1
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Hetherington-Rauth M, McCulloch CE, Evans WJ, Hellerstein M, Shankaran M, Cauley JA, Ensrud K, Langsetmo L, Orwoll ES, Cawthon PM. Change in D3Cr muscle mass in oldest old men and its association with changes in grip strength and walking speed. PLoS One 2025; 20:e0320752. [PMID: 40168350 PMCID: PMC11960989 DOI: 10.1371/journal.pone.0320752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND The use of lean soft tissue (LST) mass as a surrogate measurement of skeletal muscle mass (SMM) has led to the conclusion that muscle loss is poorly related to functional decline. We hypothesized that when using a more accurate measure of SMM determined by D3-creatine dilution (D3Cr), longitudinal changes in SMM will be similar in magnitude to changes in strength and physical performance and that skeletal muscle mass will partially mediate the relationship of age with these outcomes. METHODS We measured change in D3Cr muscle mass (kg), handgrip strength (kg), and 6m walk speed (m/s) in 208 men from the Osteoporotic Fractures in Men Study (85.2 ± 4.3 years) over an average of 6.1 years follow-up. Mixed linear effects models adjusted for potential confounders were used to examine the relationship of changes in D3Cr muscle mass with changes in grip strength and walking speed. RESULTS Annual losses of D3Cr muscle mass, grip strength, and walking speed were 2.1%, 2.2%, and 2.6%, respectively (p < 0.001). Each additional kg loss in D3Cr muscle mass was associated with a 0.55 kg loss in grip strength and a 0.01 m/s loss in walking speed independent of changes in age (p < 0.001). 41.3% and 22.4% of the relationship between age and loss of grip strength and walking speed, respectively, was attributed to loss of D3Cr muscle mass (p < 0.001). CONCLUSION Skeletal muscle mass may have a more important role than previously considered and should not be overlooked as a potentially modifiable determinant in the loss of strength and performance in older age.
Collapse
Affiliation(s)
- Megan Hetherington-Rauth
- California Pacific Medical Center, Research Institute, San Francisco, California, United States of America
| | - Chuck E. McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | - William J. Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jane A. Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kris Ensrud
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric S. Orwoll
- Oregon Health and Science University, Portland, Oregon, United States of America
| | - Peggy M. Cawthon
- California Pacific Medical Center, Research Institute, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| |
Collapse
|
3
|
O'Leary M, Greed E, Pritchard J, Struszczak L, Bozbaş E, Bowtell J. The skeletal muscle proteomic determinants of neuromuscular function in young and older women following 8 weeks of resistance training. Exp Physiol 2025; 110:438-453. [PMID: 39663727 PMCID: PMC11868017 DOI: 10.1113/ep092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Resistance training (RT) is the gold standard intervention for ameliorating sarcopenia. Outstanding mechanistic questions remain regarding the malleability of the molecular determinants of skeletal muscle function in older age. Discovery of proteomics can expand such knowledge. We aimed to compare the effect of RT on the skeletal muscle proteome and neuromuscular function (NMF) in older and younger women. Seven young (22 ± 6 years) and eight older (63 ± 5 years) women completed 8 weeks' leg RT. Pre- and post-training, measures of leg and handgrip strength, NMF and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged skeletal muscle proteomic analyses were performed. Data were analysed using differential expression and weighted gene co-expression network approaches. Proteins related to skeletal muscle contraction were lower in older skeletal muscle; this was not normalised by RT. Following RT, older women had higher expression of VL mitochondrial biogenesis proteins compared to the young, a reversal of pre-training observations. Seventy proteins were differentially expressed between age groups. VL expression of these proteins in older women was consistently and significantly associated with poorer leg strength/NMF. Conversely, VL expression of these proteins in older women was often associated with greater handgrip strength. This study has identified important differences in the molecular responses of young and old skeletal muscle to RT. We have demonstrated their close relationship with skeletal muscle function. Proteins that are refractory to RT may represent targets to ameliorate sarcopenia. We have described a 'proteomic-function' relationship that appears to be muscle-specific. Future research should further unpick these complex relationships.
Collapse
Affiliation(s)
- Mary O'Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
| | - Elsa Greed
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Jack Pritchard
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
| | - Lauren Struszczak
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
| | - Esra Bozbaş
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
| | - Joanna Bowtell
- Faculty of Health and Life Sciences, Department of Public Health and Sport SciencesUniversity of ExeterExeterDevonUK
| |
Collapse
|
4
|
Kapan A, Ristic M, Leser A, Felsinger R, Waldhoer T. Assessment of muscle fatigability using isometric repetitive handgrip strength in frail older adults. A cross-sectional study. J Transl Med 2025; 23:215. [PMID: 39985087 PMCID: PMC11846296 DOI: 10.1186/s12967-025-06239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Fatigue has a significant impact on physical performance and quality of life in older adults, but is subjectively assessed in the Fried phenotype, so early deterioration may be overlooked. This study explores whether repetitive handgrip strength (HGS) provides an objective method of differentiating levels of frailty by comparing fatigue and recovery ratios with subjective measures and their correlations with frailty indicators. METHODS Participants (n = 217) were included based on mobility and cognitive function (MMSE > 17), with exclusions for neuromuscular disease or hand injury. The protocol consisted of two 10-maximal grip assessments one hour apart, calculating fatigue ratios 1 and 2 (maximum/mean force) at each session and recovery ratios between sessions. Logistic regression analysed associations between Fried's criteria components (Unintentional Weight Loss, Exhaustion Single Question, Multidimensional Fatigue Inventory (MFI), Short Physical Performance Battery (SPPB), Physical Activity Scale for the Elderly (PASE), standard Maximum HGS, Fatigue Ratio, and Recovery Ratio). RESULTS Among the participants (58 non-frail, 68 pre-frail, 91 frail; ages 74.7, 79.4, 83.8 years), significant differences were found for Fatigue Ratio 1 of 1.12 (non-frail), 1.23 (pre-frail), 1.40 (frail), Fatigue Ratio 2 of 1.12, 1.21, 1.45, and Recovery Ratio of 1.03, 1.01, 0.90, respectively. Fatigue Ratios 1, 2 and Recovery correlated more strongly with frailty status (r = 0.67, 0.69, -0.68) than MFI (r = 0.50), standard maximum HGS (r = -0.51) or a single fatigue question (r = 0.21). In logistic regression for predicting fatigue (MFI), Fatigue Ratio (OR = 1.51, p < 0.001) and Recovery Ratio (OR = 0.83, p = 0.022) were stronger predictors than single-question fatigue (OR = 1.15, p = 0.047) and maximum HGS. For predicting frailty, physical performance (SPPB) was the strongest predictor (OR = 0.72, p < 0.001), followed by Fatigue Ratio 1 (OR = 1.28, p < 0.001), with a higher Recovery Ratio reducing frailty risk (OR = 0.86, p = 0.050). CONCLUSION The repetitive HGS protocol is equivalent to the SPPB in assessing frailty and outperforms standard HGS and subjective fatigue measures. This objective method supports the identification of frailty by measuring strength, fatigue resistance and recovery capacity.
Collapse
Affiliation(s)
- Ali Kapan
- Center for Public Health, Department of Social and Preventive Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria.
| | - Milos Ristic
- Center for Public Health, Department of Social and Preventive Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Anna Leser
- Center for Public Health, Department of Social and Preventive Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Richard Felsinger
- Center for Public Health, Department of Social and Preventive Medicine, Medical University of Vienna, Kinderspitalgasse 15, Vienna, 1090, Austria
| | - Thomas Waldhoer
- Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
He J, Wu Z, Liang Y, He J. Exposure to secondhand smoke and physical disabilities in non-smokers: A national cross-sectional study with cotinine measurements from NHANES 2013-2018. Tob Induc Dis 2025; 23:TID-23-18. [PMID: 39989509 PMCID: PMC11843551 DOI: 10.18332/tid/200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
INTRODUCTION Secondhand smoke (SHS) exposure is a significant health risk, but current research often overlooks its broader impact on functional impairments in the general public. METHODS This study utilized serum cotinine levels (SCL) from the 2013-2018 NHANES dataset to investigate physical disabilities associated with SHS exposure. SCL represents the combined concentration of cotinine and hydroxycotinine. The physical disabilities assessed include difficulties with hearing, vision, concentration, walking, dressing or bathing independently, and running errands alone. Logistic regression was applied to evaluate the relationship between SCL and physical disabilities in adults, with stratified analyses by age, gender, and race. A p<0.05 was considered significant. RESULTS Logistic regression analyses showed that SHS exposure was significantly associated with walking difficulty. Participants in the highest quartile of SCL (Q4) had significantly higher odds of walking difficulty compared to those in the lowest quartile (Q4 vs Q1, AOR=2.03; 95% CI: 1.24-3.31, p-trend=0.010). Higher hydroxycotinine were associated with increased walking difficulty (AOR=1.48; 95% CI: 1.06-2.08, p=0.030). Individuals in the highest quartile of hydroxycotinine (Q4) faced more difficulty running errands (AOR=2.09; 95% CI: 1.13-3.88, p-trend=0.036). Among males, the highest quartiles of cotinine and hydroxycotinine were more strongly associated with walking difficulty than in females (cotinine: AOR=2.92 vs 1.49; hydroxycotinine: AOR=3.23 vs 1.78). In adults aged ≥60 years, higher SCL, cotinine, and hydroxycotinine levels were significantly associated with walking difficulty (SCL, AOR=1.58; 95% CI: 1.24-2.02); cotinine, AOR=1.80; 95% CI: 1.21-2.67; hydroxycotinine, AOR=4.57; 95% CI: 1.92-10.89). An 'L'-shaped association was observed for ln(hydroxycotinine) and walking difficulty, with a significant association beyond -1.306 (AOR=2.57; 95% CI: 1.33-4.96, p=0.005). CONCLUSIONS Higher SHS is significantly associated with various physical disabilities, especially in men and older adults.
Collapse
Affiliation(s)
- Jiahui He
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Zhounan Wu
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Yuhang Liang
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Jinshen He
- Department of Orthopaedic Surgery, Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
6
|
Allen RJ, Kronemberger A, Shi Q, Pope M, Cuadra-Muñoz E, Son W, Song LS, Anderson EJ, Pereira RO, Lira VA. Altered relaxation and Mitochondria-Endoplasmic Reticulum Contacts Precede Major (Mal)adaptations in Aging Skeletal Muscle and are Prevented by Exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633043. [PMID: 39975407 PMCID: PMC11838400 DOI: 10.1101/2025.01.14.633043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sarcopenia, or age-related muscle dysfunction, contributes to morbidity and mortality. Besides decreases in muscle force, sarcopenia is associated with atrophy and fast-to-slow fiber type switching, which is typically secondary to denervation in humans and rodents. However, very little is known about cellular changes preceding these important (mal)adaptations. To this matter, mitochondria and the sarcoplasmic reticulum are critical for tension generation in myofibers. They physically interact at the boundaries of sarcomeres forming subcellular hubs called mitochondria-endo/sarcoplasmic reticulum contacts (MERCs). Yet, whether changes at MERCs ultrastructure and proteome occur early in aging is unknown. Here, studying young adult and older mice we reveal that aging slows muscle relaxation leading to longer excitation-contraction-relaxation (ECR) cycles before maximal force decreases and fast-to-slow fiber switching takes place. We reveal that muscle MERC ultrastructure and mitochondria-associated ER membrane (MAM) protein composition are also affected early in aging and are closely associated with rate of muscle relaxation. Additionally, we demonstrate that regular exercise preserves muscle relaxation rate and MERC ultrastructure in early aging. Finally, we profile a set of muscle MAM proteins involved in energy metabolism, protein quality control, Ca2+ homeostasis, cytoskeleton integrity and redox balance that are inversely regulated early in aging and by exercise. These may represent new targets to preserve muscle function in aging individuals.
Collapse
Affiliation(s)
- Ryan J. Allen
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Ana Kronemberger
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Qian Shi
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marshall Pope
- Proteomics Facility, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Elizabeth Cuadra-Muñoz
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Wangkuk Son
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Liu Y, Xia G, Zhu S, Shi Y, Huang X, Wu J, Xu C, Du A. Differential transcriptomic profiling of lipid metabolism and collagen remodeling in fast- and slow-twitch skeletal muscles in aging. FASEB J 2025; 39:e70335. [PMID: 39831549 PMCID: PMC11744740 DOI: 10.1096/fj.202402294r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Skeletal muscle function gradually declines with aging, presenting substantial health and societal challenges. Comparative analysis of how aging affects fast- and slow-twitch muscles remains lacking. We utilized 20-month-old mice to reveal the aging effects on muscle structure and fiber composition, followed by bulk RNA sequencing for fast- and slow-twitch muscles and integration with human single-cell RNA sequencing dataset providing a comparative analysis across species. In mouse slow-twitch muscles, aging induced a switch from fast to slow fibers and distinctively altered lipid metabolism in ceramide and triglyceride, with the upregulation of regulatory genes Gk and Ppargc1a also observed in human slow fibers. Additionally, both types of muscles exhibited common collagen deposition and fibrosis, possibly due to the imbalance between collagen synthesis and degradation. The extracellular matrix gene changes substantially overlapped between mice and humans in aging, yet also highlighted clear differences. This integrative analysis provides further understanding of aged fast- and slow-twitch muscles and offers new insights into the molecular changes in aging.
Collapse
Affiliation(s)
- Yujia Liu
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guofang Xia
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Simeng Zhu
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Yifan Shi
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Xueping Huang
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Wu
- Department of Pediatric SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Congfeng Xu
- Department of CardiologyShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiChina
| | - Ailian Du
- Department of NeurologySongjiang Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
9
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
10
|
Liguori S, Moretti A, Paoletta M, Gimigliano F, Iolascon G. Role of Magnesium in Skeletal Muscle Health and Neuromuscular Diseases: A Scoping Review. Int J Mol Sci 2024; 25:11220. [PMID: 39457008 PMCID: PMC11508242 DOI: 10.3390/ijms252011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Magnesium (Mg) is a vital element for various metabolic and physiological functions in the human body, including its crucial role in skeletal muscle health. Hypomagnesaemia is frequently reported in many muscle diseases, and it also seems to contribute to the pathogenesis of skeletal muscle impairment in patients with neuromuscular diseases. The aim of this scoping review is to analyze the role of Mg in skeletal muscle, particularly its biological effects on muscle tissue in neuromuscular diseases (NMDs) in terms of biological effects and clinical implications. This scoping review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. From the 305 studies identified, 20 studies were included: 4 preclinical and 16 clinical studies. Preclinical research has demonstrated that Mg plays a critical role in modulating pathways affecting skeletal muscle homeostasis and oxidative stress in muscles. Clinical studies have shown that Mg supplementation can improve muscle mass, respiratory muscle strength, and exercise recovery and reduce muscle soreness and inflammation in athletes and patients with various conditions. Despite the significant role of Mg in muscle health, there is a lack of research on Mg supplementation in NMDs. Given the potential similarities in pathogenic mechanisms between NMDs and Mg deficiency, further studies on the effects of Mg supplementation in NMDs are warranted. Overall, maintaining optimal Mg levels through dietary intake or supplementation may have important implications for improving muscle health and function, particularly in conditions associated with muscle weakness and atrophy.
Collapse
Affiliation(s)
- Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy;
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n. 1, 80138 Naples, Italy;
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via De Crecchio n. 4, 80138 Naples, Italy; (S.L.); (M.P.); (G.I.)
| |
Collapse
|
11
|
Rahman FA, Baechler BL, Quadrilatero J. Key considerations for investigating and interpreting autophagy in skeletal muscle. Autophagy 2024; 20:2121-2132. [PMID: 39007805 PMCID: PMC11423691 DOI: 10.1080/15548627.2024.2373676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Fasih A. Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Brittany L. Baechler
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Franco-Obregón A, Tai YK. Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches? Cells 2024; 13:1273. [PMID: 39120305 PMCID: PMC11311832 DOI: 10.3390/cells13151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
13
|
Nirmala FS, Lee H, Kim YI, Hahm JH, Seo HD, Kim M, Jung CH, Ahn J. Exercise-induced signaling activation by Chrysanthemum zawadskii and its active compound, linarin, ameliorates age-related sarcopenia through Sestrin 1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155695. [PMID: 38728922 DOI: 10.1016/j.phymed.2024.155695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.
Collapse
Affiliation(s)
- Farida S Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyunjung Lee
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Young-In Kim
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Hyo-Deok Seo
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Minjung Kim
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, South Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea; Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea.
| |
Collapse
|
14
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Kerr HL, Krumm K, Anderson B, Christiani A, Strait L, Li T, Irwin B, Jiang S, Rybachok A, Chen A, Dacek E, Caeiro L, Merrihew GE, MacDonald JW, Bammler TK, MacCoss MJ, Garcia JM. Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics. J Clin Invest 2024; 134:e172890. [PMID: 39145448 PMCID: PMC11324300 DOI: 10.1172/jci172890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23-32 months old) and female (27-28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%-22% prevalence of sarcopenia was identified in 23-26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27-28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Haiming L. Kerr
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kora Krumm
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anthony Christiani
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lena Strait
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Theresa Li
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Brynn Irwin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siyi Jiang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Artur Rybachok
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amanda Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth Dacek
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
16
|
Hînganu MV, Cucu RP, Costan VV, Lozneanu L, Tamaș C, Calistru AE, Hristian L, Hînganu D. Aging of Superficial Musculoaponeurotic System of the Face-Novel Biomarkers and Micro-CT Relevance of Facial Anti-Gravity Support. Diagnostics (Basel) 2024; 14:1126. [PMID: 38893653 PMCID: PMC11172020 DOI: 10.3390/diagnostics14111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The soft superficial tissues of the face are against gravity through an intricate network of ligaments and ligamentous attachments. The aim of this investigation is to delineate the relationship between the muscular, fibrous, and vascular components of the superficial musculoaponeurotic system of the face (SMAS) at the level of its periosteal fixation areas from advanced radiological and novel biomarkers' perspectives. These areas represent key points underlying skin aging and the longevity of restorative surgery results. Methods: This study was carried out on 37 surgical specimens, excised from patients admitted for surgery. On the excised specimens, we used special immunohistochemical techniques, such as markers for collagen type III, angiogenesis, vascular endothelium (I-CAM2) and muscle fibers (MYH2). We performed a micro-CT evaluation of these 37 specimens. Results: The results of this study showed different radiologic and IHC characteristics of the means of periosteal fixation of the SMAS. Evidence of morphohistological and radiological peculiarities of the retaining ligaments highlights new data for future functional studies of these structures. Our research must be continued with larger groups of subjects and through detailed methodological studies of vascular microperfusion and could represent an important new step in biotissue engineering and the customization of surgical techniques involving the sub-SMAS layers.
Collapse
Affiliation(s)
- Marius Valeriu Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (L.L.); (D.H.)
| | - Ramona Paula Cucu
- Department of Oral and Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Victor-Vlad Costan
- Department of Oral and Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (L.L.); (D.H.)
| | - Camelia Tamaș
- Department of Plastic and Reconstructive Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Anca Elena Calistru
- Department of Pedotechnics, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Liliana Hristian
- Department of Engineering and Design of Textile Products, “Gheorghe Asachi” Technical University of Iași, 700050 Iasi, Romania
| | - Delia Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.V.H.); (L.L.); (D.H.)
| |
Collapse
|
17
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins of organelles, cellular signaling, bioenergetic metabolism and molecular chaperoning. Eur J Transl Myol 2024; 34:12565. [PMID: 38787292 PMCID: PMC11264233 DOI: 10.4081/ejtm.2024.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
18
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
19
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
20
|
Dowling P, Trollet C, Muraine L, Negroni E, Swandulla D, Ohlendieck K. The potential of proteomics for in-depth bioanalytical investigations of satellite cell function in applied myology. Expert Rev Proteomics 2024; 21:229-235. [PMID: 38753566 DOI: 10.1080/14789450.2024.2356578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Regenerative myogenesis plays a crucial role in mature myofibers to counteract muscular injury or dysfunction due to neuromuscular disorders. The activation of specialized myogenic stem cells, called satellite cells, is intrinsically involved in proliferation and differentiation, followed by myoblast fusion and the formation of multinucleated myofibers. AREAS COVERED This report provides an overview of the role of satellite cells in the neuromuscular system and the potential future impact of proteomic analyses for biomarker discovery, as well as the identification of novel therapeutic targets in muscle disease. The article reviews the ways in which the systematic analysis of satellite cells, myoblasts, and myocytes by single-cell proteomics can help to better understand the process of myofiber regeneration. EXPERT OPINION In order to better comprehend satellite cell dysfunction in neuromuscular disorders, mass spectrometry-based proteomics is an excellent large-scale analytical tool for the systematic profiling of pathophysiological processes. The optimized isolation of muscle-derived cells can be routinely performed by mechanical/enzymatic dissociation protocols, followed by fluorescence-activated cell sorting in specialized flow cytometers. Ultrasensitive single-cell proteomics using label-free quantitation methods or approaches that utilize tandem mass tags are ideal bioanalytical approaches to study the pathophysiological role of stem cells in neuromuscular disease.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, KE, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, KE, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Laura Muraine
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, KE, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, KE, Ireland
| |
Collapse
|
21
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Michel M, Plotkin DL, Mattingly ML, Mobley B, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. Aging (Albany NY) 2024; 16:6631-6651. [PMID: 38643460 PMCID: PMC11087122 DOI: 10.18632/aging.205751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
The skeletal muscle proteome alterations to aging and resistance training have been reported in prior studies. However, conventional proteomics in skeletal muscle typically yields wide protein abundance ranges that mask the detection of lowly expressed proteins. Thus, we adopted a novel deep proteomics approach whereby myofibril (MyoF) and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS). Specifically, we investigated MyoF and non-MyoF proteomic profiles of the vastus lateralis muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6). Additionally, MA muscle was analyzed following eight weeks of resistance training (RT, 2d/week). Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteomes were evident between age cohorts, and most differentially expressed non-MyoF proteins (447/543) were more enriched in MA versus Y. Biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. RT in MA participants only altered ~0.3% of MyoF and ~1.0% of non-MyoF proteomes. In summary, aging and RT predominantly affect non-contractile proteins in skeletal muscle. Additionally, marginal proteome adaptations with RT suggest more rigorous training may stimulate more robust effects or that RT, regardless of age, subtly alters basal state skeletal muscle protein abundances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Max Michel
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew D. Fruge
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
22
|
Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, Barbacini P, Capitanio D, Rittweger J, Limper U, Volpe P, Gelfi C, Salanova M. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants (Basel) 2024; 13:432. [PMID: 38671880 PMCID: PMC11047620 DOI: 10.3390/antiox13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Long-duration mission (LDM) astronauts from the International Space Station (ISS) (>180 ISS days) revealed a close-to-normal sarcolemmal nitric oxide synthase type-1 (NOS1) immunoexpression in myofibers together with biochemical and quantitative qPCR changes in deep calf soleus muscle. Nitro-DIGE analyses identified functional proteins (structural, metabolic, mitochondrial) that were over-nitrosylated post- vs. preflight. In a short-duration mission (SDM) astronaut (9 ISS days), s-nitrosylation of a nodal protein of the glycolytic flux, specific proteins in tricarboxylic acid (TCA) cycle, respiratory chain, and over-nitrosylation of creatine kinase M-types as signs of impaired ATP production and muscle contraction proteins were seen. S-nitrosylation of serotransferrin (TF) or carbonic anhydrase 3 (CA3b and 3c) represented signs of acute response microgravity muscle maladaptation. LDM nitrosoprofiles reflected recovery of mitochondrial activity, contraction proteins, and iron transporter TF as signs of muscle adaptation to microgravity. Nitrosated antioxidant proteins, alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR), and selenoprotein thioredoxin reductase 1 (TXNRD1) levels indicated signs of altered redox homeostasis and reduced protection from nitrosative stress in spaceflight. This work presents a novel spaceflight-generated dataset on s-nitrosylated muscle protein signatures from astronauts that helps both to better understand the structural and molecular networks associated to muscular nitrosative stress and to design countermeasures to dysfunction and impaired performance control in human spaceflight missions.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Sandra Furlan
- C.N.R. Neuroscience Institute, I-35121 Padova, Italy;
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
- Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, Università di Padova, I-35121 Padova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
23
|
Zheng Y, Feng J, Yu Y, Ling M, Wang X. Advances in sarcopenia: mechanisms, therapeutic targets, and intervention strategies. Arch Pharm Res 2024; 47:301-324. [PMID: 38592582 DOI: 10.1007/s12272-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
24
|
Lo Buglio A, Bellanti F, Vendemiale G. The aging muscle: sarcopenia, mitochondrial function, and redox biology. JOURNAL OF GERONTOLOGY AND GERIATRICS 2024; 72:1-10. [DOI: 10.36150/2499-6564-n695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
25
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
26
|
Eguchi T, Tezuka T, Watanabe Y, Inoue-Yamauchi A, Sagara H, Ozawa M, Yamanashi Y. Calcium-binding protein 7 expressed in muscle negatively regulates age-related degeneration of neuromuscular junctions in mice. iScience 2024; 27:108997. [PMID: 38327785 PMCID: PMC10847746 DOI: 10.1016/j.isci.2024.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The neuromuscular junction (NMJ) forms centrally in myotubes and, as the only synapse between motor neuron and myotube, are indispensable for motor activity. The midmuscle formation of NMJs, including midmuscle-restricted expression of NMJ-related genes, is governed by the muscle-specific kinase (MuSK). However, mechanisms underlying MuSK-mediated signaling are unclear. Here, we find that the Calcium-binding protein 7 (Cabp7) gene shows midmuscle-restricted expression, and muscle-specific depletion of Cabp7 in mice accelerated age-related NMJ degeneration, muscle weakness/atrophy, and motor dysfunction. Surprisingly, forced expression in muscle of CIP, an inhibitory peptide of the negative regulator of NMJ formation cyclin-dependent kinase 5 (Cdk5), restored NMJ integrity and muscle strength, and healed muscle atrophy in muscle-specific Cabp7-deficient mice, which showed increased muscle expression of the Cdk5 activator p25. These findings together demonstrate that MuSK-mediated signaling induces muscle expression of Cabp7, which suppresses age-related NMJ degeneration likely by attenuating p25 expression, providing insights into prophylactic/therapeutic intervention against age-related motor dysfunction.
Collapse
Affiliation(s)
- Takahiro Eguchi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tohru Tezuka
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuji Watanabe
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akane Inoue-Yamauchi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Core Laboratory for Developing Advanced Animal Models, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
27
|
Zampieri S, Bersch I, Smeriglio P, Barbieri E, Boncompagni S, Maccarone MC, Carraro U. Program with last minute abstracts of the Padua Days on Muscle and Mobility Medicine, 27 February - 2 March, 2024 (2024Pdm3). Eur J Transl Myol 2024; 34:12346. [PMID: 38305708 PMCID: PMC11017178 DOI: 10.4081/ejtm.2024.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland; International FES Centre®, Swiss Paraplegic Centre Nottwil, Nottwil.
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU).
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti.
| | | | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| |
Collapse
|
28
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
29
|
Nuccio A, Nogueira-Ferreira R, Moreira-Pais A, Attanzio A, Duarte JA, Luparello C, Ferreira R. The contribution of mitochondria to age-related skeletal muscle wasting: A sex-specific perspective. Life Sci 2024; 336:122324. [PMID: 38042281 DOI: 10.1016/j.lfs.2023.122324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
As people age, their skeletal muscle (SkM) experiences a decline in mitochondrial functionality and density, which leads to decreased energy production and increased generation of reactive oxygen species. This cascade of events, in turn, might determine the loss of SkM mass, strength and quality. Even though the mitochondrial processes dysregulated by aging, such as oxidative phosphorylation, mitophagy, antioxidant defenses and mtDNA transcription, are the same in both sexes, mitochondria age differently in the SkM of men and women. Indeed, the onset and magnitude of the impairment of these processes seem to be influenced by sex-specific factors. Sexual hormones play a pivotal role in the regulation of SkM mass through both genomic and non-genomic mechanisms. However, the precise mechanisms by which these hormones regulate mitochondrial plasticity in SkM are not fully understood. Although the presence of estrogen receptors in mitochondria is recognized, it remains unclear whether androgen receptors affect mitochondrial function. This comprehensive review critically dissects the current knowledge on the interplay of sex in the aging of SkM, focusing on the role of sex hormones and the corresponding signaling pathways in shaping mitochondrial plasticity. Improved knowledge on the sex dimorphism of mitochondrial aging may lead to sex-tailored interventions that target mitochondrial health, which could be effective in slowing or preventing age-related muscle loss.
Collapse
Affiliation(s)
- Alessandro Nuccio
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Nogueira-Ferreira
- Cardiovascular R&D Center - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
| | - Alexandra Moreira-Pais
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Laboratory for Integrative and Translational Research in Population Health (ITR), 4200-450 Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
30
|
Schluessel S, Zhang W, Nowotny H, Bidlingmaier M, Hintze S, Kunz S, Martini S, Mehaffey S, Meinke P, Neuerburg C, Schmidmaier R, Schoser B, Reisch N, Drey M. 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) gene expression in muscle is linked to reduced skeletal muscle index in sarcopenic patients. Aging Clin Exp Res 2023; 35:3073-3083. [PMID: 37943405 PMCID: PMC10721692 DOI: 10.1007/s40520-023-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Glucocorticoids play a significant role in metabolic processes and pathways that impact muscle size, mass, and function. The expression of 11-beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) has been previously described as a major regulator of skeletal muscle function in glucocorticoid-induced muscle atrophy and aging humans. Our study aimed to investigate glucocorticoid metabolism, including the expression of HSD11B1 in skeletal muscle, in patients with sarcopenia. METHODS Muscle biopsies were taken from the vastus lateralis muscle of thirty-three patients over 60 years of age with hip fractures. Sarcopenia status was assessed according to the criteria of the European Working Group on Sarcopenia in Older People 2. Skeletal muscle mass was measured by bioelectrical impedance analysis. Cortisol and cortisone concentrations were measured in serum. Gene expression analysis of HSD11B1, NR3C1, FBXO32, and TRIM63 in muscle biopsies was performed. Serial cross sections of skeletal muscle were labeled with myosin heavy chain slow (fiber type-1) and fast (fiber type-2) antibodies. RESULTS The study included 33 patients (21 women) with a mean age of 82.5 ± 6.3 years, 17 patients revealed sarcopenic (n = 16 non-sarcopenic). Serum cortisone concentrations were negatively correlated with muscle mass (ß = - 0.425; p = 0.034) and type-2 fiber diameter (ß = - 0.591; p = 0.003). Gene expression of HSD11B1 (ß = - 0.673; p = 0.008) showed a negative correlation with muscle mass in the sarcopenic group. A significant correlation was found for the non-sarcopenic group for NR3C1 (ß = 0.548; p = 0.028) and muscle mass. CONCLUSION These findings suggest a pathogenetic role of HSD11B1 in sarcopenic muscle.
Collapse
Affiliation(s)
- Sabine Schluessel
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Wei Zhang
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Hanna Nowotny
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Martin Bidlingmaier
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Sonja Kunz
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Sebastian Martini
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Stefan Mehaffey
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Ralf Schmidmaier
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, LMU Munich, Munich, Germany
| | - Nicole Reisch
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany.
| | - Michael Drey
- Department of Medicine IV, University Hospital, Ludwig Maximilian University Munich, Ziemssenstraße 5, 80336, Munich, Germany
| |
Collapse
|
31
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
32
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
33
|
Liang YC, Cheng KP, Kuo HY, Wang CT, Chou HW, Huang KL, Wu HT, Ou HY. Calsarcin-2 May Play a Compensatory Role in the Development of Obese Sarcopenia. Biomedicines 2023; 11:2708. [PMID: 37893082 PMCID: PMC10604196 DOI: 10.3390/biomedicines11102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Although obese sarcopenia is a major public health problem with increasing prevalence worldwide, the factors that contribute to the development of obese sarcopenia are still obscure. In order to clarify this issue, a high-fat-diet-induced obese sarcopenia mouse model was utilized. After being fed with a high-fat diet for 24 weeks, decreased motor functions and muscle mass ratios were found in the C57BL/6 mice. In addition, the expression of calsarcin-2 was significantly increased in their skeletal muscle, which was determined by a microarray analysis. In order to clarify the role of calsarcin-2 in muscle, lentiviral vectors containing the calsarcin-2 gene or short hairpin RNA targeted to calsarcin-2 were used to manipulate calsarcin-2 expressions in L6 myoblasts. We found that an overexpression of calsarcin-2 facilitated L6 myoblast differentiation, whereas a calsarcin-2 knockdown delayed myoblast differentiation, as determined by the expression of myogenin. However, the calsarcin-2 knockdown showed no significant effects on myoblast proliferation. In addition, to clarify the relationship between serum calsarcin-2 and sarcopenia, the bilateral gastrocnemius muscle mass per body weight in mice and appendicular skeletal muscle mass index in humans were measured. Although calsarcin-2 facilitated myoblast differentiation, the serum calsarcin-2 concentration was negatively related to skeletal muscle mass index in mice and human subjects. Taken together, calsarcin-2 might facilitate myoblast differentiation and appear to play a compensatory role in sarcopenia.
Collapse
Affiliation(s)
- Yu-Cheng Liang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Kai-Pi Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Chung-Teng Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsuan-Wen Chou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
| | - Kuan-Lin Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.L.); (K.-P.C.); (H.-Y.K.); (H.-W.C.)
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| |
Collapse
|
34
|
Delaire L, Courtay A, Humblot J, Aubertin-Leheudre M, Mourey F, Racine AN, Gilbert T, Niasse-Sy Z, Bonnefoy M. Implementation and Core Components of a Multimodal Program including Exercise and Nutrition in Prevention and Treatment of Frailty in Community-Dwelling Older Adults: A Narrative Review. Nutrients 2023; 15:4100. [PMID: 37836384 PMCID: PMC10574358 DOI: 10.3390/nu15194100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Increasing disability-free life expectancy is a crucial issue to optimize active ageing and to reduce the burden of evitable medical costs. One of the main challenges is to develop pragmatic and personalized prevention strategies in order to prevent frailty, counteract adverse outcomes such as falls and mobility disability, and to improve quality of life. Strong evidence reports the effectiveness of exercise interventions to improve various physical parameters and muscle function that are cornerstones of frailty. Other findings also suggest that the interactions between nutrition and physical exercise with or without health behavior promotion prevent the development of frailty. Multimodal programs, including structured exercise, adequate dietary intervention and health behavior promotion, appear increasingly consensual. However, in order for implementation in real-life settings, some pitfalls need to be addressed. In this perspective, structuring and tailoring feasible, acceptable and sustainable interventions to optimize exercise training responses are essential conditions to warrant short, medium and long-term individual benefits. The different components of exercise programs appear to be fairly consensual and effective. However, specific composition of the programs proposed (frequency, intensity, type, time, volume and progressiveness) have to be tailored to individual characteristics and objectives in order to improve exercise responses. The intervention approaches, behavioral strategies and indications for these programs also need to be refined and framed. The main objective of this work is to guide the actions of healthcare professionals and enable them to widely and effectively implement multimodal programs including exercise, nutrition and behavioral strategies in real-life settings.
Collapse
Affiliation(s)
- Leo Delaire
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Aymeric Courtay
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Joannès Humblot
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Mylène Aubertin-Leheudre
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC H3W 1W5, Canada;
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l’Activité Physique, Université du Québec à Montréal (UQÀM), Montréal, QC H2L 2C4, Canada
| | - France Mourey
- Laboratoire CAPS (Cognition, Action, et Plasticité Sensorimotrice), Inserm U1093, UFR STAPS, Université de Bourgogne, Campus Universitaire, BP 27877, 21078 Dijon, France;
| | | | - Thomas Gilbert
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- RESHAPE Research on Healthcare Professionals and Performance, Inserm U1290, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Zeinabou Niasse-Sy
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Marc Bonnefoy
- Service de Médecine du Vieillissement, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France; (A.C.); (J.H.); (T.G.); (Z.N.-S.); (M.B.)
- Programme «Bien sur ses Jambes», Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Inserm U1060-CarMeN, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
35
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
36
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Max Michel J, Plotkin DL, Mattingly ML, Brooks Mobley C, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543459. [PMID: 37333259 PMCID: PMC10274632 DOI: 10.1101/2023.06.02.543459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
38
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
39
|
Taillandier D. Muscle Atrophy: From Bench to Bedside. Int J Mol Sci 2023; 24:ijms24087551. [PMID: 37108714 PMCID: PMC10143426 DOI: 10.3390/ijms24087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The loss of muscle mass is a common adaptation to some physiological situations (e [...].
Collapse
Affiliation(s)
- Daniel Taillandier
- UNH-Human Nutrition Unit-UMR1019, Clermont Auvergne University, INRAE-French National Research Institute for Agriculture, Food and Environment, F-63000 Clermont-Ferrand, France
| |
Collapse
|