1
|
Das A, Pal S, Hasanuzzaman M, Adak MK, Sil SK. Mitigation of aluminum toxicity in rice seedlings using biofabricated selenium nanoparticles and nitric oxide: Synergistic effects on oxidative stress tolerance and sulfur metabolism. CHEMOSPHERE 2025; 370:143940. [PMID: 39674411 DOI: 10.1016/j.chemosphere.2024.143940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Biofabricated selenium nanoparticles (Se-NPs) and sodium nitroprusside-derived nitric oxide (NO) singly or in combination was evaluated to improve tolerance to aluminum (Al) stress in rice (Oryza sativa L. cv. Swarna Sub1). The major objective was to elucidate contribution of sulfur reduction processes in oxidative stress tolerance along with cellular responses. Rice seedlings were primed against Al stress (550 μM) by the exogenous application of 100 μM NO and 20 ppm Se-NPs synthesized from a Salvinia molesta D. Mitch. extract. Green-synthesized Se-NPs (∼67 nm) had a crystalline, amorphous structure, high stability with functional groups in capping agents. The seedlings reduced bioaccumulation of Al in root tissues under SNP, Se-NPs, and in combination. Bioexclusion of Al was done in endodermal tissues by callose formation and binding in a fluorescent complex in the root tips. An upregulation of sulfur metabolism, including total sulfur, cysteine, cysteine synthase, and ATP sulfurylase activity was modulated by SNP + Se-NPs combination. Oxidative stress inducing metal stress for membrane oxidation into malondialdehyde, superoxide radical, and hydrogen peroxide, were also moderated by the SNP + Se-NPs combination. The Al-induced oxidative stress was relieved by a proportionate increase in superoxide dismutase and peroxidase activity. A higher ratio of ascorbate to dehydroascorbate and reduced to oxidized glutathione induced by the SNP + Se-NPs combination was supported antioxidation. These findings may substantiate the efficiency of green-synthesized Se-NPs together with SNP (as an NO donor) for amelioration of Al hazardous in crops like rice.
Collapse
Affiliation(s)
- Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda, 732103, West Bengal, India
| |
Collapse
|
2
|
Espinola EC, Cabreros MMN, Redillas MCFR. Morpho-Physiological Adaptations of Rice Cultivars Under Heavy Metal Stress: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:189. [PMID: 40003598 PMCID: PMC11856324 DOI: 10.3390/life15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Soil contamination, including in rice fields, arises from a variety of natural processes and anthropogenic activities, leading to an accumulation of heavy metals. While extensive research has addressed the bioaccumulation of heavy metals in rice, only limited systematic reviews have examined their specific impact on the morpho-physiological traits of rice plants. This review aims to provide a comprehensive synthesis of current studies detailing the rice cultivars, types of heavy metals investigated, study designs, sampling locations, and experimental sites while systematically analyzing the morphological and physiological responses of rice cultivars to heavy metal stress. Studies show that morphological traits generally exhibit a decline under heavy metal exposure. Physiologically, rice cultivars tend to show decreased total chlorophyll and carotenoid levels, along with increased levels of malondialdehyde (MDA), hydrogen peroxide (H₂O₂), and antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and proline. These findings suggest that plant genotype, type of heavy metal, and intensity of stress significantly modulate the morphological and physiological responses of rice, highlighting critical areas for further research in heavy metal stress tolerance in rice cultivars.
Collapse
Affiliation(s)
- Esmeth C. Espinola
- Science Education Department, Br. Andrew Gonzales FSC College of Education, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | - Monica Maricris N. Cabreros
- Department of Biology, College of Science, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | | |
Collapse
|
3
|
Ding H, Liu J, Liu Q, Guo L, Hang Q, Zhang Y, Jia J, Tao T, Liu Q, Ding C. Risk assessment and source tracing of heavy metals in major rice-producing provinces of Yangtze River Basin. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136206. [PMID: 39432933 DOI: 10.1016/j.jhazmat.2024.136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Heavy metal contamination in rice constitutes a global concern, its migration is influenced by environmental factors as well as socioeconomic activities. However, tracing its origins within complex context remains a significant challenge. The concentrations of five heavy metals (HMs) in 1754 samples from major rice-producing provinces were analyzed, and their pollution characteristics, associated health risks and temporal-spatial variations were discussed. Potential sources were classified by positive matrix factorization (PMF) models, considering correlations with human activities, climatic conditions, and interaction within ecosystems. The results showed that cadmium (Cd) and arsenic (As) were the primary contributors to pollution risk, with the borders between Hunan and central Jiangxi, as well as northeast Jiangxi and northwest Anhui, identified as critical areas for risk management. PMF serves as an effective methodology for identifying the sources of HMs in rice. Industrial activities, particularly mining and transportation, represent the predominant sources of Cd and lead (Pb), accounting for 75.6 % of the total pollution. Conversely, agricultural practices and natural factors constitute the primary sources of As, contributing to the remaining 24.4 %. It is noteworthy that the rapid industrial development has facilitated the expansion of the freight industry, consequently increasing the risk associated with Pb. Furthermore, effective governmental policy management can mitigate the risks related to HMs. Our research highlights the influence of industrial development on HMs risk in various regions and the moderating role of policy formulation. SYNOPSIS: Minimal research exists on the impact of regional economic development on heavy metals in rice. This study reports mining and transportation activities increase carcinogenic risks caused by Cd and Pb in rice during industrialization.
Collapse
Affiliation(s)
- Haizhen Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Jiwei Liu
- Nantong Branch of Jiangsu Agricultural Reclamation Rice Industry Group Co., LTD., Nantong, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liping Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Qianyu Hang
- Department of Biological and Agricultural Engineering, North Carolina State University, Carolina, USA
| | - Yi Zhang
- Jiangsu Provincial Grain and Oil Quality Testing Center, Nanjing, China
| | - Jirong Jia
- Jiangsu Provincial Grain and Oil Quality Testing Center, Nanjing, China
| | - Tingting Tao
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China.
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China; National Engineering Research Center of Grain Storage and Logistics, Nanjing, China.
| |
Collapse
|
4
|
Farahani F, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z, Haghighat S. Nitric oxide and ascorbic acid confer cadmium (Cd) tolerance by improving plant terpenoid metabolism and epigenetically modifying DNA methylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124917. [PMID: 39251123 DOI: 10.1016/j.envpol.2024.124917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/14/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
This study investigated the efficacy of incorporating nitric oxide (NO; 10 μM) and ascorbic acid (Asc; 10 μM) into the culture medium to confer cadmium (Cd; 5 μM) tolerance in thyme (Zataria multiflora). The phytotoxicity of Cd resulted in a decrease in shoot biomass, which NO or Asc mitigated. Adding Asc and NO to the culture medium was associated with substantial DNA hypomethylation. The NO + Cd and Asc + Cd treatments were accompanied by an increase in the unmethylation percentages, about 3-fold higher than the control. The hemi-methylation percentages in the Asc-supplemented seedlings also displayed an upward trend. The transcriptional upregulation in the γ-terpinene synthase (TPS) gene resulted from the applied elicitors, especially NO. In response to the NO and Asc treatments, the transcription of two cytochrome P450 monooxygenase genes (CYP71D178 and CYP71D180) went up. Incorporating Asc or NO into the culture medium enhanced the concentrations of proline, carvacrol, and thymol metabolites. Employing NO or Asc mitigated the 43% decrease in protein content due to the Cd cytotoxicity. The NO and Asc applications improved the activity of the phenylalanine ammonia-lyase (PAL) enzyme. NO and Asc utilization increased the accumulation of flavonoids. NO and Asc also up-regulated the activities of two enzymatic antioxidants (catalase and peroxidase). Collectively, this study provided novel insight into how Asc or NO confers Cd tolerance by epigenetically remodeling DNA methylation, transcriptionally up-regulating terpenoid and phenylpropanoid metabolism, increasing proline concentration, and improving antioxidants.
Collapse
Affiliation(s)
- Fatemeh Farahani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of advanced sciences and technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Dilawar N, Hamayun M, Iqbal A, Lee B, Ali S, Ahmad A, Alrefaei AF, Faraj TK, Kim HY, Hussain A. Rhizofungus Aspergillus terreus Mitigates Heavy Metal Stress-Associated Damage in Triticum aestivum L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2643. [PMID: 39339618 PMCID: PMC11435276 DOI: 10.3390/plants13182643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Industrial waste and sewage deposit heavy metals into the soil, where they can remain for long periods. Although there are several methods to manage heavy metals in agricultural soil, microorganisms present a promising and effective solution for their detoxification. We isolated a rhizofungus, Aspergillus terreus (GenBank Acc. No. KT310979.1), from Parthenium hysterophorus L., and investigated its growth-promoting and metal detoxification capabilities. The isolated fungus was evaluated for its ability to mitigate lead (25 and 75 ppm) and copper (100 and 200 ppm) toxicity in Triticum aestivum L. seedlings. The experiment utilized a completely randomized design with three replicates for each treatment. A. terreus successfully colonized the roots of wheat seedlings, even in the presence of heavy metals, and significantly enhanced plant growth. The isolate effectively alleviates lead and copper stress in wheat seedlings, as evidenced by increases in shoot length (142%), root length (98%), fresh weight (24%), dry weight (73%), protein content (31%), and sugar content (40%). It was observed that wheat seedlings possess a basic defense system against stress, but it was insufficient to support normal growth. Fungal inoculation strengthened the host's defense system and reduced its exposure to toxic heavy metals. In treated seedlings, exposure to heavy metals significantly upregulated MT1 gene expression, which aided in metal detoxification, enhanced antioxidant defenses, and maintained metal homeostasis. A reduction in metal exposure was observed in several areas, including normalizing the activities of antioxidant enzymes that had been elevated by up to 67% following exposure to Pb (75 mg/kg) and Cu (200 mg/kg). Heavy metal exposure elevated antioxidant levels but also increased ROS levels by 86%. However, with Aspergillus terreus colonization, ROS levels stayed within normal ranges. This decrease in ROS was associated with reduced malondialdehyde (MDA) levels, enhanced membrane stability, and restored root architecture. In conclusion, rhizofungal colonization improved metal tolerance in seedlings by decreasing metal uptake and increasing the levels of metal-binding metallothionein proteins.
Collapse
Affiliation(s)
- Naveen Dilawar
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 602760, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh 2455, Saudi Arabia
| | - Ho-Youn Kim
- Korean Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
6
|
Hassanpour H. Optimized medium composition in Physalis alkekengi callus culture altered nitric oxide level for inducing antioxidant enzyme activities and secondary metabolites. Sci Rep 2024; 14:16425. [PMID: 39014067 PMCID: PMC11252352 DOI: 10.1038/s41598-024-67191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Physalis alkekengi L. is a valuable medicinal plant from the Solanaceae family and has multiple therapeutic applications. This study aimed to develop an optimized protocol for callogenesis in P. alkekengi to obtain friable calluses with high biomass. The effect of different concentrations of picloram, casein hydrolysate (CH), basal media (Murashige and Skoog (MS) and Gamborg (B5)), and static magnetic field (SMF) were investigated on the callus induction and growth, signaling molecules, and enzymatic and non-enzymatic antioxidants. Results showed that CH (200 mgL-1) and SMF4 mT for 90 min increased callus induction and fresh weight in P. alkekengi, while different concentrations of picloram reduced callogenesis. Hypocotyl explants showed various callogenesis and metabolic responses depending on the basal medium type. The 2B5 medium supplied with CH 200 (mgL-1) induced friable and cream calluses with high biomass (0.62 g) compared to the MS medium (control). The maximum activity of superoxide dismutase and catalase activities was identified in the 2B5 medium and peroxidase in the 2MS medium. The highest total phenolic (129.44 µg g-1DW) content and phenylalanine-ammonia lyase activity were obtained in the 2MS medium, and total withanolides (49.86 µg g-1DW) and DPPH radical scavenging activity were observed in the 2B5 medium. The 2MS medium boosted the hydrogen peroxide and nitric oxide levels, while their contents alleviated in the 2B5 medium, although these parameters were higher than the control. The findings of this study suggest that an effective protocol for successful callogenesis in P. alkekengi and the nutrient composition of culture medium by affecting the level of signaling molecules can control the antioxidant defense system and callus growth.
Collapse
Affiliation(s)
- Halimeh Hassanpour
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, 14665-834, Iran.
| |
Collapse
|
7
|
Steven S, Islam MS, Ghimire A, Methela NJ, Kwon EH, Yun BW, Lee IJ, Kim SH, Kim Y. Chitosan-GSNO Nanoparticles and Silicon Priming Enhance the Germination and Seedling Growth of Soybean ( Glycine max L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1290. [PMID: 38794361 PMCID: PMC11125586 DOI: 10.3390/plants13101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Soybean, a major legume crop, has seen a decline in its production owing to challenges in seed germination and the development of seedlings. Thus, in this study, we systematically investigated the influence of various chitosan-S-nitrosoglutathione (chitosan-GSNO) nanoparticle (0, 25, 50, and 100 µM) and Si (0, 0.5, and 1 mM) priming concentrations on soybean seed germination and seedling growth over five different priming durations (range: 1-5 h at each concentration). Significant differences were observed in all parameters, except seedling diameter, with both treatments. Seed germination was significantly enhanced after 3 h of priming in both treatments. The final germination percentage (FGP), peak germination percentage (PGP), vigor index (VI), seedling biomass (SB), hypocotyl length (HL), and radical length (RL) of 100 μM chitosan-GSNO-nanoparticle-primed seeds increased by 20.3%, 41.3%, 78.9%, 25.2%, 15.7%, and 65.9%, respectively, compared with those of the control; however, the mean germination time (MGT) decreased by 18.43%. Si priming at 0.5 mM increased the FGP, PGP, VI, SB, HL, and RL by 13.9%, 55.17%, 39.2%, 6.5%, 22.5%, and 25.1%, respectively, but reduced the MGT by 12.29% compared with the control treatment. Chitosan-GSNO and Si treatment up-regulated the relative expression of gibberellic acid (GA)-related genes (GmGA3ox3 and GmGA2ox1) and down-regulated that of abscisic acid (ABA)-related genes (GmABA2, GmAAO3, and GmNCED5). Chitosan-GSNO and Si application increased bioactive GA4 levels and simultaneously reduced ABA content. Hence, the use of exogenous chitosan-GSNO nanoparticles and Si as priming agents had a beneficial effect on seed germination and seedling growth because of the up-regulation in the expression of GA and down-regulation in the expression of ABA. Additional research is needed to understand the combined impact of Si and chitosan-GSNO nanoparticles, including their effects on the expression levels of other hormones and genes even in the later growth stage of the crop.
Collapse
Affiliation(s)
- Senabulya Steven
- Department of Food Security and Agricultural Development, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea;
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.I.); (A.G.); (N.J.M.); (E.-H.K.); (B.-W.Y.); (I.-J.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Methela NJ, Pande A, Islam MS, Rahim W, Hussain A, Lee DS, Mun BG, Maria Joseph Raj NP, Kim SJ, Kim Y, Yun BW. Chitosan-GSNO nanoparticles: a positive modulator of drought stress tolerance in soybean. BMC PLANT BIOLOGY 2023; 23:639. [PMID: 38082263 PMCID: PMC10712192 DOI: 10.1186/s12870-023-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 μM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anjali Pande
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Waqas Rahim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan.
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Nirmal Prashanth Maria Joseph Raj
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Energy Harvesting Research Group, School of Physics & Astronomy, SUPA, University of St Andrews, St. Andrews, Fife, KY16 9SS, UK
| | - Sang-Jae Kim
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Yoonha Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
9
|
Ugurlar F, Kaya C. Synergistic mitigation of nickel toxicity in pepper ( Capsicum annuum) by nitric oxide and thiourea via regulation of nitrogen metabolism and subcellular nickel distribution. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1099-1116. [PMID: 37875021 DOI: 10.1071/fp23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Nickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.1mM, SNP) and 400mgL-1 Thi, alone and combined, were studied for their impact on pepper growth under Ni toxicity. Ni stress reduces chlorophyll, PSII efficiency and leaf water and sugar content. However, SNP and Thi alleviate these effects by increasing leaf water, proline and sugar content. It also increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Nickel stress lowered nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and protein content, but increased nitrate, ammonium and amino acid content. SNP and Thi enhanced nitrogen assimilation, increased protein content and improved pepper plant growth and physiological functions during Ni stress. The combined treatment reduced Ni accumulation, increased Ni in leaf cell walls and potentially in root vacuoles, and decreased Ni concentration in cell organelles. It effectively mitigated Ni toxicity to vital organelles, surpassing the effects of SNP or Thi use alone. This study provides valuable insights for addressing heavy metal contamination in agricultural soils and offers potential strategies for sustainable and eco-friendly farming practices.
Collapse
Affiliation(s)
- Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| |
Collapse
|
10
|
Bhatta D, Adhikari A, Kang SM, Kwon EH, Jan R, Kim KM, Lee IJ. Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115377. [PMID: 37597286 DOI: 10.1016/j.ecoenv.2023.115377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Microorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var. Hwayeongbyeo subjected to 1 mM As, 4 mM Ni, and 4 mM Cr stress. The rice plants treated with Cr and Ni appeared healthy but were lethal, indicating unfitness for consumption due to toxic metal deposition, whereas the plants treated with > 1 mM As instantaneously died. Our results showed that DB1 inoculation significantly decreased metal accumulation in the rice shoots. Particularly, Cr uptake dropped by 16.55% and 22.12% in (Cr + DB1) and (Cr + As + Ni + DB1), respectively, As dropped by 48.90% and 35.82% in (As + DB1) and (Cr + As + Ni + DB1), respectively, and Ni dropped by 7.95% and 19.56% in (Ni + DB1) and (Cr + As + Ni + DB1), respectively. These findings were further validated by gene expression analysis results, which showed that DB1 inoculation significantly decreased the expression of OsPCS1 (a phytochelatin synthase gene), OsMTP1 (a metal transporting gene), and OsMTP5 (a gene for the expulsion of excess metal). Moreover, DB1 inoculation considerably enhanced the morphological growth of rice through modulation of endogenous phytohormones (abscisic acid, salicylic acid, and jasmonic acid) and uptake of essential elements such as K and P. These findings indicate that DB1 is an effective biofertilizer that can mitigate heavy metal toxicity in rice crops.
Collapse
Affiliation(s)
- Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
11
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
12
|
Abbas S, Basit F, Tanwir K, Zhu X, Hu J, Guan Y, Hu W, Sheteiwy MS, Yang H, El-Keblawy A, El-Tarabily KA, AbuQamar SF, Lou J. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. PHYSIOLOGIA PLANTARUM 2023; 175:e13985. [PMID: 37616000 DOI: 10.1111/ppl.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled A El-Tarabily
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jianfeng Lou
- Shanghai Agro-Technology Extension Service Center, Shanghai, China
| |
Collapse
|
13
|
Khan M, Al Azzawi TNI, Ali S, Yun BW, Mun BG. Nitric Oxide, a Key Modulator in the Alleviation of Environmental Stress-Mediated Damage in Crop Plants: A Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112121. [PMID: 37299100 DOI: 10.3390/plants12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and highly reactive molecule with unique properties that make it a crucial signaling molecule with important physiological, biochemical, and molecular implications for plants under normal and stressful conditions. NO regulates plant growth and developmental processes, such as seed germination, root growth, shoot development, and flowering. It is also a signaling molecule in various plant growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the expression of genes encoding hormones and signaling molecules associated with plant development. Abiotic stresses induce NO production in plants, which can regulate various biological processes, such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive genes. Moreover, NO can activate plant defense response mechanisms, such as the production of pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors. NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO exhibits diverse regulatory roles in plant growth, development, and defense responses through complex molecular mechanisms that still require further studies. Understanding NO's role in plant biology is essential for developing strategies for improved plant growth and stress tolerance in agriculture and environmental management.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Al Azzawi TN, Khan M, Mun BG, Lee SU, Imran M, Hussain A, Rolly NK, Lee DS, Ali S, Lee IJ, Yun BW. Enhanced Resistance of atnigr1 against Pseudomonas syringae pv. tomato Suggests Negative Regulation of Plant Basal Defense and Systemic Acquired Resistance by AtNIGR1 Encoding NAD(P)-Binding Rossmann-Fold in Arabidopsis thaliana. Antioxidants (Basel) 2023; 12:antiox12050989. [PMID: 37237855 DOI: 10.3390/antiox12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Nitric oxide (NO) regulates several biological and physiological processes in plants. This study investigated the role of Arabidopsis thaliana Negative Immune and Growth Regulator 1 (AtNIGR1), encoding an NAD(P)-binding Rossmann-fold superfamily, in the growth and immunity of Arabidopsis thaliana. AtNIGR1 was pooled from the CySNO transcriptome as a NO-responsive gene. Seeds of the knockout (atnigr1) and overexpression plants were evaluated for their response to oxidative [(hydrogen peroxide (H2O2) and methyl viologen (MV)] or nitro-oxidative [(S-nitroso-L-cysteine (CySNO) and S-nitroso glutathione (GSNO)] stress. Results showed that the root and shoot growth of atnigr1 (KO) and AtNIGR1 (OE) exhibited differential phenotypic responses under oxidative and nitro-oxidative stress and normal growth conditions. To investigate the role of the target gene in plant immunity, the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000 virulent (Pst DC3000 vir) was used to assess the basal defense, while the Pst DC3000 avirulent (avrB) strain was used to investigate R-gene-mediated resistance and systemic acquired resistance (SAR). Data revealed that AtNIGR1 negatively regulated basal defense, R-gene-mediated resistance, and SAR. Furthermore, the Arabidopsis eFP browser indicated that the expression of AtNIGR1 is detected in several plant organs, with the highest expression observed in germinating seeds. All results put together suggest that AtNIGR1 could be involved in plant growth, as well as basal defense and SAR, in response to bacterial pathogens in Arabidopsis.
Collapse
Affiliation(s)
- Tiba Nazar Al Azzawi
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Murtaza Khan
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Uk Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Nkulu Kabange Rolly
- Department of Southern Area of Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Niyoifasha CJ, Borena BM, Ukob IT, Minh PN, Al Azzawi TNI, Imran M, Ali S, Inthavong A, Mun BG, Lee IJ, Khan M, Yun BW. Alleviation of Hg-, Cr-, Cu-, and Zn-Induced Heavy Metals Stress by Exogenous Sodium Nitroprusside in Rice Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061299. [PMID: 36986987 PMCID: PMC10056095 DOI: 10.3390/plants12061299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
The cultivation of rice is widespread worldwide, but its growth and productivity are hampered by heavy metals stress. However, sodium nitroprusside (SNP), a nitric oxide donor, has been found to be effective for imparting heavy metals stress tolerance to plants. Therefore, the current study evaluated the role of exogenously applied SNP in improving plant growth and development under Hg, Cr, Cu, and Zn stress. For this purpose, heavy metals stress was induced via the application of 1 mM mercury (Hg), chromium (Cr), copper (Cu), and zinc (Zn). To reverse the toxic effects of heavy metals stress, 0.1 mM SNP was administrated via the root zone. The results revealed that the said heavy metals significantly reduced the chlorophyll contents (SPAD), chlorophyll a and b, and protein contents. However, SNP treatment significantly reduced the toxic effects of the said heavy metals on chlorophyll (SPAD), chlorophyll a and b, and protein contents. In addition, the results also revealed that heavy metals significantly increased the production of superoxide anion (SOA), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL). However, SNP administration significantly reduced the production of SOA, H2O2, MDA, and EL in response to the said heavy metals. Furthermore, to cope with the said heavy metals stress, SNP administration significantly enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol peroxidase (PPO). Furthermore, in response to the said heavy metals, SNP application also upregulated the transcript accumulation of OsPCS1, OsPCS2, OsMTP1, OsMTP5, OsMT-I-1a, and OsMT-I-1b. Therefore, SNP can be used as a regulator to improve the heavy metals tolerance of rice in heavy-metals-affected areas.
Collapse
Affiliation(s)
| | - Birhanu Miressa Borena
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Irasapa Tanimu Ukob
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Phan Ngoc Minh
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Anousone Inthavong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Khan M, Ali S, Al Azzawi TNI, Yun BW. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. Int J Mol Sci 2023; 24:4782. [PMID: 36902213 PMCID: PMC10002851 DOI: 10.3390/ijms24054782] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nitric oxide (NO), a colorless gaseous molecule, is a lipophilic free radical that easily diffuses through the plasma membrane. These characteristics make NO an ideal autocrine (i.e., within a single cell) and paracrine (i.e., between adjacent cells) signalling molecule. As a chemical messenger, NO plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Furthermore, NO interacts with reactive oxygen species, antioxidants, melatonin, and hydrogen sulfide. It regulates gene expression, modulates phytohormones, and contributes to plant growth and defense mechanisms. In plants, NO is mainly produced via redox pathways. However, nitric oxide synthase, a key enzyme in NO production, has been poorly understood recently in both model and crop plants. In this review, we discuss the pivotal role of NO in signalling and chemical interactions as well as its involvement in the mitigation of biotic and abiotic stress conditions. In the current review, we have discussed various aspects of NO including its biosynthesis, interaction with reactive oxygen species (ROS), melatonin (MEL), hydrogen sulfide, enzymes, phytohormones, and its role in normal and stressful conditions.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Kováčik J, Husáková L, Piroutková M, Babula P. Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:727. [PMID: 36840082 PMCID: PMC9967695 DOI: 10.3390/plants12040727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) content measured in five epiphytic lichen species collected in Slovakia mountain forests ranged from 30 to 100 ng/g DW and was species-specific, decreasing in the order Hypogymnia > Pseudevernia > Usnea > Xanthoria > Evernia prunastri (but polluted sites had no impact on Hg amount in Xanthoria). Evernia was therefore used to study the impact of short-term exogenous Hg (100 µM, 24 h) and possible amelioration of Hg toxicity by nitric oxide (NO) donor sodium nitroprusside (SNP). NO was efficiently released from SNP as detected by two staining reagents and fluorescence microscopy and reduced Hg-induced ROS signal and absorption of Hg by thalli of Evernia prunastri. At the same time, NO ameliorated Hg-induced depletion of metabolites such as ascorbic acid and non-protein thiols, but not of free amino acids. The amount of metabolites, including soluble phenols, was reduced by excess Hg per se. On the contrary, NO was unable to restore Hg-stimulated depletion of chlorophyll autofluorescence but mitigated the decline of some macronutrients (K and Ca). Data confirm that accumulation of Hg in the epiphytic lichens is species-specific and that NO is a vital molecule in Evernia prunastri that provides protection against Hg-induced toxicity with considerable positive impact on metabolic changes.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, 532 10 Pardubice, Czech Republic
| | - Martina Piroutková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, 532 10 Pardubice, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
18
|
Moon YS, Khan M, Khan MA, Ali S. Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L. Symbiosis 2023. [DOI: 10.1007/s13199-023-00897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Khan M, Ali S, Al Azzawi TNI, Saqib S, Ullah F, Ayaz A, Zaman W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant-Microbe Interactions. Antioxidants (Basel) 2023; 12:268. [PMID: 36829828 PMCID: PMC9952064 DOI: 10.3390/antiox12020268] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a pivotal role in the dynamic cell signaling systems in plants, even under biotic and abiotic stress conditions. Over the past two decades, various studies have endorsed the notion that these molecules can act as intracellular and intercellular signaling molecules at a very low concentration to control plant growth and development, symbiotic association, and defense mechanisms in response to biotic and abiotic stress conditions. However, the upsurge of ROS and RNS under stressful conditions can lead to cell damage, retarded growth, and delayed development of plants. As signaling molecules, ROS and RNS have gained great attention from plant scientists and have been studied under different developmental stages of plants. However, the role of RNS and RNS signaling in plant-microbe interactions is still unknown. Different organelles of plant cells contain the enzymes necessary for the formation of ROS and RNS as well as their scavengers, and the spatial and temporal positions of these enzymes determine the signaling pathways. In the present review, we aimed to report the production of ROS and RNS, their role as signaling molecules during plant-microbe interactions, and the antioxidant system as a balancing system in the synthesis and elimination of these species.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
20
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|