1
|
Zhang QX, Du YX, Cao JJ, Yang YB, Wu W, Xu W, Xiao BG, Xiao W. Ginsenoside Rb3 represses CPZ-induced demyelination and neuroinflammation by inhibiting TRAF6 K63 ubiquitination. Int Immunopharmacol 2025; 158:114800. [PMID: 40344978 DOI: 10.1016/j.intimp.2025.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disorder of the central nervous system. Despite ongoing research, effective treatments remain limited, especially during progressive phase. Saponins extracted from the stem and leaf of Panax notoginseng (PNSL) demonstrate a superior anti-inflammatory effect by inhibiting NO production in LPS-induced BV2 cells. Ginsenoside Rb3, the primary active and most abundant component in PNSL, has been demonstrated to mitigate inflammation-induced damage. However, whether Rb3 mitigates demyelination by inhibiting neuroinflammation had not been previously reported. In this study, biochemical and histological assays revealed that ginsenoside Rb3 effectively mitigated Cuprizone-induced demyelination and attenuated aberrant microglial activation and reactive astrogliosis within the demyelinated areas. Mechanistic investigations demonstrated that Rb3 suppresses glial cell activation and consequently mitigates inflammatory responses by inhibiting the secretion of TNF-α, IL-6, and IL-1β. TNF receptor-associated factor 6 (TRAF6) is activated by K63-linked polyubiquitination, which leads to downstream activation of the inhibitor of nuclear factor-κB kinase (IKK) complex and mitogen-activated protein kinases (MAPKs). Furthermore, Rb3 was found to inhibit the activation of nuclear factor-κB (NF-κB) and MAPKs, as evidenced by the dephosphorylation of NF-κB p65 and the MAPKs p38 and JNK. Further investigation revealed that Rb3 binds to TRAF6 at residues 69 and 88, thereby inhibiting its K63-linked polyubiquitination. Conversely, the TRAF6 mutation at E69Q or R88N abolished the inhibition effects of Rb3 on K63-linked ubiquitination of TRAF6 and subsequent downstream signaling activation. Meta-analysis showed that Rb3 exerts its anti-inflammatory effects primarily by inhibiting the NF-κB pathway. Collectively, it is concluded that Rb3 alleviates demyelination and inhibits inflammation through bound to TRAF6 to prevent its K63-linked ubiquitination and subsequent activation of NF-κB. In this study, we have for the first time elucidated that dual mechanism by which Rb3 inhibits both NF-κB and MAPK pathways to exert its anti-inflammatory effects. This study demonstrates that Rb3 shows promising preclinical therapeutic potential. Additionally, TRAF6 represents a potential therapeutic target for MS treatment.
Collapse
Affiliation(s)
- Qian-Xia Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Yu-Xin Du
- Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Jiao-Jiao Cao
- Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Ying-Bo Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Wei Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bao-Guo Xiao
- Department of Neurology and National Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wei Xiao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang, China.
| |
Collapse
|
2
|
Liu D, Zhang Y, Bai B, Xiong X, Zhou Q, Shi R. Integration of single-cell RNA sequencing and network pharmacology to elucidate the effect of Yantiao Formula on alleviating ALI by regulating the polarization of alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119436. [PMID: 39914692 DOI: 10.1016/j.jep.2025.119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has a high mortality rate and often occurs in sepsis. Yantiao Formula (YTF) is used effectively in clinic but its mechanism in the treatment of ALI induced by sepsis remains unelucidated. AIM OF THE STUDY This study aims to explore the potential molecular mechanisms of YTF in the treatment of sepsis-induced ALI. MATERIALS AND METHODS Using ACQUITY UPLC I-Class, the chemical components contained in YTF were characterized. The network pharmacology approach was used to predict the components and targets of YTF for treating sepsis-induce ALI. Single-cell RNA sequencing (scRNA-seq) was used to find changes in the lung microenvironment after CLP-induced sepsis. Experimental validation was also performed in vitro and in vivo. Using molecular docking, we speculated on the potential pharmacological substances of YTF. RESULTS We detected 596 ingredients in YTF and identified 7 absorbed prototypes in serum. 1031 targets for 596 components were retrieved through TCMSP and SwissTargetPrediction databases. 365 potential targets for YTF and sepsis were identified. We observed that the targets of YTF for sepsis were significantly enriched in TNF and chemokine related pathway using GO and KEGG analysis. It was confirmed that at different time points, different doses of YTF increased the CLP-induced PaO2, reduced PaCO2 levels and W/D ratio of lung tissue. CLP- decreased survival rates was also significantly improved by YTF. YTF reversed the increase of IL-6 and IL-1β caused by CLP. Using scRNA-seq analysis, we found that changes in the proportion of cell types and the polarization state of macrophages were evident. Furthermore, the altered levels of biomarkers (M1: IL-1β, iNOS and TNF- α; M2: CD206/Mrc1 and Arg-1) provided evidence of macrophages polarization. We found that CLP-challenged group presented enhanced iNOS and IL-1β expression and YTF increased CD206 and Arg-1 expression in CLP- induced sepsis using immunohistochemical analysis. Similarly, the same results were validated in LPS- induced ALI in NR8383 cells. The material basis and potential therapeutic targets of YTF were also demonstrated using molecular docking. CONCLUSIONS YTF reduced the release of inflammatory factors and attenuated sepsis-induced ALI. The combined application of scRNA-seq, network pharmacology and molecular docking was helpful for revealing the mechanism of YTF, which was related to altering levels of M1 and M2 biomarkers to regulate macrophage polarization. The role of YTF in exerting its effects was closely relevant to the potential binding targets of its absorbed prototypes.
Collapse
Affiliation(s)
- Deng Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bufan Bai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Xiong
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.
| | - Rong Shi
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wu Y, Li Y, Chen M, Zhao J, Xiong X, Olnood CG, Gao Y, Wang F, Peng C, Liu M, Huang C, Li J, He L, Yang H, Yin Y. The effect of a water-soluble β-glucan on intestinal immunity and microbiota in LPS-challenged piglets. Front Vet Sci 2025; 12:1533872. [PMID: 40129578 PMCID: PMC11931652 DOI: 10.3389/fvets.2025.1533872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
The intestine is the largest immune and barrier organ in the body, and diarrhea and even death during piglet development are related to dysfunction caused by intestinal barrier damage and inflammation. A water-soluble β-glucan produced by Agrobacterium ZX09 has been shown to have a beneficial effect on gastrointestinal health. The main objective of this study was to investigate whether pre-feeding β-glucan has a protective effect on LPS-induced immune stress in piglets. In this study, 24 weaned piglets (21-day-old; 6.64 ± 0.16 kg) were assigned to 4 treatments in a two × two factorial design with diet (with or without β-glucan) and immunological challenge (saline or LPS). Piglets were challenged with saline or LPS after 39 days of feeding 0 or 200 mg/kg β-glucan. The results demonstrated that β-glucan supplementation increased the average daily weight gain and daily feed intake, and decreased diarrhea rate of piglets. Intestinal inflammation symptoms and histological changes in LPS-challenged piglets were alleviated by pre-feeding of β-glucan. β-glucan supplementation reduced serum IL-1β (interleukin-1β) and NO (nitric oxide) secretion in piglets after LPS challenge (0.01 < p < 0.05). Supplementation with β-glucan downregulated the mRNA expression of IL-6 in piglets after LPS challenge (0.01 < p < 0.05). β-glucan supplementation enriched the short-chain fatty acid-producing bacteria, such as Agathobacter and Subdoligranulum (0.01 < p < 0.05), and increased the concentrations of propionate and butyrate (0.01 < p < 0.05). In conclusion, pre-feeding β-glucan can enhance piglet immunity and promote piglet growth by influencing gut microbiota composition and metabolism, and alleviate intestinal damage after LPS challenge.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuxin Li
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Mengli Chen
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Changsha Medical University, Changsha, China
| | | | - Yundi Gao
- Sichuan Synlight Biotech Ltd., Chengdu, China
| | - Fei Wang
- Sichuan Synlight Biotech Ltd., Chengdu, China
| | - Can Peng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Jilin Da’an Agro-Ecosystem National Observation Research Station, Changchun, China
| | | | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liuqin He
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Jeon S, Lee H, Kim SY, Lee CH, Lim Y. Effects of Metabolites Derived from Guava ( Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients 2024; 17:7. [PMID: 39796441 PMCID: PMC11722574 DOI: 10.3390/nu17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear. In this research, we utilized metabolites obtained from the fermentation of guava leaf extract, which is well-known for its antidiabetic activity, to investigate their effects and mechanisms on MAFLD. METHODS Diabetes was induced by a high-fat diet and streptozotocin injection (80 mg/kg body weight) twice in mice. Subsequently, mice whose fasting blood glucose levels were measured higher than 300 mg/dL were administered with metabolites of Limosilactobacillus fermentum (LF) (50 mg/kg/day) or guava leaf extract fermented by L. fermentum (GFL) (50 mg/kg/day) by gavage for 15 weeks. RESULTS GFL supplementation mitigated hyperglycemia and hepatic insulin resistance. Moreover, GFL regulated abnormal hepatic histological changes and lipid profiles in diabetic mice. Furthermore, GFL enhanced energy metabolism by activating the sirtuin1 (SIRT1)/proliferator-activated receptor γ coactivator 1α (PGC1α)/peroxisome proliferator-activated receptor (PPAR)-α pathway in diabetic mice. Meanwhile, GFL supplementation suppressed hepatic inflammation in diabetic mice. CONCLUSIONS Taken together, the current study elucidated that GFL could be a potential therapeutic to ameliorate hyperglycemia and hepatic steatosis by improving SIRT1/PGC-1α/ PPAR-α-related energy metabolism in T2DM.
Collapse
Affiliation(s)
- Sohyun Jeon
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea; (S.J.); (H.L.)
| |
Collapse
|
5
|
Arora A, Sharma A, Singh S, Singh R, Singh A, Kakkar D, Sharma N. Nanoparticles encapsulated in Abelmoschus esculentus polysaccharide-based pellets as colon targeting approach. J Microencapsul 2024; 41:519-534. [PMID: 39162289 DOI: 10.1080/02652048.2024.2390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
AIM(S) This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in Abelmoschus esculentus plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis. METHODS MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. In-vitro efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers. RESULTS Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. In-vivo data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min. CONCLUSION MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.
Collapse
Affiliation(s)
- Akshita Arora
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Anshul Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, India
- Anusandhan National Research Foundation, Technology Bhavan, New Delhi, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
6
|
Singh G, Singh R, Monga V, Mehan S. Thiazolidine-2,4-dione hybrids as dual alpha-amylase and alpha-glucosidase inhibitors: design, synthesis, in vitro and in vivo anti-diabetic evaluation. RSC Med Chem 2024; 15:2826-2854. [PMID: 39149094 PMCID: PMC11324062 DOI: 10.1039/d4md00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Twelve 3,5-disubstituted-thiazolidine-2,4-dione (TZD) hybrids were synthesized using solution phase chemistry. Continuing our previous work, nine O-modified ethyl vanillin (8a-i) derivatives were synthesized and reacted with the TZD core via Knoevenagel condensation under primary reaction conditions to obtain final derivatives 9a-i. Additionally, three isatin-TZD hybrids (11a-c) were synthesized. The intermediates and final derivatives were characterized using 1H and 13C NMR spectroscopy, and the observed chemical shifts agreed with the proposed structures. The in vitro alpha-amylase and alpha-glucosidase inhibitory evaluation of newly synthesized derivatives revealed compounds 9F and 9G as the best dual inhibitors, with IC50 values of 9.8 ± 0.047 μM for alpha-glucosidase (9F) and 5.15 ± 0.0017 μM for alpha-glucosidase (9G), 17.10 ± 0.015 μM for alpha-amylase (9F), and 9.2 ± 0.092 μM for alpha-amylase (9G). The docking analysis of synthesized compounds indicated that compounds have a higher binding affinity for alpha-glucosidase as compared to alpha-amylase, as seen from docking scores ranging from -1.202 to -5.467 (for alpha-amylase) and -4.373 to -7.300 (for alpha-glucosidase). Further, the molecules possess a high LD50 value, typically ranging from 1000 to 1600 mg kg-1 of body weight, and exhibit non-toxic properties. The in vitro cytotoxicity assay results on PANC-1 and INS-1 cells demonstrated that the compounds were devoid of significant toxicity against the tested cells. Compounds 9F and 9G showed high oral absorption, i.e., oral absorption >96%, and their molecular dynamics simulation yielded results closely aligned with the observed docking outcomes. Finally, compounds 9F and 9G were evaluated for in vivo antidiabetic assessment by the induction of diabetes in Wistar rats using streptozotocin. Molecule 9G has been identified as the most effective anti-diabetic molecule due to its ability to modulate several biochemical markers in blood plasma and tissue homogenates. The results were further confirmed by histology investigations conducted on isolated pancreas, liver, and kidney.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga-142001 Punjab India
- Research Scholar, IK Gujral Punjab Technical University Kapurthala Punjab India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy GT Road, Ghal Kalan Moga Punjab India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab VPO-Ghudda Bathinda Punjab India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Kapurthala) GT Road, Ghal Kalan Moga Punjab India
| |
Collapse
|
7
|
Zhang C, Singla RK, Tang M, Shen B. Natural products act as game-changer potentially in treatment and management of sepsis-mediated inflammation: A clinical perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155710. [PMID: 38759311 DOI: 10.1016/j.phymed.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Sepsis, a life-threatening condition resulting from uncontrolled host responses to infection, poses a global health challenge with limited therapeutic options. Due to high heterogeneity, sepsis lacks specific therapeutic drugs. Additionally, there remains a significant gap in the clinical management of sepsis regarding personalized and precise medicine. PURPOSE This review critically examines the scientific landscape surrounding natural products in sepsis and sepsis-mediated inflammation, highlighting their clinical potential. METHODS Following the PRISMA guidelines, we retrieved articles from PubMed to explore potential natural products with therapeutic effects in sepsis-mediated inflammation. RESULTS 434 relevant in vitro and in vivo studies were identified and screened. Ultimately, 55 studies were obtained as the supporting resources for the present review. We divided the 55 natural products into three categories: those influencing the synthesis of inflammatory factors, those affecting surface receptors and modulatory factors, and those influencing signaling pathways and the inflammatory cascade. CONCLUSION Natural products' potential as game-changers in sepsis-mediated inflammation management lies in their ability to modulate hallmarks in sepsis, including inflammation, immunity, and coagulopathy, which provides new therapeutic avenues that are readily accessible and capable of undergoing rapid clinical validation and deployment, offering a gift from nature to humanity. Innovative techniques like bioinformatics, metabolomics, and systems biology offer promising solutions to overcome these obstacles and facilitate the development of natural product-based therapeutics, holding promise for personalized and precise sepsis management and improving patient outcomes. However, standardization, bioavailability, and safety challenges arise during experimental validation and clinical trials of natural products.
Collapse
Affiliation(s)
- Chi Zhang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Min Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China; West China School of Nursing, Sichuan University, Chengdu, PR China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610212, PR China.
| |
Collapse
|
8
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
9
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
10
|
Singh G, Singh R, Monga V, Mehan S. 3,5-Disubstituted-thiazolidine-2,4-dione hybrids as antidiabetic agents: Design, synthesis, in-vitro and In vivo evaluation. Eur J Med Chem 2024; 266:116139. [PMID: 38252989 DOI: 10.1016/j.ejmech.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Diabetes is one of the fastest-growing metabolic disorders, nearly doubling the number of patients each year. There are different treatment approaches available for the management of diabetes, which lacks due to their side effects. The inhibition of enzymes involved in the metabolism of complex polysaccharides to monosaccharides has proven beneficial in patients with type 2 diabetes mellitus. Two enzymes, α-amylase and α-glucosidase, have emerged as potential drug targets and are widely explored for drug development against type 2 diabetes mellitus. In this context, thiazolidine-2,4-diones (TZDs) have emerged as potential drug candidates for developing newer molecules against α-amylase and α-glucosidase. Nineteen TZD-hybrids were synthesized and evaluated in vitro α-amylase and α-glucosidase inhibitory activity. The compounds 7i, 7k, and 7p have emerged as the best dual inhibitors with IC50 of 10.33 ± 0.11-20.94 ± 0.76 μM and 10.19 ± 0.25-24.07 ± 1.56 μM against α-glucosidase and α-amylase, respectively. The derivatives had good anti-oxidant activity, displaying IC50 = 14.95 ± 0.65-23.27 ± 0.99 μM. The compounds 7k and 7p showed the best inhibition of reactive oxygen species in the PNAC-1 cells. The molecules exhibit good binding within the active site of α-amylase (PDB id: 1B2Y) and α-glucosidase (PDB id: 3W37), displaying binding energies of -7.5 to -10.7 kcal/mol and -7.4 to -10.3 kcal/mol, respectively. Further, the compounds were nontoxic (LD50 = 500-1311 mg/kg) and possessed good GI absorption. The compounds 7i, 7k, and 7p were evaluated in vivo antidiabetic activity in an STZ-induced diabetic model in Wistar rats. The compound 7p emerged as the best compound in the in vivo studies; however, the activity was lesser than that of the standard drug pioglitazone.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India; Research Scholar, IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, Punjab, India.
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India).
| |
Collapse
|
11
|
Chandel S, Bhattacharya A, Gautam A, Zeng W, Alka O, Sachsenberg T, Gupta GD, Narang RK, Ravichandiran V, Singh R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: experimental assays and molecular analysis. J Biomol Struct Dyn 2023; 42:11377-11395. [PMID: 37753734 DOI: 10.1080/07391102.2023.2262593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from Azadirachta indica, belonging to the family Meliaceae. In this study, we isolated the EAD from Azadirachta indica seed and studied the anti-cancer potential against neuroblastoma. Herein, EAD demonstrated significant efficacy against neuroblastoma by suppressing cell proliferation, enhancing the rate of apoptosis and cycle arrest at the SubG0 and G2/M phases. EAD enhanced the pro-apoptotic Caspase 3 and Caspase 9 and inhibited the NF-kβ translocation in a dose-dependent manner. In order to identify the specific EAD target, a gel-free quantitative proteomics study on SH-SY5Y cells using Liquid Chromatography with tandem mass spectrometry was done in a dose-dependent manner, followed by detailed bioinformatics analysis to identify effects on protein. Proteomics data identified that Enolase1 and HSP90 were up-regulated in neuroblastoma. EAD inhibited the expression of Enolase1 and HSP90, validated by mRNA expression, immunoblotting, Enolase1 and HSP90 kit and flow-cytometry based bioassay. Molecular docking study, Molecular dynamic simulation, and along with molecular mechanics/Poisson-Boltzmann surface area analysis also suggested that EAD binds at the active site of the proteins and were stable throughout the 100 ns Molecular dynamic simulation study. Overall, this study suggested EAD exhibited anti-cancer activity against neuroblastoma by targeting Enolase1 and HSP90 pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
Ye S, Yin D, Sun X, Chen Q, Min T, Wang H, Wang L. Molecular Cloning, Expression, and Functional Analysis of Glycosyltransferase (TbUGGT) Gene from Trapa bispinosa Roxb. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238374. [PMID: 36500465 PMCID: PMC9737334 DOI: 10.3390/molecules27238374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
Trapa bispinosa Roxb. is an economical crop for medicine and food. Its roots, stems, leaves, and pulp have medicinal applications, and its shell is rich in active ingredients and is considered to have a high medicinal value. One of the main functional components of the Trapa bispinosa Roxb. shell is 1-galloyl-beta-D-glucose (βG), which can be used in medical treatment and is also an essential substrate for synthesizing the anticancer drug beta-penta-o-Galloyl-glucosen (PGG). Furthermore, gallate 1-beta-glucosyltransferase (EC 2.4.1.136) has been found to catalyze gallic acid (GA) and uridine diphosphate glucose (UDPG) to synthesize βG. In our previous study, significant differences in βG content were observed in different tissues of Trapa bispinosa Roxb. In this study, Trapa bispinosa Roxb. was used to clone 1500 bp of the UGGT gene, which was named TbUGGT, to encode 499 amino acids. According to the specificity of the endogenous expression of foreign genes in Escherichia coli, the adaptation codon of the cloned original genes was optimized for improved expression. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbUGGT with squalene synthases from other plants. The TbUGGT gene was constructed into a PET-28a expression vector and then transferred into Escherichia coli Transsetta (DE3) for expression. The recombinant protein had a molecular weight of 55 kDa and was detected using SDS-PAGE. The proteins were purified using multiple fermentation cultures to simulate the intracellular environment, and a substrate was added for in vitro reaction. After the enzymatic reaction, the levels of βG in the product were analyzed using HPLC and LC-MS, indicating the catalytic activity of TbUGGT. The cloning and functional analysis of TbUGGT may lay the foundation for further study on the complete synthesis of βG in E. coli.
Collapse
Affiliation(s)
- Shijie Ye
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dongjie Yin
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyan Sun
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qinyi Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ting Min
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: ; Tel.: +86-27-8395-6793
| |
Collapse
|