1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Zhang WY, Liu SM, Wang HB, Deng CY. Exosomal miR-137-3p targets UBE3C to activate STAT3, promoting migration and differentiation into endometrial epithelial cell of human umbilical cord mesenchymal stem cells under hypoxia. World J Stem Cells 2025; 17:100359. [DOI: 10.4252/wjsc.v17.i4.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Thin endometrium, leading cause of recurrent implantation failure and infertility, has been found to respond to exosomes.
AIM To investigate the efficacy of exosomes in addressing the issue of thin endometrium.
METHODS RNA sequencing and reverse transcription-quantitative polymerase chain reaction were employed to identify differentially expressed microRNAs (miRNAs) in human umbilical cord mesenchymal stem cell (hucMSC) treated with exosomes enriched with endometrial cell-derived components. Additionally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to highlight significant enrichment in specific biological pathways, molecular functions, and cellular components. Transwell and wound healing assays were performed to assess migratory potential, and western blotting was detected protein level.
RESULTS A total of 53 differentially expressed miRNAs were identified in hucMSC treated with exosomes enriched with endometrial cell-derived components, comprising 27 upregulated and 26 downregulated miRNAs, which includes miR-137-3p. Enhanced migratory potential was observed in the Transwell and wound healing assays, and western blotting confirmed the epithelial differentiation of hucMSC and the increased p-signal transducer and activator of transcription 3. These effects were attributed to the upregulation of miR-137-3p.
CONCLUSION miR-137-3p in exosomes from hypoxia-affected endometrial epithelial cell stimulates the signal transducer and activator of transcription 3 signaling pathway, enhancing the migration and differentiation of hucMSC into endometrial epithelial cell.
Collapse
Affiliation(s)
- Wan-Yu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Si-Miao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Han-Bi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng-Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
3
|
Chaudhary S, Siddiqui JA, Pothuraju R, Bhatia R. Ribosome biogenesis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment. Cancer Lett 2025; 612:217484. [PMID: 39842499 DOI: 10.1016/j.canlet.2025.217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor overall survival rate. Cellular stress response pathways promoting cancer cell fitness in harsh tumor microenvironment (TME) play a critical role in cancer growth and survival. The influence of oncogenic Kras, multi-functional heterogeneous cancer-associated fibroblasts (CAFs), and immunosuppressive TME on cancer cells makes the disease more complex and difficult to treat. The desmoplastic reaction by CAFs comprises approximately 90 % of the tumor, with only 10 % of cancer cells making things even more complicated, resulting in therapy resistance. Consistently increasing fibrosis creates a hypoxic environment and elevated interstitial fluid pressure inside the tumor constraining vascular supply. Stress conditions in TME alter translation efficiency and metabolism to fulfill the energy requirements of rapidly growing cancer cells. Extensive research has been conducted on multiple molecular and metabolic regulators in PDAC TME. However, the role of TME in influencing translation programs, a prerequisite for cell cycle progression and functional/growth requirements for cancer cells, remains elusive. This review highlights the recent advancements in understanding altered translational programs in PDAC TME. We emphasize the role of ribosome biogenesis, ribosome-induced stress response, and the concept of specialized ribosomes and their probable role in mutationally rewiring the pancreatic TME.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India.
| | - Rakesh Bhatia
- Amity School of Biological Sciences, Amity University Punjab, 82A, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Thomas ME, Jie E, Kim AM, Mayberry TG, Cowan BC, Luechtefeld HD, Wakefield MR, Fang Y. Exploring the role of antigen-presenting cancer-associated fibroblasts and CD74 on the pancreatic ductal adenocarcinoma tumor microenvironment. Med Oncol 2024; 42:15. [PMID: 39585543 DOI: 10.1007/s12032-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has proven to be a formidable cancer primarily due to its tumor microenvironment (TME). This highly desmoplastic, hypoxic, and pro-inflammatory environment has not only been shown to facilitate the growth and metastasis of PDAC but has also displayed powerful immunosuppressive capabilities. A critical cell involved in the development of the PDAC TME is the fibroblast, specifically the antigen-presenting cancer-associated fibroblast (apCAF). The pro-inflammatory environment of PDAC induces the proliferation of apCAFs, promoting immunosuppression through immune cell inactivation, immune response regulation, and expression of CD74. In conjunction with apCAFs and tumor cells, CD74 serves as a versatile promoter of PDAC by preventing tumor antigen-expression on tumor cells, upregulating the expression of immunosuppressive chemical mediators, and activating proliferative pathways to induce PDAC malignancy. This review will highlight critical mediators and pathways that promote the PDAC stroma and TME with its hypoxic and immunosuppressive properties. Further, we will highlight the nature of apCAFs and CD74, their specific roles in the PDAC TME, and their potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Michael E Thomas
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Emily Jie
- Department of Psychology, Iowa State University, Ames, IA, 50011, USA
| | - Austin M Kim
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Trenton G Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Braydon C Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Harrison D Luechtefeld
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Ren H, Wang M, Ma X, An L, Guo Y, Ma H. METTL3 in cancer-associated fibroblasts-derived exosomes promotes the proliferation and metastasis and suppresses ferroptosis in colorectal cancer by eliciting ACSL3 m6A modification. Biol Direct 2024; 19:68. [PMID: 39160584 PMCID: PMC11331890 DOI: 10.1186/s13062-024-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been reported that can affect cancer cell proliferation, metastasis, ferroptosis, and immune escape. METTL3-mediated N6-methyladenine (m6A) modification is involved in the tumorigenesis of colorectal cancer (CRC). Herein, we investigated whether METTL3-dependent m6A in CAFs-derived exosomes (exo) affected CRC progression. METHODS qRT-PCR and western blotting analyses detected levels of mRNAs and proteins. Cell proliferation and metastasis were evaluated using MTT, colony formation, transwell, and wound healing assays, respectively. Cell ferroptosis was assessed by detecting cell viability and the levels of Fe+, reactive oxygen species, and glutathione after erastin treatment. Exosomes were isolated from CAFs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between METTL3 and ACSL3 (acyl-CoA synthetase 3) was verified using dual-luciferase reporter assay. Animal models were established for in vivo analysis. RESULTS CAFs promoted CRC cell proliferation and metastasis, and suppressed cell ferroptosis. METTL3 was enriched in CAFs and was packaged into exosomes. The m6A modification and METTL3 expression were increased in CRC samples. Knockdown of METTL3 in CAFs-exo suppressed CRC cell proliferation and metastasis, and induced cell ferroptosis. Mechanistically, METTL3 induced ACSL3 m6A modification and stabilized its expression. The anticancer effects mediated by METTL3-silenced CAFs-exo could be rescued by ACSL3 overexpression. Moreover, in vivo assay also showed that CAFs-exo with decreased METTL3 could hinder CRC growth and metastasis in mice models. CONCLUSION CAFs promoted the proliferation and metastasis, and restrained the ferroptosis in CRC by exosomal METTL3-elicited ACSL3 m6A modification.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Mincong Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Xiulong Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Lei An
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Yuyan Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Hongbing Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China.
| |
Collapse
|
6
|
Fan Y, Yu Y. Cancer-associated fibroblasts-derived exosomal METTL3 promotes the proliferation, invasion, stemness and glutaminolysis in non-small cell lung cancer cells by eliciting SLC7A5 m6A modification. Hum Cell 2024; 37:1120-1131. [PMID: 38625505 DOI: 10.1007/s13577-024-01056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Cancer-associated fibroblasts (CAFs) can promote the crosstalk between cancer cells and tumor microenvironment by exosomes. METTL3-mediated N6-methyladenine (m6A) modification has been proved to promote the progression of non-small cell lung cancer (NSCLC). Here, we focused on the impacts of CAFs-derived exosomes and METTL3-mediated m6A modification on NSCLC progression. Functional analyses were conducted using Cell Counting Kit-8, EdU, colony formation, sphere formation and transwell assays, respectively. Glutamine metabolism was evaluated by detecting glutamate consumption, and the production of intercellular glutamate and α-ketoglutarate (α-KG). qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. Exosomes were isolated by kits. The methylated RNA immunoprecipitation assay detected the m6A modification profile of Amino acid transporter LAT1 (SLC7A5) mRNA. The NSCLC mouse model was established to conduct in vivo experiments. We found that CAFs promoted the proliferation, invasion, stemness and glutaminolysis in NSCLC cells. METTL3 was enriched in CAFs and was packaged into exosomes. After knockdown of METTL3 in CAF exosomes, it was found the oncogenic effects of CAFs on NSCLC cells were suppressed. CAFs elevated m6A levels in NSCLC cells. Mechanistically, exosomal METTL3-induced m6A modification in SLC7A5 mRNA and stabilized its expression in NSCLC cells. Moreover, SLC7A5 overexpression abolished the inhibitory effects of exosomal METTL3-decreased CAFs on NSCLC cells. In addition, METTL3 inhibition in CAF exosomes impeded NSCLC growth in vivo. In all, CAFs-derived exosomal METTL3 promoted the proliferation, invasion, stemness and glutaminolysis in NSCLC cells by inducing SLC7A5 m6A modification.
Collapse
Affiliation(s)
- Yafeng Fan
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Zhigongxin Street, Xinghualing District, Taiyuan, 030000, China
| | - Yanling Yu
- Biotherapy department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
7
|
Mok ETY, Chitty JL, Cox TR. miRNAs in pancreatic cancer progression and metastasis. Clin Exp Metastasis 2024; 41:163-186. [PMID: 38240887 PMCID: PMC11213741 DOI: 10.1007/s10585-023-10256-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 06/30/2024]
Abstract
Small non-coding RNA or microRNA (miRNA) are critical regulators of eukaryotic cells. Dysregulation of miRNA expression and function has been linked to a variety of diseases including cancer. They play a complex role in cancers, having both tumour suppressor and promoter properties. In addition, a single miRNA can be involved in regulating several mRNAs or many miRNAs can regulate a single mRNA, therefore assessing these roles is essential to a better understanding in cancer initiation and development. Pancreatic cancer is a leading cause of cancer death worldwide, in part due to the lack of diagnostic tools and limited treatment options. The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is characterised by major genetic mutations that drive cancer initiation and progression. The regulation or interaction of miRNAs with these cancer driving mutations suggests a strong link between the two. Understanding this link between miRNA and PDAC progression may give rise to novel treatments or diagnostic tools. This review summarises the role of miRNAs in PDAC, the downstream signalling pathways that they play a role in, how these are being used and studied as therapeutic targets as well as prognostic/diagnostic tools to improve the clinical outcome of PDAC.
Collapse
Affiliation(s)
- Ellie T Y Mok
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Pachane BC, Selistre-de-Araujo HS. The Role of αvβ3 Integrin in Cancer Therapy Resistance. Biomedicines 2024; 12:1163. [PMID: 38927370 PMCID: PMC11200931 DOI: 10.3390/biomedicines12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvβ3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvβ3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvβ3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvβ3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.
Collapse
Affiliation(s)
- Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heloisa S. Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
9
|
Shojaeian A, Naeimi Torshizi SR, Parsapasand MS, Amjad ZS, Khezrian A, Alibakhshi A, Yun F, Baghaei K, Amini R, Pecic S. Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research. Discov Oncol 2024; 15:162. [PMID: 38743146 PMCID: PMC11093943 DOI: 10.1007/s12672-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S R Naeimi Torshizi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Sadat Parsapasand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khezrian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Alibakhshi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faye Yun
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA
| | - Kaveh Baghaei
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA.
| |
Collapse
|
10
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
13
|
Deng K, Zou F, Xu J, Xu D, Luo Z. Cancer-associated fibroblasts promote stemness maintenance and gemcitabine resistance via HIF-1α/miR-21 axis under hypoxic conditions in pancreatic cancer. Mol Carcinog 2024; 63:524-537. [PMID: 38197482 DOI: 10.1002/mc.23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Gemcitabine (GEM) resistance affects chemotherapy efficacy of pancreatic cancer (PC). Cancer-associated fibroblasts (CAFs) possess the ability of regulating chemoresistance. This study probed the mechanism of hypoxia-treated CAFs regulating cell stemness and GEM resistance in PC. Miapaca-2/SW1990 were co-cultured with PC-derived CAFs under normoxic/hypoxic conditions. Cell viability/self-renewal ability was determined by MTT/sphere formation assays, respectively. Protein levels of CD44, CD133, Oct4, and Sox2 were determined by western blot. GEM tumoricidal assay was performed. PC cell GEM resistance was evaluated by MTT assay. CAFs were cultured at normoxia/hypoxia. HIF-1α and miR-21 expression levels were assessed by RT-qPCR and western blot, with their binding sites and binding relationship predicted and verified. CAF-extracellular vesicles (EVs) were incubated with Miapaca-2 cells. The RAS/AKT/ERK pathway activation was detected by western blot. PC xenograft models were established and treated with hypoxic CAF-EVs and GEM. CAFs and PC cell co-culture increased cell stemness maintenance, GEM resistance, cell viability, stem cell sphere number, and protein levels of CD44, CD133, Oct4, and Sox2, and weakened GEM tumoricidal ability to PC cells, with the effects further enhanced by hypoxia. Hypoxia induced HIF-1α and miR-21 overexpression in CAFs. Hypoxia promoted CAFs to secrete high-level miR-21 EVs via the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway. CAF-EVs promoted GEM resistance in PC via the miR-21/RAS/ATK/ERK pathway in vivo. Hypoxia promoted CAFs to secrete high-level miR-21 EVs through the HIF-1α/miR-21 axis, and activated the miR-21/RAS/AKT/ERK pathway via EVs to trigger stemness maintenance and GEM resistance in PC.
Collapse
Affiliation(s)
- Keping Deng
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Fang Zou
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Jin Xu
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Dayong Xu
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan Province, China
| |
Collapse
|
14
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
15
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
16
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
17
|
Sun S, Zhang Y, Li Y, Wei L. Crosstalk between colorectal cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal noncoding RNAs. Front Immunol 2023; 14:1161628. [PMID: 37234178 PMCID: PMC10206140 DOI: 10.3389/fimmu.2023.1161628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and its morbidity rates are increasing worldwide. Cancer-associated fibroblasts (CAFs), as part of the tumor microenvironment (TME), are not only closely linked to normal fibroblasts, but also can secrete a variety of substances (including exosomes) to participate in the regulation of the TME. Exosomes can play a key role in intercellular communication by delivering intracellular signaling substances (e.g., proteins, nucleic acids, non-coding RNAs), and an increasing number of studies have shown that non-coding RNAs of exosomal origin from CAFs are not only closely associated with the formation of the CRC microenvironment, but also increase the ability of CRC to grow in metastasis, mediate tumor immunosuppression, and are involved in the mechanism of drug resistance in CRC patients receiving. It is also involved in the mechanism of drug resistance after radiotherapy in CRC patients. In this paper, we review the current status and progress of research on CAFs-derived exosomal non-coding RNAs in CRC.
Collapse
Affiliation(s)
| | | | | | - Linlin Wei
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
19
|
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, Vránová J, Smetana K, Lacina L, Szabo P. Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043617. [PMID: 36835029 PMCID: PMC9961675 DOI: 10.3390/ijms24043617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.
Collapse
Affiliation(s)
- Václav Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Jan Havránek
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|