation, as well as the expression of osteoclastic genes, such as Nfatc1, Acp5, and Mmp9, in miR-335-3p-restrained osteoclasts. In conclusion, this work indicated that psychological stress may downregulate the miR-335-3p expression, which resulted in the accumulation of FOS and the upregulation of NFACT1 signaling pathway in osteoclasts, leading to its accelerated differentiation and abnormal activity. These results decipher a previously unrecognized paradigm that miRNA can act as a link between psychological stress and bone metabolism.
Collapse
Affiliation(s)
- Jiayao Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji UniversityShanghaiChina
| | - Juan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji UniversityShanghaiChina
| | - Jiehong Huang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji UniversityShanghaiChina
| | - Xuerui Xiang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji UniversityShanghaiChina
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji UniversityShanghaiChina
| | - Yun Zhai
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji UniversityShanghaiChina
| | - Shuxian Lin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji UniversityShanghaiChina
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji UniversityShanghaiChina
| |
Collapse
|
3
|
Sun C, He W, Wang L, Hao T, Yang X, Feng W, Wu Y, Meng C, Wang Z, Chen X, Sun M, Zheng F, Zhang B. Studies on the Role of MAP4K2, SPI1, and CTSD in Osteoporosis. Cell Biochem Biophys 2024:10.1007/s12013-024-01621-1. [PMID: 39586961 DOI: 10.1007/s12013-024-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by an imbalance between bone resorption and bone formation, resulting in a significant global burden. Previous research utilizing bioinformatics analysis has identified MAP4K2, SPI1, and CTSD as hub genes associated with OP. In this current investigation, we have successfully established a differential expression system of MAP4K2, SPI1, and CTSD in rat bone marrow mesenchymal stem cells (BMSCs) through transfection techniques. Additionally, the CCK-8 assay was employed to assess cell proliferation, while the alkaline phosphatase (ALP) activity assay and ALP staining assay were utilized to evaluate osteogenic differentiation. Alizarin red staining was employed to detect mineralization of BMSCs. Furthermore, the expression of relevant genes and molecules associated with the MAPK signaling pathway, autophagy, and apoptosis in the sera of rat BMSCs were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The purpose of this study was to preliminarily investigate whether MAP4K2, SPI1, and CTSD have an effect on the osteogenic capacity of rat BMSCs and whether these genes, when differentially expressed, affect the expression of related genes in the MAPK, autophagy, and apoptosis signaling pathways and thus the osteogenic function of BMSCs. In summary, the findings of this study indicate that MAP4K2 and CTSD exert significant influence on the proliferation, osteogenic differentiation, and mineralization processes of rat BMSCs cells. Furthermore, these proteins may contribute to the development of OP through their involvement in the regulation of autophagy and apoptosis. Conversely, our investigation did not reveal any discernible impact of SPI1 on OP-related phenotypes. Consequently, this research serves as a fundamental basis for further exploration of potential therapeutic targets for the treatment of OP.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Leipeng Wang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Wei Feng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | | | - Chenyang Meng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Zhi Wang
- Bayannur hospital, Bayannur, China
| | - Xiaofeng Chen
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, Hohhot, China
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
| | - Feng Zheng
- Department of Hepatic Hydatidosis, Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Inner Mongolia Medical University, Hohhot, China.
- Tianjin Hospital, Tianjin University, Hexi District, Tianjin, China.
| |
Collapse
|
4
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lei Y, Meng J, Shi H, Shi C, Li C, Yang Z, Zhang W, Zuo D, Wang F, Wang M. Mannan-binding lectin inhibits oxidative stress-induced senescence via the NAD+/Sirt1 pathway. Int Immunopharmacol 2024; 137:112468. [PMID: 38906004 DOI: 10.1016/j.intimp.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1β and IL-6), and the senescence β-galactosidase (SA-β-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.
Collapse
Affiliation(s)
- Yiming Lei
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Meng
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiqiang Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chenchen Shi
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Li
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Yang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Fanping Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; School of Medical Technology, Shangqiu Medical College, Shangqiu 476100, China.
| |
Collapse
|
6
|
Zhang X, Zhang D, Zhao H, Qin J, Qi H, Zu F, Zhou Y, Zhang Y. gCTRP3 inhibits oophorectomy‑induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway in mice. Mol Med Rep 2024; 30:133. [PMID: 38818814 PMCID: PMC11157184 DOI: 10.3892/mmr.2024.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
C1q/tumor necrosis factor‑related protein 3 (CTRP3) expression is markedly reduced in the serum of patients with osteoporosis. The present study aimed to investigate whether CTRP3 reduces bone loss in oophorectomy (OVX)‑induced mice via the AMP‑activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/nuclear factor E2‑related factor 2 (Nrf2) signaling pathway. Female C57BL/6J mice and MC3T3‑E1 cells were used to construct in vivo and in vitro models of osteoporosis, respectively. The left femurs of mice were examined using micro‑computed tomography scans and bone‑related quantitative morphological evaluation was performed. Pathological changes and the number of osteoclasts in the left femurs of mice were detected using hematoxylin and eosin, and tartrate‑resistant acid phosphatase (TRAP) staining. Runt‑related transcription factor‑2 (RUNX2) expression in the left femurs was detected using immunofluorescence analysis, and the serum levels of bone resorption markers (C‑telopeptide of type I collagen and TRAP) and bone formation markers [osteocalcin (OCN) and procollagen type 1 N‑terminal propeptide] were detected. In addition, osteoblast differentiation and calcium deposits were examined in MC3T3‑E1 cells using alkaline phosphatase (ALP) and Alizarin red staining, respectively. Moreover, RUNX2, ALP and OCN expression levels were detected using reverse transcription‑quantitative PCR, and the expression levels of proteins associated with the AMPK/SIRT1/Nrf2 signaling pathway were detected using western blot analysis. The results revealed that globular CTRP3 (gCTRP3) alleviated bone loss and promoted bone formation in OVX‑induced mice. gCTRP3 also facilitated the osteogenic differentiation of MC3T3‑E1 cells through the AMPK/SIRT1/Nrf2 signaling pathway. The addition of an AMPK inhibitor (Compound C), SIRT1 inhibitor (EX527) or Nrf2 inhibitor (ML385) reduced the osteogenic differentiation of MC3T3‑E1 cells via inhibition of gCTRP3. In conclusion, gCTRP3 inhibits OVX‑induced osteoporosis by activating the AMPK/SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Di Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Huan Zhao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Qin
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hao Qi
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Feiyu Zu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yingze Zhang
- National Health Commission Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
7
|
Wang X, Tang P, Yang K, Guo S, Tang Y, Zhang H, Wang Q. Regulation of bone homeostasis by traditional Chinese medicine active scaffolds and enhancement for the osteoporosis bone regeneration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118141. [PMID: 38570149 DOI: 10.1016/j.jep.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.
Collapse
Affiliation(s)
- Xi Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Pengfei Tang
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Shuangquan Guo
- Chengdu Holy (Group) Industry Co. Ltd., Chengdu, 610041, China
| | - Youhong Tang
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China; Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture & Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
9
|
Ko SY. Therapeutic Potential of Ginsenosides on Bone Metabolism: A Review of Osteoporosis, Periodontal Disease and Osteoarthritis. Int J Mol Sci 2024; 25:5828. [PMID: 38892015 PMCID: PMC11172997 DOI: 10.3390/ijms25115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Ginsenosides, bioactive compounds from the genus Panax, have potential therapeutic effects on diverse ailments, including diabetes. Emerging evidence suggests their involvement in bone metabolism. The present review summarizes the current understanding of the effects of ginsenosides on osteoporosis, periodontal disease, and osteoarthritis. Their mechanisms of action include effects on osteoblasts, osteoclasts, periodontal ligament fibroblasts (PDLFs), and chondrocytes, which are pivotal in maintaining bone, periodontal tissue, and cartilage homeostasis. Ginsenosides may exert their beneficial effects by enhancing PDLF and osteoblast activity, suppressing osteoclast function, augmenting chondrocyte synthesis in the cartilage matrix, and mitigating connective tissue degradation. Moreover, they possess antioxidant, anti-inflammatory, antimicrobial, and anti-pyroptotic properties. Their efficacy in increasing bone density, ameliorating periodontitis, and alleviating osteoarthritis symptoms has been demonstrated in preclinical studies using animal models. In terms of their mechanism of action, ginsenosides modulate cellular differentiation, activity, and key signaling pathway molecules, such as mitogen-activated protein kinases (MAPKs), while also regulating various mediators. Furthermore, the symptomatic relief observed in animal models lends further credence to their therapeutic utility. However, to translate these preclinical findings into clinical practice, rigorous animal and clinical investigations are imperative to ascertain the safety, efficacy, and optimal dosing regimens in human subjects.
Collapse
Affiliation(s)
- Seon-Yle Ko
- Department of Oral Biochemistry and Institute of Dental Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
10
|
Dai X, Liu Y, Liu T, Zhang Y, Wang S, Xu T, Yin J, Shi H, Ye Z, Zhu R, Gao J, Dong G, Zhao D, Gao S, Wang X, Prentki M, Brὂmme D, Wang L, Zhang D. SiJunZi decoction ameliorates bone quality and redox homeostasis and regulates advanced glycation end products/receptor for advanced glycation end products and WNT/β-catenin signaling pathways in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117167. [PMID: 37716489 DOI: 10.1016/j.jep.2023.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SiJunZi decoction (SJZD), one of the traditional Chinese medicine formulas, has been clinically and traditionally used to improve glucose and lipid metabolism and promote bone remodeling. AIM OF THE STUDY To study the actions and mechanisms of SJZD on bone remodeling in a type 2 diabetes mouse model. MATERIALS AND METHODS Diabetic mice generated with a high-fat diet (HFD) and streptozotocin (STZ) were subjected to SJZD treatment for 8 weeks. Blood glucose and lipid profile, redox status and bone metabolism were determined by ELISA or biochemical assays. Bone quality was evaluated by micro-CT, three-point bending assay and Fourier transform infrared spectrum (FTIR). Bone histomorphometry alterations were evaluated by Hematoxylin-Eosin (H&E), tartrate resistant acid phosphatase (TRAP) staining and Safranin O-fast green staining. The expressions of superoxide dismutase 1 (SOD1), advanced glycation end products (AGEs), receptor for advanced glycosylation end products (RAGE), phosphorylated nuclear factor kappa-B (p-NF-κB), NF-κB, cathepsin K, semaphorin 3A (Sema3A), insulin-like growth factor 1 (IGF1), p-GSK-3β, (p)-β-catenin, Runt-related transcription factor 2 (Runx2) and Cyclin D1 in the femurs and/or tibias were examined by Western blot or immunohistochemical staining. The main constituents in the SJZD aqueous extract were characterized by a HPLC/MS. RESULTS SJZD intervention improved glucose and lipid metabolism and preserved bone quality in the diabetic mice, in particular glucose tolerance, lipid profile, bone microarchitecture, strength and material composition. SJZD administration to diabetic mice preserved redox homeostasis in serum and bone marrow, and prevented an increase in AGEs, RAGE, p-NF-κB/NF-κB, cathepsin K, p-GSK-3β, p-β-catenin expressions and a decrease in Sema3A, IGF1, β-catenin, Runx2 and Cyclin D1 expressions in tibias and/or femurs. Thirteen compounds were identified in SJZD aqueous extract, including astilbin, liquiritin apioside, ononin, ginsenoside Re, Rg1, Rb1, Rb2, Ro, Rb3, Rd, notoginsenoside R2, glycyrrhizic acid, and licoricesaponin B2. CONCLUSIONS SJZD ameliorates bone quality in diabetic mice possibly via maintaining redox homeostasis. The mechanism governing these alterations are possibly related to effects on the AGEs/RAGE and Wnt/β-catenin signaling pathways. SJZD may offer a novel source of drug candidates for the prevention and treatment of type 2 diabetes and osteoporosis.
Collapse
Affiliation(s)
- Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Guangtong Dong
- Department of Chinese Medicine Formulas, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, QC, Canada.
| | - Dieter Brὂmme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ahmad SS, Ahmad K, Hwang YC, Lee EJ, Choi I. Therapeutic Applications of Ginseng Natural Compounds for Health Management. Int J Mol Sci 2023; 24:17290. [PMID: 38139116 PMCID: PMC10744087 DOI: 10.3390/ijms242417290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
14
|
Liu XP, Li JQ, Li RY, Cao GL, Feng YB, Zhang W. Loss of N-acetylglucosaminyl transferase V is involved in the impaired osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Anim 2023; 72:413-424. [PMID: 37019682 PMCID: PMC10435351 DOI: 10.1538/expanim.22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The imbalance of bone resorption and bone formation causes osteoporosis (OP), a common skeletal disorder. Decreased osteogenic activity was found in the bone marrow cultures from N-acetylglucosaminyl transferase V (MGAT5)-deficient mice. We hypothesized that MGAT5 was associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and involved in the pathological mechanisms of osteoporosis. To test this hypothesis, the mRNA and protein expression levels of MGAT5 were determined in bone tissues of ovariectomized (OVX) mice, a well-established OP model, and the role of MGAT5 in osteogenic activity was investigated in murine BMSCs. As expected, being accompanied by the loss of bone mass density and osteogenic markers (runt-related transcription factor 2, osteocalcin and osterix), a reduced expression of MGAT5 in vertebrae and femur tissues were found in OP mice. In vitro, knockdown of Mgat5 inhibited the osteogenic differentiation potential of BMSCs, as evidenced by the decreased expressions of osteogenic markers and less alkaline phosphatase and alizarin red S staining. Mechanically, knockdown of Mgat5 suppressed the nuclear translocation of β-catenin, thereby downregulating the expressions of downstream genes c-myc and axis inhibition protein 2, which were also associated with osteogenic differentiation. In addition, Mgat5 knockdown inhibited bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β signaling pathway. In conclusion, MGAT5 may modulate the osteogenic differentiation of BMSCs via the β-catenin, BMP type 2 (BMP2) and TGF-β signals and involved in the process of OP.
Collapse
Affiliation(s)
- Xiao-Po Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jia-Qi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Ruo-Yu Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Guo-Long Cao
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Yun-Bo Feng
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| |
Collapse
|