1
|
Yang L, Lai X, Lin F, Shi N, Xu X, Wang H, Li X, Shen D, Qian H, Jin X, Chen J, Huang Z, Duan X, Zhang Q. Revitalising Aging Oocytes: Echinacoside Restores Mitochondrial Function and Cellular Homeostasis Through Targeting GJA1/SIRT1 Pathway. Cell Prolif 2025:e70044. [PMID: 40251808 DOI: 10.1111/cpr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
As maternal age increases, the decline in oocyte quality emerges as a critical factor contributing to reduced reproductive capacity, highlighting the urgent need for effective strategies to combat oocyte aging. This study investigated the protective effects and underlying mechanisms of Echinacoside (ECH) on aging oocytes. ECH significantly improved cytoskeletal stability and chromosomal integrity, as demonstrated by restored spindle morphology and reinforced F-actin structures, essential for meiotic progression. It also preserved mitochondrial function by restoring membrane potential and dynamics, reducing ROS levels, and downregulating the DNA damage marker γ-H2AX, thereby alleviating oxidative stress and enhancing genomic stability. Furthermore, ECH promoted cellular homeostasis through modulation of lipid metabolism, autophagy and lysosomal function. Transcriptomic analyses identified GJA1 as a pivotal mediator of ECH's effects, validated through molecular docking and bio-layer interferometry. Functional studies showed that inhibiting GJA1 significantly reduced ECH's ability to enhance first polar body extrusion rates, mitochondrial function and antioxidant capacity, validating the critical role of the GJA1/SIRT1 pathway in combating oocyte aging. This study provides novel insights into the mechanisms of oocyte rejuvenation and highlights ECH as a promising therapeutic candidate for addressing age-related reproductive challenges.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
- NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinle Lai
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Fangxuan Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Shi
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinya Xu
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Heng Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaotian Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Haimo Qian
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| | - Xin Jin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongwei Huang
- NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency of Science Research and Technology, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University Health Systems, Singapore, Singapore
| | - Xing Duan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, China
| |
Collapse
|
2
|
Spinelli S, Straface E, Gambardella L, Caruso D, Dossena S, Marino A, Morabito R, Remigante A. Iron Overload-Related Oxidative Stress Leads to Hyperphosphorylation and Altered Anion Exchanger 1 (Band 3) Function in Erythrocytes from Subjects with β-Thalassemia Minor. Int J Mol Sci 2025; 26:1593. [PMID: 40004059 PMCID: PMC11855117 DOI: 10.3390/ijms26041593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
β-thalassemia, a hereditary hemoglobinopathy, is caused by reduced or absent synthesis of the β-globin chains of hemoglobin. Three clinical conditions are recognized: β-thalassemia major, β-thalassemia intermedia, and β-thalassemia minor (β-Thal+). This latter condition occurs when an individual inherits a mutated β-globin gene from one parent. In erythrocytes from β-Thal+ subjects, the excess α-globin chains produce unstable α-tetramers, which can induce substantial oxidative stress leading to plasma membrane and cytoskeleton damage, as well as deranged cellular function. In the present study, we hypothesized that increased oxidative stress might lead to structural rearrangements in erythrocytes from β-Thal+ volunteers and functional alterations of ion transport proteins, including band 3 protein. The data obtained showed significant modifications of the cellular shape in erythrocytes from β-Thal+ subjects. In particular, a significantly increased number of elliptocytes was observed. Interestingly, iron overload, detected in erythrocytes from β-Thal+ subjects, provoked a significant production of reactive oxygen species (ROS), overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase, and glutathione depletion, resulting in (a) increased lipid peroxidation, (b) protein sulfhydryl group (-SH) oxidation. Iron overload-related oxidative stress affected Na+/K+-ATPase activity, which in turn may have contributed to impaired β-Thal+ erythrocyte deformability. As a result, alterations in the distribution of cytoskeletal proteins, including α/β-spectrin, protein 4.1, and α-actin, in erythrocytes from β-Thal+ subjects have been detected. Significantly, oxidative stress was also associated with increased phosphorylation and altered band 3 ion transport activity, as well as increased oxidized hemoglobin, which led to abnormal clustering and redistribution of band 3 on the plasma membrane. Taken together, these findings contribute to elucidating potential oxidative stress-related perturbations of ion transporters and associated cytoskeletal proteins, which may affect erythrocyte and systemic homeostasis in β-Thal+ subjects.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.)
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.)
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Alessia Remigante
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98166 Messina, Italy
| |
Collapse
|
3
|
Benincasa G, Bontempo P, Trama U, Napoli C. Synergistic Effects of a Novel Combination of Natural Compounds Prevent H 2O 2-Induced Oxidative Stress in Red Blood Cells. Int J Mol Sci 2025; 26:1334. [PMID: 39941102 PMCID: PMC11818302 DOI: 10.3390/ijms26031334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Novel strategies to prevent the "storage lesions" of red blood cells (RBCs) are needed to prevent the risk of adverse effects after blood transfusion. One option could be the supplementation of stored blood bags with natural compounds that may increase the basal load of antioxidant protection and the shelf life of RBCs. In this pilot study, we investigated for the first time potential synergistic effects of a triple combination of well-known anti-oxidant compounds curcumin (curc), vitamin E (vit E), and vitamin C (vit C). Briefly, we established an ex vivo model of H2O2-induced oxidative stress and measured the hemolysis ratio (HR) (%) and thiobarbituric acid reactive substances (TBARS) levels in RBCs with or without pre-exposure for 30 min with increasing concentrations of curc, vit E, and vit C and then exposed to 10 mM H2O2. for 60 min. Exposure of RBCs to a triple combination of curc, vit E, and vit C at the highest concentration (100 µM) completely prevented H2O2-induced hemolysis. Surprisingly, we found that pre-treatment of RBCs with curc 100 µM alone completely prevented hemolysis as compared to vit E and vit C alone or in combination at the same concentration. On the other hand, pre-treatment with the triple combination of curc, vit E, and vit C 100 µM was required to totally prevent lipid peroxidation, as compared to curc 100 µM alone, supporting their synergistic effects in preventing RBCs membrane peroxidation. Further experiments are ongoing to investigate the anti-aging effects of the triple combination of curc, vit E, and vit C on cold-stored bags.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Ugo Trama
- Regional Pharmaceutical Unit, Campania Region, 80143 Naples, Italy;
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
4
|
Daraghmeh DN, Karaman R. The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants. Antioxidants (Basel) 2024; 14:36. [PMID: 39857370 PMCID: PMC11762794 DOI: 10.3390/antiox14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants. Oxyhemoglobin autoxidation is the primary source of endogenous RBC oxidant production, which produces superoxide radicals and hydrogen peroxide. Potent exogenous oxidants from other blood cells and the surrounding endothelium can also enter RBCs. Both enzymatic (like glutathione peroxidase) and non-enzymatic (like glutathione) mechanisms can neutralize oxidants. These systems are generally referred to as oxidant scavengers or antioxidants, and they work to neutralize these harmful molecules (i.e., oxidants). While their antioxidative capabilities are essential to their physiological functions and delivering oxygen to tissues, their pro-oxidant behavior plays a part in several human pathologies. The redox-related changes in RBCs can have an impact on their function and fate. The balance between pro-oxidants and antioxidants determines the oxidative status of cells, which affects signal transduction, differentiation, and proliferation. When pro-oxidant activity exceeds antioxidative capacity, oxidative stress occurs, leading to cytotoxicity. This type of stress has been linked to various pathologies, including hemolytic anemia. This review compiles the most recent literature investigating the connections between RBC redox biochemistry, antioxidants, and diverse disorders.
Collapse
Affiliation(s)
- Dala N. Daraghmeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
| | | |
Collapse
|
5
|
Spinelli S, Marino A, Morabito R, Remigante A. Interplay Between Metabolic Pathways and Increased Oxidative Stress in Human Red Blood Cells. Cells 2024; 13:2026. [PMID: 39682773 PMCID: PMC11640724 DOI: 10.3390/cells13232026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Red blood cells (RBCs) are highly specialized cells with a limited metabolic repertoire. However, it has been demonstrated that metabolic processes are affected by the production of reactive oxygen species (ROS), and critical enzymes allied to metabolic pathways can be impaired by redox reactions. Thus, oxidative stress-induced alternations in the metabolic pathways can contribute to cell dysfunction of human RBCs. Herein, we aim to provide an overview on the metabolic pathways of human RBCs, focusing on their pathophysiological relevance and their regulation in oxidative stress-related conditions.
Collapse
|
6
|
Remigante A, Spinelli S, Gambardella L, Bozzuto G, Vona R, Caruso D, Villari V, Cappello T, Maisano M, Dossena S, Marino A, Morabito R, Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic Biol Med 2024; 223:1-17. [PMID: 39038767 DOI: 10.1016/j.freeradbiomed.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 μg/mL PS-NPs or PS-MPs for 3 and 24 h, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1 %) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERβ), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, 98166, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Messina, 98158, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| |
Collapse
|
7
|
Zhou W, Xu X, Qi D, Zhang X, Zheng F. Elevated mtDNA content in RBCs promotes oxidative stress may be responsible for faster senescence in men. Arch Gerontol Geriatr 2024; 125:105504. [PMID: 38870707 DOI: 10.1016/j.archger.2024.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Both we and others have found that RBC counts are significantly lower in older compared to younger. However, when gender is factored in, a significant age-related decrease of RBC counts is observed only in men but not in women. METHODS qPCR and confocal microscopy were used to detect the presence of mtDNA in RBCs. Flow cytometry and specific inhibitors were used to determine how RBCs uptake cf-mtDNA. The peripheral blood was collected from 202 young adults and 207 older adults and RBC and plasma were isolated. The levels of TLR9+RBCs and apoptotic RBCs after uptake of cf-mtDNA by RBCs were measured by flow cytometry. The kit detects changes in SOD and MDA levels after cf-mtDNA uptake by RBCs. Young RBCs (YR) and old RBCs (OR) from single individuals were separated by Percoll centrifugation. RESULTS We found a significant decrease in RBC counts and a significant increase in the RDW with aging only in men. We also found that significantly elevated mtDNA content in RBCs was observed only in men during aging and was not found in women. Further studies demonstrated that RBCs could take up cf-mtDNA via TLR9, and the uptake of mtDNA might lead to a decrease in the RBC number and an increase in RDW due to an increase of oxidative stress. CONCLUSIONS The RBC mtDNA content might be a potential marker of RBC aging and the elevated RBC mtDNA content might be the cause of faster senescence in males than females.
Collapse
Affiliation(s)
- Wenjie Zhou
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China; School of Basic Medical Sciences, Wuhan University, Wuhan, PR China
| | - Xianqun Xu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Daoxi Qi
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
8
|
Li J, Li W, Hu J, Li C, Cui X. Proso millet peroxidase-mediated degradation and detoxification of Rhodamine B in water. ENVIRONMENTAL TECHNOLOGY 2024; 45:3559-3569. [PMID: 37272148 DOI: 10.1080/09593330.2023.2220887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Enzymatic catalysis is a promising approach for the degradation of organic pollutants and peroxidases (PODs) are one of the most common enzyme classes used to degrade organic pollutants. Proso millet peroxidase (PmPOD) is a peroxidase extracted and purified from proso millet bran which is the by-product of proso millet processing. In this study, we investigated the effects of PmPOD on the degradation of typical organic pollutants (Rhodamine B (RhB), bisphenol A, sulfadiazine) for the first time. Moreover, we screened RhB as the substrate with the best degradation effect. The degradation rate of RhB catalyzed by PmPOD (10 nM) reached 99.46% in 30 min under the optimal conditions (pH 5, 30°C, and molar ratio of RhB, H2O2 and HOBT of 1:9.58:1.94 × 10-3). The reaction kinetics parameters of PmPOD-mediated RhB degradation Km, Vmax and kcat were 62.2, 935.7 and 9.357 × 104, respectively. High-performance liquid chromatography analyses confirmed that PmPOD transformed RhB into two new products. Furthermore, toxicological evaluation in Caenorhabditis elegans demonstrated that 10 μg/mL RhB significantly reduced the lifespan by 8.3%, reduced the motility and pharynx-pumping rate compared with the control group, while the 10 μg/mL RhB product had no significant effect on these indexes. These data indicated that the toxicity of RhB disappeared after catalytic degradation by PmPOD. Taken together, these data suggest that catalysis of PmPOD is an effective method for degradation and detoxification of RhB. This study provides a potential candidate method for the biological treatment of RhB, and improves the added value of proso millet bran.
Collapse
Affiliation(s)
- Jiao Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Wenyan Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Jianjian Hu
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Chen Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
9
|
Remigante A, Spinelli S, Zuccolini P, Gavazzo P, Marino A, Pusch M, Morabito R, Dossena S. Melatonin protects Kir2.1 function in an oxidative stress-related model of aging neuroglia. Biofactors 2024; 50:523-541. [PMID: 38095328 DOI: 10.1002/biof.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 06/15/2024]
Abstract
Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K+ channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K+ buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Yang Q, Chen D, Li C, Liu R, Wang X. Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Front Physiol 2024; 15:1399154. [PMID: 38706947 PMCID: PMC11066195 DOI: 10.3389/fphys.2024.1399154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: The integrity of the erythrocyte membrane cytoskeletal network controls the morphology, specific surface area, material exchange, and state of erythrocytes in the blood circulation. The antioxidant properties of resveratrol have been reported, but studies on the effect of resveratrol on the hypoxia-induced mechanical properties of erythrocytes are rare. Methods: In this study, the effects of different concentrations of resveratrol on the protection of red blood cell mor-phology and changes in intracellular redox levels were examined to select an appropriate concentration for further study. The Young's modulus and surface roughness of the red blood cells and blood viscosity were measured via atomic force microsco-py and a blood rheometer, respectively. Flow cytometry, free hemoglobin levels, and membrane lipid peroxidation levels were used to characterize cell membrane damage in the presence and absence of resveratrol after hypoxia. The effects of oxida-tive stress on the erythrocyte membrane proteins band 3 and spectrin were further investigated by immunofluorescent label-ing and Western blotting. Results and discussion: Resveratrol changed the surface roughness and Young's modulus of the erythrocyte mem-brane, reduced the rate of eryptosis in erythrocytes after hypoxia, and stabilized the intracellular redox level. Further data showed that resveratrol protected the erythrocyte membrane proteins band 3 and spectrin. Moreover, resistance to band 3 pro-tein tyrosine phosphorylation and sulfhydryl oxidation can protect the stability of the erythrocyte membrane skeleton net-work, thereby protecting erythrocyte deformability under hypoxia. The results of the present study may provide new insights into the roles of resveratrol in the prevention of hypoxia and as an antioxidant.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024; 29:865. [PMID: 38398617 PMCID: PMC10893284 DOI: 10.3390/molecules29040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
12
|
González-Vega RI, Robles-García MÁ, Mendoza-Urizabel LY, Cárdenas-Enríquez KN, Ruiz-Cruz S, Gutiérrez-Lomelí M, Iturralde-García RD, Avila-Novoa MG, Villalpando-Vargas FV, Del-Toro-Sánchez CL. Impact of the ABO and RhD Blood Groups on the Evaluation of the Erythroprotective Potential of Fucoxanthin, β-Carotene, Gallic Acid, Quercetin and Ascorbic Acid as Therapeutic Agents against Oxidative Stress. Antioxidants (Basel) 2023; 12:2092. [PMID: 38136212 PMCID: PMC10740450 DOI: 10.3390/antiox12122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Previous studies detail that different blood groups are associated with incidence of oxidative stress-related diseases such as certain carcinomas. Bioactive compounds represent an alternative for preventing this oxidative stress. The aim of this study was to elucidate the impact of blood groups on the erythroprotective potential of fucoxanthin, β-Carotene, gallic acid, quercetin and ascorbic acid as therapeutic agents against oxidative stress. The impact of ABO blood groups on the erythroprotective potential was evaluated via the antioxidant capacity, blood biocompatibility, blood susceptibility and erythroprotective potential (membrane stabilization, in vitro photostability and antihemolytic activity). All tested antioxidants exhibited a high antioxidant capacity and presented the ability to inhibit ROO•-induced oxidative stress without compromising the cell membrane, providing erythroprotective effects dependent on the blood group, effects that increased in the presence of antigen A. These results are very important, since it has been documented that antigen A is associated with breast and skin cancer. These results revealed a probable relationship between different erythrocyte antigens with erythroprotective potential, highlighting the importance of bio-targeted drugs for groups most susceptible to certain chronic-degenerative pathologies. These compounds could be applied as additive, nutraceutical or encapsulated to improve their bioaccessibility.
Collapse
Affiliation(s)
- Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences (CUCBA), Universidad de Guadalajara, Periférico Norte N° 799 Núcleo Universitario, C. Prol. Belenes, Zapopan 45100, Jalisco, Mexico;
| | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Litzy Yadira Mendoza-Urizabel
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Kelly Nabil Cárdenas-Enríquez
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Saúl Ruiz-Cruz
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - Melesio Gutiérrez-Lomelí
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Rey David Iturralde-García
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| | - María Guadalupe Avila-Novoa
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Jalisco, Mexico; (R.I.G.-V.); (M.G.-L.); (M.G.A.-N.)
| | - Fridha Viridiana Villalpando-Vargas
- Department of Cellular and Molecular Biology, University Center for Biological and Agricultural Sciences (CUCBA), Universidad de Guadalajara, Periférico Norte N° 799 Núcleo Universitario, C. Prol. Belenes, Zapopan 45100, Jalisco, Mexico;
- Department of Health Sciences, University Center of the Valleys (CUVALLE), Universidad de Guadalajara, Carr. a Guadalajara Km. 45.5, Ameca 46600, Jalisco, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico; (L.Y.M.-U.); (K.N.C.-E.); (S.R.-C.); (R.D.I.-G.)
| |
Collapse
|
13
|
Remigante A, Spinelli S, Patanè GT, Barreca D, Straface E, Gambardella L, Bozzuto G, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. AAPH-induced oxidative damage reduced anion exchanger 1 (SLC4A1/AE1) activity in human red blood cells: protective effect of an anthocyanin-rich extract. Front Physiol 2023; 14:1303815. [PMID: 38111898 PMCID: PMC10725977 DOI: 10.3389/fphys.2023.1303815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 μg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide Barreca
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Remigante A, Straface E, D’Alessandro A, Morabito R. Editorial: Erythrocytes as a target of oxidative stress in blood. Front Physiol 2023; 14:1310053. [PMID: 38028757 PMCID: PMC10660268 DOI: 10.3389/fphys.2023.1310053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rossana Morabito
- Department of Chemical, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
15
|
Remigante A, Morabito R. Cellular and Molecular Mechanisms in Oxidative Stress-Related Diseases 2.0/3.0. Int J Mol Sci 2023; 24:16018. [PMID: 37959000 PMCID: PMC10647755 DOI: 10.3390/ijms242116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Oxidative stress is frequently described as the balance between the production of reactive species (including oxygen and nitrogen) in biological systems and the ability of the latter to defend itself through the sophisticated antioxidant machinery [...].
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | | |
Collapse
|
16
|
Branch DR. Warm autoimmune hemolytic anemia: new insights and hypotheses. Curr Opin Hematol 2023; 30:203-209. [PMID: 37497853 PMCID: PMC10552839 DOI: 10.1097/moh.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW Warm autoimmune hemolytic anemia (wAIHA) is the most common of the immune hemolytic anemias. Although there are numerous case reports and reviews regarding this condition, some of the unusual and more recent findings have not been fully defined and may be contentious. This review will provide insight into the common specificity of the warm autoantibodies and hypothesize a novel mechanism of wAIHA, that is proposed to be linked to the controversial subject of red blood cell senescence. RECENT FINDINGS AND HYPOTHESES It is now well established that band 3 on the red blood cell is the main target of autoantibodies in wAIHA. wAIHA targets the older red blood cells (RBCs) in about 80% of cases and, recently, it has been shown that the RBCs in these patients are aging faster than normal. It has been proposed that in these 80% of patients, that the autoantibody recognizes the senescent red blood cell antigen on band 3. It is further hypothesized that this autoantibody's production and potency has been exacerbated by hypersensitization to the RBC senescent antigen, which is processed through the adaptive immune system to create the pathogenic autoantibody. Recent publications have supported previous data that the senescent RBC antigen is exposed via a dynamic process, wherein oscillation of a band 3 internal loop flipping to the cell surface, creates a conformational neoantigen that is the RBC senescent antigen. It has also recently been shown that the cytokine profile in patients with wAIHA favors production of inflammatory cytokines/chemokines that includes interleukin-8 which can activate neutrophils to increase the oxidative stress on circulating RBCs to induce novel antigens, as has been postulated to favour exposure of the senescent RBC antigen. SUMMARY This manuscript reviews new findings and hypotheses regarding wAIHA and proposes a novel mechanism active in most wAIHA patients that is due to an exacerbation of normal RBC senescence.
Collapse
Affiliation(s)
- Donald R Branch
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto and the Canadian Blood Services, Centre for Innovation, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
17
|
Livshits L, Peretz S, Bogdanova A, Zoabi H, Eitam H, Barshtein G, Galindo C, Feldman Y, Pajić-Lijaković I, Koren A, Gassmann M, Levin C. The Impact of Ca 2+ on Intracellular Distribution of Hemoglobin in Human Erythrocytes. Cells 2023; 12:2280. [PMID: 37759502 PMCID: PMC10526966 DOI: 10.3390/cells12182280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The membrane-bound hemoglobin (Hb) fraction impacts red blood cell (RBC) rheology and metabolism. Therefore, Hb-RBC membrane interactions are precisely controlled. For instance, the signaling function of membrane-bound deoxy-Hb and the structure of the docking sites in the cytosolic domain of the anion exchanger 1 (AE-1) protein are well documented; however, much less is known about the interaction of Hb variants with the erythrocyte's membrane. Here, we identified factors other than O2 availability that control Hb abundance in the membrane-bound fraction and the possible variant-specific binding selectivity of Hb to the membrane. We show that depletion of extracellular Ca2+ by chelators, or its omission from the extracellular medium, leads to membrane-bound Hb release into the cytosol. The removal of extracellular Ca2+ further triggers the redistribution of HbA0 and HbA2 variants between the membrane and the cytosol in favor of membrane-bound HbA2. Both effects are reversible and are no longer observed upon reintroduction of Ca2+ into the extracellular medium. Fluctuations of cytosolic Ca2+ also impact the pre-membrane Hb pool, resulting in the massive transfer of Hb to the cellular cytosol. We hypothesize that AE-1 is the specific membrane target and discuss the physiological outcomes and possible clinical implications of the Ca2+ regulation of the intracellular Hb distribution.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zürich, Switzerland; (A.B.); (M.G.)
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel; (S.P.); (A.K.); (C.L.)
| | - Sari Peretz
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel; (S.P.); (A.K.); (C.L.)
- Laboratory Division Unit, Emek Medical Center, Afula 1834111, Israel; (H.Z.); (H.E.)
- The Bruce and Ruth Rapaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zürich, Switzerland; (A.B.); (M.G.)
- The Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zürich, Switzerland
| | - Hiba Zoabi
- Laboratory Division Unit, Emek Medical Center, Afula 1834111, Israel; (H.Z.); (H.E.)
| | - Harel Eitam
- Laboratory Division Unit, Emek Medical Center, Afula 1834111, Israel; (H.Z.); (H.E.)
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Cindy Galindo
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (C.G.); (Y.F.)
| | - Yuri Feldman
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (C.G.); (Y.F.)
| | | | - Ariel Koren
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel; (S.P.); (A.K.); (C.L.)
| | - Max Gassmann
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zürich, Switzerland; (A.B.); (M.G.)
- The Zurich Center for Integrative Human Physiology (ZIHP), 8057 Zürich, Switzerland
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel; (S.P.); (A.K.); (C.L.)
- The Bruce and Ruth Rapaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
18
|
Remigante A, Spinelli S, Straface E, Gambardella L, Russo M, Cafeo G, Caruso D, Falliti G, Dugo P, Dossena S, Marino A, Morabito R. Mechanisms underlying the anti-aging activity of bergamot ( Citrus bergamia) extract in human red blood cells. Front Physiol 2023; 14:1225552. [PMID: 37457030 PMCID: PMC10348362 DOI: 10.3389/fphys.2023.1225552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Aging is a process characterised by a decline in physiological functions. Reactive species play a crucial role in the aging rate. Due to the close relationship between aging and oxidative stress, functional foods rich in phytochemicals are excellent candidates to neutralise age-related changes. Aim: This investigation aims to verify the potential protective role of bergamot (Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging represented by human red blood cells (RBCs) exposed to D-Galactose (DGal). Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS for determination of their composition in bioactive compounds. Markers of oxidative stress, including ROS production, thiobarbituric acid reactive substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total protein sulfhydryl groups, as well as the expression and anion exchange capability of band 3 and glycated haemoglobin (A1c) production have been investigated in RBCs treated with D-Gal for 24 h, with or without pre-incubation for 15 min with 5 μg/mL peel or juice extract. In addition, the activity of the endogenous antioxidant system, including catalase (CAT) and superoxide dismutase (SOD), as well as the diversion of the RBC metabolism from glycolysis towards the pentose phosphate pathway shunt, as denoted by activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored. Results: Data shown here suggest that bergamot peel and juice extract i) prevented the D-Gal-induced ROS production, and consequently, oxidative stress injury to biological macromolecules including membrane lipids and proteins; ii) significantly restored D-Gal-induced alterations in the distribution and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively impeded the over-activation of the endogenous antioxidant enzymes CAT and SOD; and v) significantly prevented the activation of G6PDH. Discussion: These results further contribute to shed light on aging mechanisms in human RBCs and identify bergamot as a functional food rich in natural antioxidants useful for prevention and treatment of oxidative stress-related changes, which may lead to pathological states during aging.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Russo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Cafeo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Hydzik P, Francik R, Francik S, Gomółka E, Eker ED, Krośniak M, Noga M, Jurowski K. The Critical Assessment of Oxidative Stress Parameters as Potential Biomarkers of Carbon Monoxide Poisoning. Int J Mol Sci 2023; 24:10784. [PMID: 37445969 DOI: 10.3390/ijms241310784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In conventional clinical toxicology practice, the blood level of carboxyhemoglobin is a biomarker of carbon monoxide (CO) poisoning but does not correspond to the complete clinical picture and the severity of the poisoning. Taking into account articles suggesting the relationship between oxidative stress parameters and CO poisoning, it seems reasonable to consider this topic more broadly, including experimental biochemical data (oxidative stress parameters) and patients poisoned with CO. This article aimed to critically assess oxidative-stress-related parameters as potential biomarkers to evaluate the severity of CO poisoning and their possible role in the decision to treat. The critically set parameters were antioxidative, including catalase, 2,2-diphenyl-1-picryl-hydrazyl, glutathione, thiol and carbonyl groups. Our preliminary studies involved patients (n = 82) admitted to the Toxicology Clinical Department of the University Hospital of Jagiellonian University Medical College (Kraków, Poland) during 2015-2020. The poisoning was diagnosed based on medical history, clinical symptoms, and carboxyhemoglobin blood level. Blood samples for carboxyhemoglobin and antioxidative parameters were collected immediately after admission to the emergency department. To evaluate the severity of the poisoning, the Pach scale was applied. The final analysis included a significant decrease in catalase activity and a reduction in glutathione level in all poisoned patients based on the severity of the Pach scale: I°-III° compared to the control group. It follows from the experimental data that the poisoned patients had a significant increase in level due to thiol groups and the 2,2-diphenyl-1-picryl-hydrazyl radical, with no significant differences according to the severity of poisoning. The catalase-to-glutathione and thiol-to-glutathione ratios showed the most important differences between the poisoned patients and the control group, with a significant increase in the poisoned group. The ratios did not differentiate the severity of the poisoning. The carbonyl level was highest in the control group compared to the poisoned group but was not statistically significant. Our critical assessment shows that using oxidative-stress-related parameters to evaluate the severity of CO poisoning, the outcome, and treatment options is challenging.
Collapse
Affiliation(s)
- Piotr Hydzik
- Toxicology Clinical Department, University Hospital, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Renata Francik
- Institute of Health, State Higher Vocational School, 33-320 Nowy Sącz, Poland
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, 31-103 Krakow, Poland
| | - Ewa Gomółka
- Toxicological Information and Laboratory Analysis Laboratory University Hospital, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Kraków, Poland
| | | | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, 91-205 Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, 91-205 Łódź, Poland
- The Laboratory of Innovative Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, 35-310 Rzeszow, Poland
| |
Collapse
|
20
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
21
|
Furukawa T, Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, Yamaura K, Mukohara S, Yoshikawa T, Shinohara I, Kato T, Tanaka S, Kusunose M, Hoshino Y, Matsushita T, Kuroda R. Elicitation of Inhibitory Effects for AGE-Induced Oxidative Stress in Rotator Cuff-Derived Cells by Apocynin. Curr Issues Mol Biol 2023; 45:3434-3445. [PMID: 37185749 PMCID: PMC10137139 DOI: 10.3390/cimb45040225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Advanced glycation end-products (AGEs) play a critical supportive role during musculoskeletal disorders via glycosylation and oxidative stress. Though apocynin, identified as a potent and selective inhibitor of NADPH oxidase, has been reported to be involved in pathogen-induced reactive oxygen species (ROS), its role in age-related rotator cuff degeneration has not been well clarified. Therefore, this study aims to evaluate the in vitro effects of apocynin on human rotator cuff-derived cells. Twelve patients with rotator cuff tears (RCTs) participated in the study. Supraspinatus tendons from patients with RCTs were collected and cultured. After the preparation of RC-derived cells, they were divided into four groups (control group, control + apocynin group, AGEs group, AGEs + apocynin group), and gene marker expression, cell viability, and intracellular ROS production were evaluated. The gene expression of NOX, IL-6, and the receptor for AGEs (RAGE) was significantly decreased by apocynin. We also examined the effect of apocynin in vitro. The results showed that ROS induction and increasing apoptotic cells after treatment of AGEs were significantly decreased, and cell viability increased considerably. These results suggest that apocynin can effectively reduce AGE-induced oxidative stress by inhibiting NOX activation. Thus, apocynin is a potential prodrug in preventing degenerative changes of the rotor cuff.
Collapse
Affiliation(s)
- Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Shuya Tanaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Masaya Kusunose
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-ku, Hyogo, Kobe 650-0017, Japan
| |
Collapse
|
22
|
Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Remigante A, Marino A, Morabito R. Aging Injury Impairs Structural Properties and Cell Signaling in Human Red Blood Cells; Açaì Berry Is a Keystone. Antioxidants (Basel) 2023; 12:antiox12040848. [PMID: 37107223 PMCID: PMC10135063 DOI: 10.3390/antiox12040848] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Red blood cell (RBC) deformability is the ability of cells to modulate their shape to ensure transit through narrow capillaries of the microcirculation. A loss of deformability can occur in several pathological conditions, during natural RBC aging through an increase in membrane protein phosphorylation, and/or through the structural rearrangements of cytoskeletal proteins due to oxidative conditions, with a key role played by band 3. Due to the close relationship between aging and oxidative stress, flavonoid-rich foods are good candidates to counteract age-related alterations. This study aims to verify the beneficial role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human RBCs. To this end, band 3 phosphorylation and structural rearrangements in membrane cytoskeleton-associated proteins, namely spectrin, ankyrin, and/or protein 4.1, are analyzed in RBCs treated with 100 mM d-Gal for 24 h, with or without pre-incubation with 10 μg/mL Açaì extract for 1 h. Furthermore, RBC deformability is also measured. Tyrosine phosphorylation of band 3, membrane cytoskeleton-associated proteins, and RBC deformability (elongation index) are analyzed using western blotting analysis, FACScan flow cytometry, and ektacytometry, respectively. The present data show that: (i) Açaì berry extract restores the increase in band 3 tyrosine phosphorylation and Syk kinase levels after exposure to 100 mM d-Gal treatment; and (ii) Açaì berry extract partially restores alterations in the distribution of spectrin, ankyrin, and protein 4.1. Interestingly, the significant decrease in membrane RBC deformability associated with d-Gal treatment is alleviated by pre-treatment with Açaì extract. These findings further contribute to clarify mechanisms of natural aging in human RBCs, and propose flavonoid substances as potential natural antioxidants for the treatment and/or prevention of oxidative-stress-related disease risk.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy
| | - Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
23
|
Costa-Pérez A, Medina S, Sánchez-Bravo P, Domínguez-Perles R, García-Viguera C. The (Poly)phenolic Profile of Separate Winery By-Products Reveals Potential Antioxidant Synergies. Molecules 2023; 28:2081. [PMID: 36903327 PMCID: PMC10004379 DOI: 10.3390/molecules28052081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The by-products of grapes (Vitis vinifera L.) in the winemaking process present a diverse phytochemical profile of (poly)phenols, essentially represented by phenolic acids, flavonoids, and stilbenes, which have health benefits. In winemaking, solid (grape stems and pomace) and semisolid (wine lees) by-products are generated, negatively impacting the sustainability of the agro-food activity and the local environment. Although information on the phytochemical profile of grape stems and pomace has been reported, especially information concerning (poly)phenols, research on wine lees is necessary to take advantage of the compositional traits of this residue. So, in the present work, an updated, in-depth comparison of the (poly)phenolic profiles of these three resulting matrices in the agro-food industry has been carried out to provide new knowledge and interesting data on the action of yeast and lactic acid bacteria (LAB) metabolism in the diversification of phenolic composition; additionally, we extract complementarities for the possible joint application of the three residues. The phytochemical analysis of the extracts was carried out using HPLC-PDA-ESI-MSn. The (poly)phenolic profiles of the residues showed significant discrepancies. The results obtained showed that the greatest diversity of (poly)phenols was found in the stems of the grapes, followed closely by the lees. Through technological insights, it has been suggested that yeasts and LAB, responsible for the fermentation of must, might play a key role in the transformation of phenolic compounds. This would provide new molecules with specific bioavailability and bioactivity features, which might interact with different molecular targets and, consequently, improve the biological potential of these underexploited residues.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Paola Sánchez-Bravo
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
- Department of Food Technology, EPSO, University Miguel Hernández, Ctra Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departmento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus of the University of Murcia-25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
24
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
25
|
Mercury Chloride Affects Band 3 Protein-Mediated Anionic Transport in Red Blood Cells: Role of Oxidative Stress and Protective Effect of Olive Oil Polyphenols. Cells 2023; 12:cells12030424. [PMID: 36766766 PMCID: PMC9913727 DOI: 10.3390/cells12030424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural antioxidants, the polyphenols from extra-virgin olive oil (EVOO), an important element of the Mediterranean diet, have generated growing interest. Here, we examined the potential protective effects of hydroxytyrosol (HT) and/or homovanillyl alcohol (HVA) on an oxidative stress model represented by human RBCs treated with HgCl2 (10 µM, 4 h of incubation). Morphological changes as well as markers of oxidative stress, including thiobarbituric acid reactive substance (TBARS) levels, the oxidation of protein sulfhydryl (-SH) groups, methemoglobin formation (% MetHb), apoptotic cells, a reduced glutathione/oxidized glutathione ratio, Band 3 protein (B3p) content, and anion exchange capability through B3p were analyzed in RBCs treated with HgCl2 with or without 10 μM HT and/or HVA pre-treatment for 15 min. Our data show that 10 µM HT and/or HVA pre-incubation impaired both acanthocytes formation, due to 10 µM HgCl2, and mercury-induced oxidative stress injury and, moreover, restored the endogenous antioxidant system. Interestingly, HgCl2 treatment was associated with a decrease in the rate constant for SO42- uptake through B3p as well as MetHb formation. Both alterations were attenuated by pre-treatment with HT and/or HVA. These findings provide mechanistic insights into benefits deriving from the use of naturally occurring polyphenols against oxidative stress induced by HgCl2 on RBCs. Thus, dietary supplementation with polyphenols might be useful in populations exposed to HgCl2 poisoning.
Collapse
|
26
|
Ye M, Li H, Luo H, Zhou Y, Luo W, Lin Z. Potential Antioxidative Activity of Homocysteine in Erythrocytes under Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010202. [PMID: 36671064 PMCID: PMC9855177 DOI: 10.3390/antiox12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Homocysteine is an amino acid containing a free sulfhydryl group, making it probably contribute to the antioxidative capacity in the body. We recently found that plasma total homocysteine (total-Hcy) concentration increased with time when whole blood samples were kept at room temperature. The present study was to elucidate how increased plasma total-Hcy is produced and explore the potential physiological role of homocysteine. Erythrocytes and leukocytes were separated and incubated in vitro; the amount of total-Hcy released by these two kinds of cells was then determined by HPLC-MS. The effects of homocysteine and methionine on reactive oxygen species (ROS) production, osmotic fragility, and methemoglobin formation in erythrocytes under oxidative stress were studied. The reducing activities of homocysteine and methionine were tested by ferryl hemoglobin (Hb) decay assay. As a result, it was discovered that erythrocytes metabolized methionine to homocysteine, which was then oxidized within the cells and released to the plasma. Homocysteine and its precursor methionine could significantly decrease Rosup-induced ROS production in erythrocytes and inhibit Rosup-induced erythrocyte's osmotic fragility increase and methemoglobin formation. Homocysteine (but not methionine) was demonstrated to enhance ferryl Hb reduction. In conclusion, erythrocytes metabolize methionine to homocysteine, which contributes to the antioxidative capability under oxidative stress and might be a supplementary protective factor for erythrocytes against ROS damage.
Collapse
|
27
|
Remigante A, Spinelli S, Marino A, Pusch M, Morabito R, Dossena S. Oxidative Stress and Immune Response in Melanoma: Ion Channels as Targets of Therapy. Int J Mol Sci 2023; 24:ijms24010887. [PMID: 36614330 PMCID: PMC9821408 DOI: 10.3390/ijms24010887] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress and immune response play an important role in the development of several cancers, including melanoma. Ion channels are aberrantly expressed in tumour cells and regulate neoplastic transformation, malignant progression, and resistance to therapy. Ion channels are localized in the plasma membrane or other cellular membranes and are targets of oxidative stress, which is particularly elevated in melanoma. At the same time, ion channels are crucial for normal and cancer cell physiology and are subject to multiple layers of regulation, and therefore represent promising targets for therapeutic intervention. In this review, we analyzed the effects of oxidative stress on ion channels on a molecular and cellular level and in the context of melanoma progression and immune evasion. The possible role of ion channels as targets of alternative therapeutic strategies in melanoma was discussed.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Michael Pusch
- Biophysics Institute, National Research Council, 16149 Genova, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Correspondence:
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
28
|
Di Franco M, Vona R, Gambardella L, Cittadini C, Favretti M, Gioia C, Straface E, Pietraforte D. Estrogen receptors, ERK 1/2 phosphorylation and reactive oxidizing species in red blood cells from patients with rheumatoid arthritis. Front Physiol 2022; 13:1061319. [PMID: 36545284 PMCID: PMC9760673 DOI: 10.3389/fphys.2022.1061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Red blood cells (RBCs) are recognized to be important pathogenetic determinants in several human cardiovascular diseases (CVD). Undergoing to functional alterations when submitted to risk factors, RBCs modify their own intracellular signaling and the redox balance, shift their status from antioxidant defense to pro-oxidant agents, become a potent atherogenic stimulus playing a key role in the dysregulation of the vascular homeostasis favoring the developing and progression of CVD. Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a significantly increased risk of cardiovascular mortality with a prevalence from two to five more likely in woman, mainly attributed to accelerated atherosclerosis. The purpose of this study was to correlate the RA disease activity and the RBCs functional characteristics. Thirty-two women (aged more than 18 years) with RA, and 25 age-matched healthy women were included in this study. The disease activity, measured as the number of swollen and painful joints (DAS-28), was correlated with 1) the expression of RBCs estrogen receptors, which modulate the RBC intracellular signaling, 2) the activation of the estrogen-linked kinase ERK½, which is a key regulator of RBC adhesion and survival, and 3) the levels of inflammatory- and oxidative stress-related biomarkers, such as the acute-phase reactants, the antioxidant capacity of plasma, the reactive oxidizing species formation and 3-nitrotyrosine. All the biomarkers were evaluated in RA patients at baseline and 6 months after treatment with disease-modifying anti-rheumatic drugs (DMARDs). We found, for the first times, that in RA patients 1) the DAS-28 correlated with RBC ER-α expression, and did not correlate with total antioxidant capacity of plasma; 2) the RBC ER-α expression correlated with systemic inflammatory biomarkers and oxidative stress parameters, as well as ERK½ phosphorylation; and 3) the DMARDs treatments improved the clinical condition measured by DAS-28 score decrease, although the RBCs appeared to be more prone to pro-oxidant status associated to the expression of survival molecules. These findings represent an important advance in the study of RA determinants favoring the developing of CVD, because strongly suggest that RBCs could also participate in the vascular homeostasis through fine modulation of an intracellular signal linked to the ER-α.
Collapse
Affiliation(s)
- Manuela Di Franco
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Camilla Cittadini
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Martina Favretti
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Gioia
- Rheumatology Unit, Department of Clinical Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, National Institute of Health (ISS), Rome, Italy
| | - Donatella Pietraforte
- Core Facilities, National Institute of Health (ISS), Rome, Italy,*Correspondence: Donatella Pietraforte,
| |
Collapse
|
29
|
Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022; 27:molecules27217625. [PMID: 36364452 PMCID: PMC9654144 DOI: 10.3390/molecules27217625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
To evaluate the antioxidant activity of flavonoids extracted from Chinese herb mulberry leaves (ML), flavonoids from mulberry leaves (FML) were extracted and purified by using ultrasonic-assisted enzymatic extraction and D101 macroporous resin. Using LC-MS/MS-Liquid Chromatography with tandem mass spectrometry analysis, hesperidin, rutoside, hyperoside, cyanidin-3-o-glucoside, myricitrin, cyanidin, and quercetin were identified, and NMR and UV were consistent with the verification of IR flavonoid characteristics. The antioxidant activity of FML has also been evaluated as well as the protective effect on 2,2 0-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress. The results showed that FML exhibited powerful antioxidant activity. Moreover, FML showed dose-dependent protection against AAPH-induced sheep erythrocytes’ oxidative hemolysis. In the enzymatic antioxidant system, pretreatment with high FML maintained the balance of SOD, CAT, and GSH-Px; in the non-enzymatic antioxidant system, the content of MDA can be effectively reduced after FML treatment. This study provides a research basis for the development of natural products from mulberry leaves.
Collapse
|
30
|
Jan R, Khan M, Asaf S, Lubna, Asif S, Kim KM. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2623. [PMID: 36235488 PMCID: PMC9571405 DOI: 10.3390/plants11192623] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 07/25/2023]
Abstract
Plant secondary metabolites, especially flavonoids, are major metabolites widely found in plants that play several key roles in plant defence and signalling in response to stress conditions. The most studied among these flavonoids are kaempferol and quercetin due to their anti-oxidative potential and their key roles in the defence system, making them more critical for plant adaptation in stress environments. Kaempferol and quercetin in plants have great therapeutic potential for human health. Despite being well-studied, some of their functional aspects regarding plants and human health need further evaluation. This review summarizes the emerging potential of kaempferol and quercetin in terms of antimicrobial activity, bioavailability and bioactivity in the human body as well as in the regulation of plant defence in response to stresses and as a signalling molecule in terms of hormonal modulation under stress conditions. We also evaluated the safe use of both metabolites in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
31
|
Grebowski J, Kazmierska-Grebowska P, Cichon N, Konarska A, Wolszczak M, Litwinienko G. Fullerenol C 60(OH) 36 Protects the Antioxidant Enzymes in Human Erythrocytes against Oxidative Damage Induced by High-Energy Electrons. Int J Mol Sci 2022; 23:ijms231810939. [PMID: 36142851 PMCID: PMC9502585 DOI: 10.3390/ijms231810939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ionizing radiation (IR) can pass through the human body easily, potentially causing severe damage to all biocomponents, which is associated with increasing oxidative stress. IR is employed in radiotherapy; however, in order to increase safety, it is necessary to minimize side effects through the use of radioprotectors. Water-soluble derivatives of fullerene exhibit antiradical and antioxidant properties, and these compounds are regarded as potential candidates for radioprotectors. We examined the ability of fullerenol C60(OH)36 to protect human erythrocytes, including the protection of the erythrocytal antioxidant system against high-energy electrons. Human erythrocytes irradiated with high-energy [6 MeV] electrons were treated with C60(OH)36 (150 µg/mL), incubated and haemolyzed. The radioprotective properties of fullerenol were determined by examining the antioxidant enzymes activity in the hemolysate, the concentration of -SH groups, as well as by determining erythrocyte microviscosity. The irradiation of erythrocytes (650 and 1300 Gy) reduces the number of thiol groups; however, an attenuation of this harmful effect is observed (p < 0.05) in the presence of C60(OH)36. Although no significant effect of fullerenol was recorded on catalase activity, which was preserved in both control and test samples, a more active protection of other enzymes was evident. An irradiation-induced decrease in the activity of glutathione peroxidase and glutathione reductase became an increase in the activity of those two enzymes in samples irradiated in the presence of C60(OH)36 (p < 0.05 and p < 0.05, respectively). The fourth studied enzyme, glutathione transferase, decreased (p < 0.05) its activity in the irradiated hemolysate treated with C60(OH)36, thus, indicating a lower level of ROS in the system. However, the interaction of fullerenol with the active centre of the enzyme cannot be excluded. We also noticed that radiation caused a dose-dependent decrease in the erythrocyte microviscosity, and the presence of C60(OH)36 reduced this effect (p < 0.05). Overall, we point to the radioprotective effect of C60(OH)36 manifested as the protection of the antioxidant enzymes of human erythrocytes against IR-induced damage, which has not been the subject of intense research so far.
Collapse
Affiliation(s)
- Jacek Grebowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- The Military Medical Training Center, 6-Sierpnia 92, 90-646 Lodz, Poland
- Correspondence:
| | - Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Konarska
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz, Poland
| | | |
Collapse
|
32
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
33
|
Remigante A, Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. Açaì (Euterpe oleracea) Extract Protects Human Erythrocytes from Age-Related Oxidative Stress. Cells 2022; 11:cells11152391. [PMID: 35954235 PMCID: PMC9368007 DOI: 10.3390/cells11152391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5–10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42− uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (L.G.)
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (L.G.)
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy; (D.C.); (G.F.)
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy; (D.C.); (G.F.)
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (S.S.); (A.M.)
- Correspondence:
| |
Collapse
|
34
|
Remigante A, Morabito R. Cellular and Molecular Mechanisms in Oxidative Stress-Related Diseases. Int J Mol Sci 2022; 23:8017. [PMID: 35887362 PMCID: PMC9317101 DOI: 10.3390/ijms23148017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
The redox equilibrium is important in preserving the correct functionality of vital cellular functions [...].
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | | |
Collapse
|