1
|
Comis-Neto A, Jardim N, Quines CB, Bianchini MC, Gomes J, Batista WT, de Ávila DS, Haas SE, Rosa SG, Pinton S. Repeated Oral Administration of Ivermectin Belatedly Induces Toxicity and Disrupts the Locomotion and Neuropsychiatric Behavior in Rats. ACS OMEGA 2025; 10:12993-13001. [PMID: 40224401 PMCID: PMC11983209 DOI: 10.1021/acsomega.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
In 2020, the World Health Organization declared that COVID-19, caused by the SARS-CoV-2 virus, is a pandemic. This led to severe respiratory syndromes and overwhelmed hospital capacities alongside the widespread, yet unproven, use of drugs like ivermectin. Amidst growing concerns over the consequences of frequent ivermectin use, this study aims to examine its toxicological effects following repeated dosage in rats. Female Wistar rats received a daily dose of 12 mg/kg of ivermectin intragastrically for 5 days. Two groups were studied: one euthanized 24 h post the final dose (early protocol) and the other 14 days later (late protocol). The rats underwent tests for locomotion and anxiety- and depression-like behaviors. Additionally, blood and cortex samples were analyzed for acetylcholinesterase and Na+/K+-ATPase activities, oxidative stress levels, and liver and kidney function markers. The early protocol results showed decreased locomotion and increased signs of anxiety and depression in the rats, along with Na+/K+-ATPase inhibition and oxidative stress. In the late protocol, signs of persistent depression-like behavior and hyperlocomotion were observed, coupled with heightened oxidative stress, as indicated by increased reactive oxygen species and disrupted catalase activity. Moreover, the dual inhibition of acetylcholinesterase and Na+/K+-ATPase activities seems to underlie the behavioral alterations seen in the late protocol. The study also noted ivermectin's potential hepatotoxic effects, corroborating previous findings of elevated liver enzyme levels and severe drug-induced liver injury cases, as well as delayed neuropsychiatric and behavioral changes.
Collapse
Affiliation(s)
| | - Natália
Silva Jardim
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Caroline Brandão Quines
- Department
of Biomedicine, Regional University of the
Northwest of the State of Rio Grande do Sul (UNIJUÍ), Campus
Ijuí, Ijuí,98700-000Rio Grande do Sul ,Brazil
| | - Matheus Chimelo Bianchini
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
- Department
of Biochemistry, Federal University of South
Fronteira, Campus Chapecó, Chapecó,89815-899Santa Catarina ,Brazil
| | - Jacqueline Gomes
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | | | - Daiana Silva de Ávila
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Sandra Elisa Haas
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Suzan Gonçalves Rosa
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Simone Pinton
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| |
Collapse
|
2
|
Cespuglio R, Gorlova A, Zabegalov K, Chaprov K, Svirin E, Sitdikova K, Burova A, Shulgin B, Lebedeva K, Deikin AV, Morozov S, Strekalova T. SERT-Deficient Mice Fed Western Diet Reveal Altered Metabolic and Pro-Inflammatory Responses of the Liver: A Link to Abnormal Behaviors. FRONT BIOSCI-LANDMRK 2025; 30:26778. [PMID: 39862090 DOI: 10.31083/fbl26778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The inheritance of the short SLC6A4 allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert-/-) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD). Growing evidence suggests the significance of hepatic regulatory mechanisms in the neurobiology of central nervous system disorders, supporting the 'liver-brain' concept. However, the relationship between aberrant behavior and hepatic alterations under conditions of SERT deficiency remains poorly investigated. METHODS One-year-old female Sert-/- mice and their wild-type (WT) littermates were subjected to a control diet (CD) or the WD for a duration of three weeks. The WD had a higher caloric content and was characterized by an elevated saturated fat content (21%) compared to the CD (4.5%) and contained 0.2% cholesterol. Mice were evaluated for anxiety-like behavior, exploration and locomotor activity in the open field test, as well as glucose tolerance and histological indicators of hepatic steatosis. Hepatic pro-inflammatory and metabolism-related gene expression and markers of nitrosative stress, were analyzed utilizing real-time polymerase chain reaction (RT-PCR) and correlated with behavioral and histological outcomes. RESULTS In comparison to unchallenged mice, Sert-/-/WD mutants, but not the WT/WD group, had increased locomotion and anxiety-like behavior, increased hepatic steatosis, and elevated expression of insulin receptor B and pro-inflammatory cytokines interleukin-1β (Il-1β) and Tnf, as well as decreased expression of leptin receptor B. The two genotypes displayed distinct gene expression patterns of nitric oxide (NO)-related molecules inducible NO synthase (iNos) and arginase (Arg2), insulin receptor-related signaling factors: cluster of differentiation 36 (Cd36), ecto-nucleotide pyrophosphatase/phosphodiesterase (Enpp), protein tyrosine phosphatase N1 (Ptpn1), cytochrome P450 omega-hydroxylase 4A14 (Cyp4a14), acyl-CoA synthetase 1 (Acsl1) and phosphatase and tensin homolog (Pten). Furthermore, there were profound differences in correlations between molecular, histological, and behavioral measurements across the two genotypes. CONCLUSIONS Our findings suggest that the genetic deficiency of SERT results in abnormal hepatic pro-inflammatory and metabolic adaptations in response to WD. The significant correlations observed between behavioral measures and pro-inflammatory and metabolic alterations in WD-fed mice suggest the importance of liver-brain interactions and their role in the aberrant behaviors exhibited by Sert-/- mutants. This study presents the first evidence that altered liver functions are associated with pathological behaviors arising from genetic SERT deficiency.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69675 Bron, France
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | | | - Kirill Chaprov
- National Laboratory of Astana, Nazarbaev University, 010000 Astana, Kazakhstan
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Kseniia Sitdikova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Boris Shulgin
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, 120014 Kyzylorda, Kazakhstan
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Ksenia Lebedeva
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Alexei V Deikin
- Laboratory of Genetic Technology and gene editing for Biomedicine and Veterinary, National Research Belgorod state University, 308015 Belgorod, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany
- Maastricht University, Department of Psychiatry and Neuropsychology, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
4
|
Zhu B, Zhu J, Liu A, Yao B, Liao F, Yang S. Transcriptomic and metabolomic analysis based on different aggressive pecking phenotype in duck. Sci Rep 2024; 14:22321. [PMID: 39333746 PMCID: PMC11436778 DOI: 10.1038/s41598-024-73726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Aggressive pecking is an important welfare and production efficiency issue in poultry farming. The precise mechanisms underlying the occurrence of aggressive pecking remain poorly understood. In this study, we selected Sansui ducks that performed aggressive pecking and ducks that did not perform aggressive pecking from video recordings. Transcriptomic and metabolomic analyses of the whole brains of aggressive pecking ducks and normal ducks revealed 504 differentially expressed genes and 5 differentially altered metabolites (adenosine, guanidinopropionic acid, Met-Leu, Glu-Ile and 5,6,8-trihydroxy-2-methylbenzo[g]chromen-4-one). By jointly analysing the transcriptomics and metabolomics results, we discovered 8 candidate genes (ADCYAP1, GAL, EDN2, EDN1, MC5R, S1PR4, LOC113843450, and IAPP) and one candidate metabolite (adenosine) that regulates aggressive pecking behaviour in ducks. The candidate genes and metabolites may be involved in regulating aggressive pecking behaviour by inducing neurodegeneration and disrupting neural excitatory-inhibitory homeostasis, which in turn affects central nervous system function in aggressive pecking and normal ducks. Our findings provide a new reference for revealing the underlying mechanism of aggressive pecking behaviour in ducks.
Collapse
Affiliation(s)
- Baoguo Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jinjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bingnong Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fuyou Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shenglin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Liu D, Wei D. Relationship between the triglyceride-glucose index and depression in individuals with chronic kidney disease: A cross-sectional study from National Health and Nutrition Examination Survey 2005-2020. Medicine (Baltimore) 2024; 103:e39834. [PMID: 39331934 PMCID: PMC11441902 DOI: 10.1097/md.0000000000039834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Accumulating evidence indicates that individuals with chronic kidney disease (CKD) are at an increased risk of experiencing depressive disorders, which may accelerate its progression. However, the relationship between the triglyceride-glucose (TyG) index and depression in CKD individuals remains unclear. Therefore, this cross-sectional study aimed to assess whether such a relationship exists. To this end, the CKD cohort of the National Health and Nutrition Examination Survey from 2005 to 2020 was analyzed using multivariable logistic regression analyses and a generalized additive approach. A recursive algorithm was employed to pinpoint the turning point, constructing a dual-segment linear regression model. The study included 10,563 participants. After controlling for all variables, the odds ratios and 95% confidence intervals indicated a 1.24 (range, 1.09-1.42) relationship between the TyG index and depression in the CKD cohort. The findings underscored an asymmetrical association, with a pivotal value at a TyG index 9.29. Above this threshold, the adjusted odds ratio (95% confidence interval) was 1.10 (range, 0.93-1.31). This relationship was significant among the obese subgroups. The study results highlight the complex relationship between the TyG index and depression among American adults with CKD.
Collapse
Affiliation(s)
- Demin Liu
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Danxia Wei
- The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
- Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
6
|
Gaiaschi L, Priori EC, Mensi MM, Verri M, Buonocore D, Parisi S, Hernandez LNQ, Brambilla I, Ferrari B, De Luca F, Gola F, Rancati G, Capone L, Andriulo A, Visonà SD, Marseglia GL, Borgatti R, Bottone MG. New perspectives on the role of biological factors in anorexia nervosa: Brain volume reduction or oxidative stress, which came first? Neurobiol Dis 2024; 199:106580. [PMID: 38942323 DOI: 10.1016/j.nbd.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Anorexia nervosa (AN) is an eating disorder (ED) that has seen an increase in its incidence in the last thirty years. Compared to other psychosomatic disorders, ED can be responsible for many major medical complications, moreover, in addition to the various systemic impairments, patients with AN undergo morphological and physiological changes affecting the cerebral cortex. Through immunohistochemical studies on portions of postmortem human brain of people affected by AN and healthy individuals, and western blot studies on leucocytes of young patients and healthy controls, this study investigated the role in the afore-mentioned processes of altered redox state. The results showed that the brain volume reduction in AN could be due to an increase in the rate of cell death, mainly by apoptosis, in which mitochondria, main cellular organelles affected by a decreased dietary intake, and a highly compromised intracellular redox balance, may play a pivotal role.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Erica Cecilia Priori
- Laboratory of Neurophysiology and Integrated Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Martina Maria Mensi
- Department of Sciences of the Nervous System and of Behavior, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Manuela Verri
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Daniela Buonocore
- Laboratory of Pharmacology and Toxicology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Sandra Parisi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Lilian Nathalie Quintero Hernandez
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ilaria Brambilla
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Federica Gola
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giulia Rancati
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Luca Capone
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Adele Andriulo
- High-Complexity Rehabilitation Unit, "Casa di Cura Villa Esperia", Viale dei Salici 35, 27052 Godiasco PV, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical surgical diagnostic and pediatric sciences, Foundation IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Chindo BA, Yakubu MI, Jimoh AA, Waziri PM, Abdullahi I, Ayuba GI, Becker A. Ficus platyphylla alleviates seizure severity and neurobehavioral comorbidities in pentylenetetrazole-kindled rats via modulation of oxidative stress. Brain Res 2024; 1838:148994. [PMID: 38729331 DOI: 10.1016/j.brainres.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
PTZ kindling induces oxidative stress, neuronal cell degeneration, and neurobehavioral alterations in rodents that mimic neuropsychiatric comorbidities of epilepsy, which could be initiated or aggravated by some antiepileptic drugs. Here, we investigated the effects of the methanol extract of Ficus platyphylla (FP) on severity scores for seizures, neuronal cell degeneration, and neurobehavioral alterations in rats kindled with pentylenetetrazole (PTZ) and probed the involvement of oxidative stress in these ameliorative effects of FP. FP (50 and 100 mg/kg, p.o.) ameliorated seizure severity, neuronal cell degeneration, depressive behaviors, cognitive dysfunctions, and oxidative stress in rats kindled with PTZ (42.5 mg/kg, i.p.). The findings from this study give additional insights into the potential values of FP in the treatment of persistent epilepsy and major neuropsychiatric comorbidities via modulation of oxidative stress.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria.
| | - Musa I Yakubu
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Abdulfatai A Jimoh
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Faculty of Life Sciences, Kaduna State University, Kaduna, Nigeria
| | - Idris Abdullahi
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Godwin I Ayuba
- Department of Anatomic Pathology and Forensic Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Erdogan MA, Nesil P, Altuntas I, Sirin C, Uyanikgil Y, Erbas O. Amelioration of propionic acid-induced autism spectrum disorder in rats through dapagliflozin: The role of IGF-1/IGFBP-3 and the Nrf2 antioxidant pathway. Neuroscience 2024; 554:16-25. [PMID: 39004410 DOI: 10.1016/j.neuroscience.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Izmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey.
| | - Pemra Nesil
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | | | - Cansın Sirin
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Oytun Erbas
- Demiroglu Bilim University, Department of Physiology, İstanbul, Turkey
| |
Collapse
|
9
|
Niesman IR. Stress and the domestic cat: have humans accidentally created an animal mimic of neurodegeneration? Front Neurol 2024; 15:1429184. [PMID: 39099784 PMCID: PMC11294998 DOI: 10.3389/fneur.2024.1429184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Many neurodegenerative diseases (NDD) appear to share commonality of origin, chronic ER stress. The endoplasmic reticulum (ER) is a dynamic organelle, functioning as a major site of protein synthesis and protein posttranslational modifications, required for proper folding. ER stress can occur because of external stimuli, such as oxidative stress or neuroinflammatory cytokines, creating the ER luminal environment permissive for the accumulation of aggregated and misfolded proteins. Unresolvable ER stress upregulates a highly conserved pathway, the unfolded protein response (UPR). Maladaptive chronic activation of UPR components leads to apoptotic neuronal death. In addition to other factors, physiological responses to stressors are emerging as a significant risk factor in the etiology and pathogenesis of NDD. Owned cats share a common environment with people, being exposed to many of the same stressors as people and additional pressures due to their "quasi" domesticated status. Feline Cognitive Dysfunction Syndrome (fCDS) presents many of the same disease hallmarks as human NDD. The prevalence of fCDS is rapidly increasing as more people welcome cats as companions. Barely recognized 20 years ago, veterinarians and scientists are in infancy stages in understanding what is a very complex disease. This review will describe how cats may represent an unexplored animal mimetic phenotype for human NDD with stressors as potential triggering mechanisms. We will consider how multiple variations of stressful events over the short-life span of a cat could affect neuronal loss or glial dysfunction and ultimately tip the balance towards dementia.
Collapse
Affiliation(s)
- Ingrid R. Niesman
- Department of Biology, SDSU Electron Microscopy Facility, San Diego State University, San Diego, CA, United States
| |
Collapse
|
10
|
Strekalova T, Radford-Smith D, Dunstan IK, Gorlova A, Svirin E, Sheveleva E, Burova A, Morozov S, Lyundup A, Berger G, Anthony DC, Walitza S. Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression. Neurobiol Stress 2024; 31:100646. [PMID: 38912378 PMCID: PMC11190747 DOI: 10.1016/j.ynstr.2024.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice. Methods We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20-25 kHz and 25-45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma. Results US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests. Conclusion Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology, Oxford University, Oxford, UK
| | | | | | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Elisaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksey Lyundup
- RUDN University, 6 Miklukho-Maklaya Str, Moscow, Russia
- Endocrinology Research Centre, Dmitry Ulyanov str. 19, Moscow, 117036, Russia
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| | | | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zuerich, Zuerich, Switzerland
| |
Collapse
|
11
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Tian Y, Yang C, Liu L, Zhao X, Fan H, Xia L, Liu H. The associations of psychopathology and metabolic parameters with serum bilirubin levels in patients with acute-episode and drug-free schizophrenia: a 5-year retrospective study using an electronic medical record system. BMC Psychiatry 2024; 24:403. [PMID: 38811905 PMCID: PMC11138041 DOI: 10.1186/s12888-024-05862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The oxidative system plays an important role in the pathogenesis of schizophrenia. Inconsistent associations were found between hyperbilirubinemia and psychopathology as well as glycolipid metabolism in patients with schizophrenia at different episodes. This current study aimed to examine these associations in patients with acute-episode and drug-free (AEDF) schizophrenia. METHODS This is a retrospective study using 5 years of data from May 2017 to May 2022 extracted from the electronic medical record system of Chaohu Hospital of Anhui Medical University. Healthy controls (HCs) from the local medical screening center during the same period were also included. Participants' data of the bilirubin levels [total bilirubin (TB), conjugated bilirubin (CB), unconjugated bilirubin (UCB)], glycolipid metabolic parameters and the score of the Brief Psychiatric Rating Scale (BPRS) were collected. RESULTS A total of 1468 case records were identified through the initial search. After screening, 89 AEDF patients and 100 HCs were included. Compared with HCs, patients had a higher CB level, and lower levels of glycolipid metabolic parameters excluding high density lipoprotein-cholesterol (HDL-C) (all P < 0.001). Binary logistic regression analyses revealed that high bilirubin levels in the patients were independently associated with higher total and resistance subscale scores of BPRS, a higher HDL-C level, and lower total cholesterol and triglyceride levels (all P < 0.05). CONCLUSION Bilirubin levels are elevated in patients with AEDF schizophrenia. Patients with high bilirubin levels have more severe psychopathology and relatively optimized glycolipid metabolism. In clinical practice, regular monitoring of bilirubin levels in this patient population should be carried out.
Collapse
Affiliation(s)
- Yinghan Tian
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Cheng Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Lewei Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Xin Zhao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Haojie Fan
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, Anhui Province, P. R. China.
| |
Collapse
|
13
|
Zhang X, Zhao D, Guo S, Yang J, Liu Y. Association between triglyceride glucose index and depression in hypertensive population. J Clin Hypertens (Greenwich) 2024; 26:177-186. [PMID: 38240354 PMCID: PMC10857486 DOI: 10.1111/jch.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Growing evidence suggests that hypertensive individuals have a greater risk of developing depression, and depression can also increase the incidence of hypertension. In the hypertensive population, the association between triglyceride glucose (TyG) index and depression remains unclear. This study aimed to assess the association between TyG index and depression in hypertensive people through the cross-sectional study of the National Health and Nutrition Examination Survey (2007-2018). To assess the relationship between TyG index and depression in hypertensive population, we conducted weighted multiple logistic regression models and used a generalized additive model to probe for nonlinear correlations. In addition, we employed a recursive algorithm to determine the inflection point and established a two-piece linear regression model. This study enrolled 5897 individuals. In the model adjusted for all covariates, the ORs (95% CI) for the relationship between TyG index and depression in hypertensive population were 1.32 (1.12-1.54). A nonlinear association was found between TyG index and depression, with an inflection point at 8.7. After the inflection point, the ORs (95% CI) were 1.44 (1.15-1.79). Only the interaction with the obese population was statistically significant. Our study highlighted a nonlinear association between TyG index and depression in American hypertensive adults.
Collapse
Affiliation(s)
- Xin Zhang
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Dan Zhao
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Shanshan Guo
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Jie Yang
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Yang Liu
- Department of CardiologyAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
14
|
Liang G, Kow ASF, Yusof R, Tham CL, Ho YC, Lee MT. Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System-A Review. Biomedicines 2024; 12:184. [PMID: 38255289 PMCID: PMC10813042 DOI: 10.3390/biomedicines12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Centre of Research for Mental Health and Well-Being, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Małujło-Balcerska E, Pietras T, Śmigielski W. Serum levels of biomarkers that may link chronic obstructive pulmonary disease and depressive disorder. Pharmacol Rep 2023; 75:1619-1626. [PMID: 37921965 PMCID: PMC10661791 DOI: 10.1007/s43440-023-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND Depressive disorder is a common comorbidity of chronic obstructive pulmonary disease (COPD); according to some studies, it occurs in approximately 80% of patients. The presence of depressive symptoms influences the quality of life and affects the course and treatment of this disease. The cause of depressive symptoms in COPD and the linking mechanism between COPD and depressive disorder have not been clearly elucidated, and more studies are warranted. Inflammation and inflammation-related processes and biomarkers are involved in the etiology of COPD and depressive disorder and may be an explanation for the potential occurrence of depressive disorder in patients diagnosed with COPD. The scope of this study was to measure and compare the profiles of IL-18, TGF-β, RANTES, ICAM-1, and uPAR among stable COPD patients, recurrent depressive disorder (rDD) patients, and healthy controls. METHODS Inflammation and inflammation-related factors were evaluated in COPD patients, patients diagnosed with depressive disorder, and control individuals using enzyme-linked immunosorbent assays. RESULTS Interleukin (IL)-18, transforming growth factor (TGF)-β, chemokine RANTES, and urokinase plasminogen activator receptor (uPAR) concentrations were higher in patients suffering from COPD and depression than in control patients. Intercellular adhesive molecule (ICAM)-1 levels were significantly higher in COPD patients and lower in depressive disorder patients than in controls. CONCLUSIONS Higher levels of IL-18, TGF-β, RANTES, and uPAR in patients with COPD might indicate the presence of depressive disorder and suggest the need for further evaluation of the mental state of these patients.
Collapse
Affiliation(s)
- Elżbieta Małujło-Balcerska
- 2nd Chair of Internal Diseases, Department of Pneumology, Medical University of Łódź, 22Nd Kopcińskiego Street, 90-153, Lodz, Poland.
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Łódź, Lodz, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszynski National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
16
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
17
|
Strekalova T, Moskvin O, Jain AY, Gorbunov N, Gorlova A, Sadovnik D, Umriukhin A, Cespuglio R, Yu WS, Tse ACK, Kalueff AV, Lesch KP, Lim LW. Molecular signature of excessive female aggression: study of stressed mice with genetic inactivation of neuronal serotonin synthesis. J Neural Transm (Vienna) 2023; 130:1113-1132. [PMID: 37542675 PMCID: PMC10460733 DOI: 10.1007/s00702-023-02677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Singapore Medical School, BluMaiden Biosciences, Singapore, Singapore
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Daria Sadovnik
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, Beliv Plateau, Claude-Bernard Lyon-1 University, Bron, France
| | - Wing Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Chung Kwan Tse
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
18
|
Pavlov D, Gorlova A, Haque A, Cavalcante C, Svirin E, Burova A, Grigorieva E, Sheveleva E, Malin D, Efimochkina S, Proshin A, Umriukhin A, Morozov S, Strekalova T. Maternal Chronic Ultrasound Stress Provokes Immune Activation and Behavioral Deficits in the Offspring: A Mouse Model of Neurodevelopmental Pathology. Int J Mol Sci 2023; 24:11712. [PMID: 37511470 PMCID: PMC10380915 DOI: 10.3390/ijms241411712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3β, IL-1β, and IL-6 and increased serum concentrations of IL-1β, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Abrar Haque
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carlos Cavalcante
- Department of Human Health and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Grigorieva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dmitry Malin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sofia Efimochkina
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
19
|
Correia AS, Cardoso A, Vale N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 2023; 12:470. [PMID: 36830028 PMCID: PMC9951986 DOI: 10.3390/antiox12020470] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Depression is a prevalent, complex, and highly debilitating disease. The full comprehension of this disease is still a global challenge. Indeed, relapse, recurrency, and therapeutic resistance are serious challenges in the fight against depression. Nevertheless, abnormal functioning of the stress response, inflammatory processes, neurotransmission, neurogenesis, and synaptic plasticity are known to underlie the pathophysiology of this mental disorder. The role of oxidative stress in disease and, particularly, in depression is widely recognized, being important for both its onset and development. Indeed, excessive generation of reactive oxygen species and lack of efficient antioxidant response trigger processes such as inflammation, neurodegeneration, and neuronal death. Keeping in mind the importance of a detailed study about cellular and molecular mechanisms that are present in depression, this review focuses on the link between oxidative stress and the stress response, neuroinflammation, serotonergic pathways, neurogenesis, and synaptic plasticity's imbalances present in depression. The study of these mechanisms is important to lead to a new era of treatment and knowledge about this highly complex disease.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|