1
|
Ciobotaru GV, Goje ID, Dehelean CA, Danciu C, Magyari-Pavel IZ, Moacă EA, Muntean D, Imbrea IM, Sărățeanu V, Pop G. Analysis of the Antioxidant and Antimicrobial Activity, Cytotoxic, and Anti-Migratory Properties of the Essential Oils Obtained from Cultivated Medicinal Lamiaceae Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:846. [PMID: 40265807 PMCID: PMC11944916 DOI: 10.3390/plants14060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/24/2025]
Abstract
This study aims to highlight the therapeutic potential of some Lamiacea essential oils (EOs). For this purpose, eight EOs, including two from Lavandula angustifolia Mill. cultivated in Romania and Spain (LA1 and LA2), Salvia officinalis L. (SO), Lavandula hybrida Balb. ex Ging (LH), Salvia sclarea L. (SS), Mentha smithiana L. (MS), Perovskia atriplicifolia Benth. (PA), and Mentha x piperita L. (MP), were evaluated in vitro in terms of antioxidant, cytotoxic, antimicrobial, and anti-migratory activities. As regards the antioxidant capacity, expressed as the EO concentration that produces 50% of the maximum effect (IC50 value), the EOs obtained from the cultivated plants of the Lamiaceae family are ordered as follows: LA2 ˃ LA1 ˃ LH > MP > MS > SO > SS > PA. For the determination of antimicrobial activity, the reference strains used for testing were Salmonella enterica serotype typhimurium, Shigella flexneri serotype 2b, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Candida parapsilosis. The most intense inhibitory effect was observed in EOs of MS and MP on all tested microbial strains. The cytotoxic and anti-migratory activity of EOs was tested on two melanoma cell lines (A375 and B164A5) and on a healthy keratinocyte line (HaCaT). EOs LA1 and MP manifested the highest selectivity on the analysed tumoural cells, by reducing their migration in comparison with the control, proving to have therapeutic potential.
Collapse
Affiliation(s)
- Gabriela Valentina Ciobotaru
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
- Municipal Clinical Emergency Hospital, 5 Gh. Dima, 300079 Timisoara, Romania
| | - Iacob-Daniel Goje
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
- Municipal Clinical Emergency Hospital, 5 Gh. Dima, 300079 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.D.); (I.Z.M.-P.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.D.); (I.Z.M.-P.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Delia Muntean
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Veronica Sărățeanu
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Georgeta Pop
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| |
Collapse
|
2
|
Levaya Y, Atazhanova G, Gabe V, Badekova K. A Review of Botany, Phytochemistry, and Biological Activities of Eight Salvia Species Widespread in Kazakhstan. Molecules 2025; 30:1142. [PMID: 40076365 PMCID: PMC11901606 DOI: 10.3390/molecules30051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The aim of this review is to provide a comprehensive overview of the botany, phytochemistry, and biological activities of eight Salvia species, namely Salvia aethiopis L., S. sclarea L., S. dumetorum Andrz. ex Besser, S. deserta Schang., S. trautvetteri Rgl., S. macrosiphon Boiss., S. virgata Jacq., and S. verticillata L., which are widespread in Kazakhstan. The genus Salvia is renowned for its diverse medicinal properties, and these species are no exception, contributing to the rich natural pharmacopoeia of the region. The botanical characteristics of these species, including their morphological features, distribution, and ecological adaptations, are discussed. The present review also explores the phytochemical composition of these plants, focusing on bioactive compounds such as terpenoids, flavonoids, alkaloids, and phenolic acids, which are responsible for their medicinal potential. Biological activities including antimicrobial, antioxidant, anti-inflammatory, antidiabetic, and neuroprotective effects are evaluated based on available in vitro and in vivo studies. In addition, the review highlights the traditional uses of these species in local medicine and suggests avenues for future research to further elucidate their pharmacological potential. This synthesis provides valuable insights into the medicinal importance of these Salvia species in Kazakhstan and supports their continued exploration for therapeutic applications.
Collapse
Affiliation(s)
- Yana Levaya
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan; (G.A.); (K.B.)
| | - Gayane Atazhanova
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan; (G.A.); (K.B.)
| | - Vika Gabe
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Karakoz Badekova
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan; (G.A.); (K.B.)
| |
Collapse
|
3
|
Rodríguez-Cervantes M, León-Herrera LR, Ventura-Salcedo SA, Monroy-Dosta MDC, Rodríguez-deLeón E, Bah MM, Campos-Guillén J, Amaro-Reyes A, Zavala-Gómez CE, Figueroa-Brito R, Mariscal-Ureta KE, Pool H, Ramos-Mayorga I, Ramos-López MA. Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio. TOXICS 2025; 13:94. [PMID: 39997908 PMCID: PMC11861996 DOI: 10.3390/toxics13020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) and Tenebrio molitor (Coleoptera: Tenebrionidae) are two prominent pests of maize and its stored grains, respectively. Botanical pesticides have been proposed as an alternative for their management. This study evaluated the insecticidal activity of Salvia connivens (Lamiaceae) methanolic extract and rosmarinic acid against S. frugiperda and T. molitor by adding them to an artificial diet, as well as their ecotoxicological effects on Poecilia reticulata (Cyprinodontiformes: Poeciliidae) and Danio rerio (Cypriniformes: Danionidae) through acute toxicity tests. The methanolic extract showed higher mortality activity against S. frugiperda (LC50 = 874.28 ppm) than against T. molitor (LC50 = 1856.94 ppm) and was non-toxic to fish. Rosmarinic acid, the most abundant compound in the extract (80.45 mg g-1), showed higher activity against S. frugiperda (LC50 = 176.81 ppm). This compound did not cause a toxic effect on adult P. reticulata at the tested concentrations. However, in P. reticulata fingerlings and D. rerio adults, it was non-toxic, except in D. rerio embryos, where it was slightly toxic. These findings suggest that S. connivens methanolic extract has potential as a botanical product for the management of S. frugiperda and T. molitor with low ecotoxicological impact, while rosmarinic acid may be a useful compound for the management of S. frugiperda.
Collapse
Affiliation(s)
| | - Luis Ricardo León-Herrera
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Pinal de Amoles, Querétaro CP 76300, Mexico
| | | | - María del Carmen Monroy-Dosta
- Departamento del Hombre y su Ambiente, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México CP 04960, Mexico
| | | | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | - Aldo Amaro-Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | | | - Rodolfo Figueroa-Brito
- Centro de Desarrollo de Productos Bióticos (CEPROBI-IPN), Instituto Politécnico Nacional, Yautepec CP 62731, Mexico
| | | | - Héctor Pool
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | - Itzel Ramos-Mayorga
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro CP 76010, Mexico
| | | |
Collapse
|
4
|
Dhiman D, Vishvamitera S, Baghla S, Singh S, Kumar D, Kumar A, Chauhan R. Synergistic effect of mulch and nitrogen management on growth and essential oil yield of Salvia sclarea L. Sci Rep 2024; 14:32075. [PMID: 39738778 PMCID: PMC11686162 DOI: 10.1038/s41598-024-83824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Balanced plant nutrition and optimal micro-climate are critical for achieving higher production sustainably. Substituting mineral fertilizers with organic amendments under water-conserving strategies like mulch can enhance the quality and yield and improve soil health. Therefore, a two-year study was conducted to examine the synergistic effects of mulch and reducing inorganic fertilizers and partially substituting organic amendments on essential oil (EO) yield and its composition, and soil properties in Salvia sclarea, an industrially important crop. Two mulching practices (M1: without mulch; M2: with mulch) and five nitrogen (N) management practices [N1: control; N2: 100% recommended dose of N i.e.,120 kg/ha; N3: 25% N through chemical fertilizer (CF) + 75% N through farm yard manure (FYM); N4: 50% N through CF + 50% N through FYM, N5: 75% N through CF + 25% N through FYM] were taken as experimental treatments, with a total of ten treatment combinations in a split-plot design during 2021-22 and 2022-23. The results showed that applying mulch increased the plant height, leaf area index (LAI), and EO yield. Among N management practices, N2 outperformed for all the morpho-physiological and yield parameters studied except stem diameter and produced at par outcomes with N5 in case of flower spike per plant, LAI, chlorophyll a and b, flower spike yield, EO content and yield. Optimum soil temperature and moisture under mulching modulate the nutrient concentration; similarly, N being necessary for photosynthesis, translocation of nutrients, enzymatic activity, and vegetative and reproductive growth, synergistically enhanced the EO yield and altered the composition. The heat map displayed an inconsistent pattern of the treatment combination's impact on EO components. In soil properties, treatment N5 recorded highest value of available N at 0-0.15 m soil depth; however, at 0.15-0.30 m, N2 registered a higher value and produced at par results with N5. In case of potassium and soil organic carbon, T3 recorded higher value, followed by T4 and T5 at 0-0.15 m. Considering the soil health and without compromising the EO yield much, the present study suggested replacing 25% of recommended chemical N with organic manures under mulch for sustainable and economical production of S. sclarea.
Collapse
Affiliation(s)
- Diksha Dhiman
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sakshi Vishvamitera
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Sidharth Baghla
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Sanatsujat Singh
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashok Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ramesh Chauhan
- Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
5
|
Verešová A, Terentjeva M, Ban Z, Li L, Vukic M, Vukovic N, Kluz MI, Ben Sad R, Ben Hsouna A, Bianchi A, Kollár J, Elizondo-Luévano JH, Čmiková N, Garzoli S, Kačániová M. Enhancing Antimicrobial Efficacy of Sandalwood Essential Oil Against Salmonella enterica for Food Preservation. Foods 2024; 13:3919. [PMID: 39682991 DOI: 10.3390/foods13233919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of forming biofilms, entering a sessile state that enhances their resistance to broad-spectrum antibiotics. Essential oils, renowned for their antibacterial properties, present a promising natural alternative for food preservation. In this study, we analyzed the chemical composition of Santalum album essential oil (SAEO) using GC-MS, identifying (Z)-α-santalol (57.1%) as the primary constituent. Antimicrobial activity was confirmed through disc diffusion and minimum inhibitory concentration (MIC) assays against Gram-positive and Gram-negative bacteria and yeast from the genus Candida. Additionally, in situ experiments demonstrated that vapor-phase SAEO effectively inhibited Serratia marcescens on the food model, supporting its potential as a natural preservative. MBIC assays, crystal violet staining, and MALDI-TOF MS analysis on S. enterica biofilms were used to further evaluate the antibiofilm effects of SAEO. The crystal violet assay revealed a strong antibiofilm effect, while the MALDI-TOF MS analysis showed changes in the bacterial protein profiles on both glass and plastic surfaces. SAEO also showed significant anti-Salmonella activity on vacuum-packed carrot slices. SAEO outperformed the control samples. The insecticidal activity against Megabruchidius dorsalis was also studied in this work, and the best insecticidal activity was found at the highest concentrations. These findings indicate that SAEO could serve as a valuable component in food preservation, with notable antibacterial and antibiofilm benefits.
Collapse
Affiliation(s)
- Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Margarita Terentjeva
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Rania Ben Sad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia
| | - Joel Horacio Elizondo-Luévano
- Department of Chemistry, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64455, Nuevo León, Mexico
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| |
Collapse
|
6
|
Čmiková N, Kowalczewski PŁ, Kmiecik D, Tomczak A, Drożdżyńska A, Ślachciński M, Szala Ł, Matić S, Marković T, Popović S, Baskic D, Kačániová M. Seaweed Nutritional Value and Bioactive Properties: Insights from Ascophyllum nodosum, Palmaria palmata, and Chondrus crispus. Life (Basel) 2024; 14:1522. [PMID: 39598320 PMCID: PMC11595611 DOI: 10.3390/life14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates the nutritional composition and bioactive properties of Palmaria palmata (dulse), Ascophyllum nodosum (knotted wrack), and Chondrus crispus (Irish moss). Understanding the nutritional values of these seaweeds is very important due to their potential health benefits, especially their antioxidant properties and cytotoxic activities, which point to their ability to inhibit cancer cell proliferation. Comprehensive analyses were conducted to assess protein content, amino acid composition, mineral profile, fatty acids, polyphenols, total carotenoids, antioxidant activity, and cytotoxicity against cervical (HeLa), and colon (HCT-116) cell lines. P. palmata exhibited the highest protein content, while C. crispus was richest in calcium, iron, manganese, and zinc. Amino acid analysis revealed C. crispus as being particularly high in essential and non-essential amino acids, including alanine, glutamic acid, and glycine. A. nodosum and C. crispus were rich in polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). A. nodosum showed the highest total carotenoid content. Polyphenol analysis highlighted the presence of compounds such as p-coumaric acid, gallic acid, and p-hydroxybenzoic acid across the species. Both the ethanolic and hexane A. nodosum extracts demonstrated the strongest antioxidant potential in DPPH• and ABTS+ assays. The cytotoxicity evaluation revealed high anticancer activity of A. nodosum and C. crispus hexane extract against HeLa and HCT-116, though it employed cell cycle arrest and apoptosis. A. nodosum hexane extract exhibited moderate selective anticancer activity against HCT-116. These findings underscore the nutritional diversity and potential health benefits of these macroalgae (seaweed) species, suggesting their suitability as functional foods or supplements, offering diverse nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland; (P.Ł.K.); (D.K.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland; (P.Ł.K.); (D.K.)
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623 Poznań, Poland;
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznań, Poland;
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland;
| | - Łukasz Szala
- Students’ Scientific Club of Food Technologists, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Sanja Matić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.M.); (T.M.)
| | - Tijana Marković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.M.); (T.M.)
| | - Suzana Popović
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.P.); (D.B.)
| | - Dejan Baskic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, 34000 Kragujevac, Serbia; (S.P.); (D.B.)
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
| |
Collapse
|
7
|
Verešová A, Vukic MD, Vukovic NL, Terentjeva M, Ban Z, Li L, Bianchi A, Kollár J, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Kluz MI, Čmiková N, Garzoli S, Kačániová M. Chemical Composition, Biological Activity, and Application of Rosa damascena Essential Oil as an Antimicrobial Agent in Minimally Processed Eggplant Inoculated with Salmonella enterica. Foods 2024; 13:3579. [PMID: 39593995 PMCID: PMC11592901 DOI: 10.3390/foods13223579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Rosa damascena is mostly grown for its usage in the food, medical, and perfume industries, while it is also used as an attractive plant in parks, gardens, and homes. The use of R. damascena essential oil may yield new results in relation to the antimicrobial activity of essential oils and their use mainly in extending the shelf life of foods. This study investigates the chemical composition and antimicrobial properties of Rosa damascena essential oil (RDEO) using gas chromatography-mass spectrometry (GC-MS) and various bioassays to explore its potential applications in food preservation and microorganism growth control. The GC-MS analysis revealed that RDEO is predominantly composed of phenylethyl alcohol (70%), which is known for its antimicrobial and aromatic properties. Additionally, other significant constituents were identified, including nerol, citronellol, and geraniol, which may contribute to the EOs overall bioactivity. The antimicrobial activity was assessed through the minimal inhibition concentration against five Candida yeast strains, four Gram-positive, and four Gram-negative bacteria, including biofilm-forming Salmonella enterica. Determination of minimum inhibitory concentrations (MIC) revealed the strongest effects of RDEO's on Gram-negative species, with MIC50 values as low as 0.250 mg/mL for S. enterica. Moreover, an in situ assessment utilizing fruit and vegetable models demonstrated that the vapor phase of RDEO significantly suppressed microbial growth, with the most substantial reductions observed on kiwi and banana models. As a result of our study, the antimicrobial effect of RDEO on the microbiota of sous vide processed eggplant was detected, as well as an inhibitory effect on S. enterica during storage. The insecticidal activity against Megabruchidius dorsalis Fahreus, 1839, was also studied in this work and the best insecticidal activity was found at the highest concentrations. These results suggest that RDEO has the potential to serve as a natural antimicrobial agent in food preservation and safety applications, providing an alternative to synthetic preservatives.
Collapse
Affiliation(s)
- Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
| | - Milena D. Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.V.); (N.L.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.V.); (N.L.V.)
| | - Margarita Terentjeva
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Department of Chemistry, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 64455, Nuevo León, Mexico;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.V.); (N.Č.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland;
| |
Collapse
|
8
|
Kačániová M, Garzoli S, Ben Hsouna A, Bianchi A, Kluz MI, Elizondo-Luevano JH, Ban Z, Ben Saad R, Mnif W, Haščík P. The Potential of Thymus serpyllum Essential Oil as an Antibacterial Agent against Pseudomonas aeruginosa in the Preservation of Sous Vide Red Deer Meat. Foods 2024; 13:3107. [PMID: 39410141 PMCID: PMC11476099 DOI: 10.3390/foods13193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Foodborne infections caused by microbes are a serious health risk. Regarding this, customer preferences for "ready-to-eat" or minimally processed (MP) deer meat are one of the main risk factors. Given the health dangers associated with food, essential oil (EO) is a practical substitute used to decrease pathogenic germs and extend the shelf-life of MP meals. Nonetheless, further data regarding EO use in MP meals are required. In order to evaluate new, safer alternatives to chemicals for disease control and food preservation, this research was carried out in the following areas to assess the antibacterial and antibiofilm characteristics of Thymus serpyllum (TSEO) essential oil, which is extracted from dried flowering stalks. Furthermore, this study applied an essential oil of wild thyme and inoculated the sous vide deer meat with Pseudomonas aeruginosa for seven days at 4 °C in an effort to prolong its shelf-life. Against P. aeruginosa, the essential oil exhibited potent antibacterial action. The findings of the minimal biofilm inhibition concentration (MBIC) crystal violet test demonstrated the substantial antibiofilm activity of the TSEO. The TSEO modified the protein profiles of bacteria on glass and plastic surfaces, according to data from MALDI-TOF MS analysis. Moreover, it was discovered that P. aeruginosa was positively affected by the antibacterial properties of TSEO. The anti-Pseudomonas activity of the TSEO was marginally higher in vacuum-packed sous vide red deer meat samples than in control samples. The most frequently isolated species from sous vide deer meat, if we do not consider the applied bacteria Pseudomonas aeruginosa, were P. fragi, P. lundensis, and P. taetrolens. These results highlight the antibacterial and antibiofilm qualities of TSEO, demonstrating its potential for food preservation and extending the shelf-life of deer meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences of Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
9
|
Kačániová M, Garzoli S, Ben Hsouna A, Ban Z, Elizondo-Luevano JH, Kluz MI, Ben Saad R, Haščík P, Čmiková N, Waskiewicz-Robak B, Kollár J, Bianchi A. Enhancing Deer Sous Vide Meat Shelf Life and Safety with Eugenia caryophyllus Essential Oil against Salmonella enterica. Foods 2024; 13:2512. [PMID: 39200440 PMCID: PMC11353597 DOI: 10.3390/foods13162512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Modern lifestyles have increased the focus on food stability and human health due to evolving industrial goals and scientific advancements. Pathogenic microorganisms significantly challenge food quality, with Salmonella enterica and other planktonic cells capable of forming biofilms that make them more resistant to broad-spectrum antibiotics. This research examined the chemical composition and antibacterial and antibiofilm properties of the essential oil from Eugenia caryophyllus (ECEO) derived from dried fruits. GC-MS analyses identified eugenol as the dominant component at 82.7%. Additionally, the study aimed to extend the shelf life of sous vide deer meat by applying a plant essential oil and inoculating it with S. enterica for seven days at 4 °C. The essential oil demonstrated strong antibacterial activity against S. enterica. The ECEO showed significant antibiofilm activity, as indicated by the MBIC crystal violet test results. Data from MALDI-TOF MS analysis revealed that the ECEO altered the protein profiles of bacteria on glass and stainless-steel surfaces. Furthermore, the ECEO was found to have a beneficial antibacterial effect on S. enterica. In vacuum-packed sous vide red deer meat samples, the anti-Salmonella activity of the ECEO was slightly higher than that of the control samples. These findings underscore the potential of the ECEO's antibacterial and antibiofilm properties in food preservation and extending the shelf life of meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo, Nuevo León 66050, Mexico;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Božena Waskiewicz-Robak
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland; (M.I.K.); (B.W.-R.)
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia;
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| |
Collapse
|
10
|
Čmiková N, Kowalczewski PŁ, Kmiecik D, Tomczak A, Drożdżyńska A, Ślachciński M, Królak J, Kačániová M. Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants. Foods 2024; 13:2160. [PMID: 38998665 PMCID: PMC11241656 DOI: 10.3390/foods13132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira weissflogii, and Tisochrysis lutea. We conducted comprehensive analyses of their nutritional profiles, encompassing protein content, individual amino acid composition, mineral and trace element levels, fatty acid profiles (including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs)), polyphenol compositions, and vitamin B content. The antioxidant activity of the ethanolic extracts was evaluated using two methods: ABTS and DPPH radical scavenging assay. The total protein content of the microalgae ranged from 34.09 ± 0.39% to 42.45 ± 0.18%, with the highest concentration observed in T. weissflogii. Essential amino acids such as histidine, threonine, lysine, valine, isoleucine, leucine, phenylalanine, and methionine were present in concentrations ranging from 0.53 ± 0.02 to 12.55 ± 2.21 g/16 g N. Glutamic acid emerged as the most abundant amino acid, with concentrations ranging from 6.73 ± 0.82 to 12.55 ± 2.21 g/16 g N. Among the microalgae species, T. chuii exhibited the highest concentrations of calcium (Ca) and manganese (Mn), while C. muelleri showed prominence in magnesium (Mg), sodium (Na), and iron (Fe). T. weissflogii stood out for its potassium (K) content, and T. lutea contained notable amounts of copper (Cu), zinc (Zn), and lead (Pb). Regarding fatty acid profiles, Nannochloropsis sp. and T. chuii were predominantly composed of SFA, while C. muelleri and T. weissflogii were rich in MUFA. PUFAs dominated the fatty acid profile of T. lutea, which also exhibited the most diverse range of polyphenolic substances. We also analyzed the B vitamin content, with T. lutea displaying the highest concentrations of niacin (B3) and riboflavin (B2). Antioxidant activity was confirmed for all microalgae tested using DPPH and ABTS radical IC50 (mg/mL) converted to Trolox equivalent (TEAC). These findings underscore the substantial potential of the examined microalgae species as sources of biologically valuable substances characterized by rapid growth and relatively undemanding cultivation conditions.
Collapse
Affiliation(s)
- Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623 Poznań, Poland
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland
| | - Jakub Królak
- Students' Scientific Club of Food Technologists, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| |
Collapse
|
11
|
Kačániová M, Vukovic NL, Čmiková N, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Said-Al Ahl HAH, Hikal WM, Vukic MD. Biological Activity and Phytochemical Characteristics of Star Anise ( Illicium verum) Essential Oil and Its Anti- Salmonella Activity on Sous Vide Pumpkin Model. Foods 2024; 13:1505. [PMID: 38790803 PMCID: PMC11121629 DOI: 10.3390/foods13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Illicium verum, commonly known as star anise, represents one of the notable botanical species and is recognized for its rich reservoir of diverse bioactive compounds. Beyond its culinary application as a spice, this plant has been extensively utilized in traditional medicine. Given the contemporary emphasis on incorporating natural resources into food production, particularly essential oils, to enhance sensory attributes and extend shelf life, our study seeks to elucidate the chemical composition and evaluate the antibacterial (in vitro, in situ) and insecticidal properties of Illicium verum essential oil (IVEO). Also, microbiological analyses of pumpkin sous vide treated with IVEO after inoculation of Salmonella enterica were evaluated after 1 and 7 days of study. GC/MS analysis revealed a significantly high amount of (E)-anethole (88.4%) in the investigated EO. The disc diffusion method shows that the antibacterial activity of the IVEO ranged from 5.33 (Streptococcus constellatus) to 10.33 mm (Citrobacter freundii). The lowest minimal inhibition concentration was found against E. coli and the minimum biofilm inhibition concertation was found against S. enterica. In the vapor phase, the best antimicrobial activity was found against E. coli in the pears model and against S. sonei in the beetroot model. The application of the sous vide method in combination with IVEO application decreased the number of microbial counts and eliminated the growth of S. enterica. The most isolated microbiota identified from the sous vide pumpkin were Bacillus amyloliquefaciens, B. cereus, B. licheniformis, and Ralstonia picketii. Modifications to the protein composition of biofilm-forming bacteria S. enterica were suggested by the MALDI TOF MS instigations. The IVEO showed insecticidal potential against Harmonia axyridis. Thanks to the properties of IVEO, our results suggest it can be used in the food industry as a natural supplement to extend the shelf life of foods and as a natural insecticide.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
12
|
Said-Al Ahl HAH, Kačániova M, Mahmoud AA, Hikal WM, Čmiková N, Szczepanek M, Błaszczyk K, Al-Balawi SM, Bianchi A, Smaoui S, Tkachenko KG. Phytochemical Characterization and Biological Activities of Essential Oil from Satureja montana L., a Medicinal Plant Grown under the Influence of Fertilization and Planting Dates. BIOLOGY 2024; 13:328. [PMID: 38785810 PMCID: PMC11118672 DOI: 10.3390/biology13050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The rising demand for safe plant compounds and herbal products that contribute positively to human health is in line with current market trends. Plants belonging to the Satureja genus, particularly the aromatic medicinal S. montana L. from the Lamiaceae family, are well suited to these trends as they serve as pharmaceutical raw materials. This research aimed to assess the influence of sowing date and fertilization doses, as well as their interaction, on the fresh weight, essential oil content, and composition of S. montana. Experimental cultivation involved varying nitrogen and phosphorus levels. The second cut had the highest fresh weight and oil production compared to the first cut. The highest total plant biomass was achieved with autumn sowing and fertilization at 55 kg N/ha and 37 kg P/ha, whereas Spring sowing exhibited higher essential oil production, with the maximum oil % with 74 kg P/ha and oil yield after applying 55 kg N/ha and 74 kg P/ha. The GC-MS analysis revealed that carvacrol was the predominant compound, with it being recommended to grow S. montana in Spring at doses of 55 kg N/ha and 74 kg P/ha for the superior oil yield. Additionally, S. montana essential oil demonstrated notable biological and antimicrobial activity, positioning it as a potential alternative to chemical food preservatives.
Collapse
Affiliation(s)
- Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt
| | - Miroslava Kačániova
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Abeer A. Mahmoud
- Department of Botany (Plant Physiology Section), Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (W.M.H.); (S.M.A.-B.)
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Małgorzata Szczepanek
- Department of Agronomy, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland; (M.S.); (K.B.)
| | - Karolina Błaszczyk
- Department of Agronomy, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland; (M.S.); (K.B.)
| | - Siham M. Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (W.M.H.); (S.M.A.-B.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Sfax 3029, Tunisia;
| | - Kirill G. Tkachenko
- Peter the Great Botanical Garden of the V.L. Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
13
|
Shariati A, Noei M, Askarinia M, Khoshbayan A, Farahani A, Chegini Z. Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Front Pharmacol 2024; 15:1350391. [PMID: 38628638 PMCID: PMC11019022 DOI: 10.3389/fphar.2024.1350391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Pseudomonas aeruginosa biofilm is a community of bacteria that adhere to live or non-living surfaces and are encapsulated by an extracellular polymeric substance. Unlike individual planktonic cells, biofilms possess a notable inherent resistance to sanitizers and antibiotics. Overcoming this resistance is a substantial barrier in the medical and food industries. Hence, while antibiotics are ineffective in eradicating P. aeruginosa biofilm, scientists have explored alternate strategies, including the utilization of natural compounds as a novel treatment option. To this end, curcumin, carvacrol, thymol, eugenol, cinnamaldehyde, coumarin, catechin, terpinene-4-ol, linalool, pinene, linoleic acid, saponin, and geraniol are the major natural compounds extensively utilized for the management of the P. aeruginosa biofilm community. Noteworthy, the exact interaction of natural compounds and the biofilm of this bacterium is not elucidated yet; however, the interference with the quorum sensing system and the inhibition of autoinducer production in P. aeruginosa are the main possible mechanisms. Noteworthy, the use of different drug platforms can overcome some drawbacks of natural compounds, such as insolubility in water, limited oral bioavailability, fast metabolism, and degradation. Additionally, drug platforms can deliver different antibiofilm agents simultaneously, which enhances the antibiofilm potential of natural compounds. This article explores many facets of utilizing natural compounds to inhibit and eradicate P. aeruginosa biofilms. It also examines the techniques and protocols employed to enhance the effectiveness of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Askarinia
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Farahani
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Kačániová M, Čmiková N, Vukovic NL, Verešová A, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Ban Z, Vukic MD. Citrus limon Essential Oil: Chemical Composition and Selected Biological Properties Focusing on the Antimicrobial (In Vitro, In Situ), Antibiofilm, Insecticidal Activity and Preservative Effect against Salmonella enterica Inoculated in Carrot. PLANTS (BASEL, SWITZERLAND) 2024; 13:524. [PMID: 38498554 PMCID: PMC10893099 DOI: 10.3390/plants13040524] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), β-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
- INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| | - Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (A.V.); (M.D.V.)
- Department of Chemistry, University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia;
| |
Collapse
|
15
|
Yang H, Chen C, Han L, Zhang X, Yue M. Genome-Wide Identification and Expression Analysis of the MYB Transcription Factor Family in Salvia nemorosa. Genes (Basel) 2024; 15:110. [PMID: 38254999 PMCID: PMC10815335 DOI: 10.3390/genes15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor gene family is among the most extensive superfamilies of transcription factors in plants and is involved in various essential functions, such as plant growth, defense, and pigment formation. Salvia nemorosa is a perennial herb belonging to the Lamiaceae family, and S. nemorosa has various colors and high ornamental value. However, there is little known about its genome-wide MYB gene family and response to flower color formation. In this study, 142 SnMYB genes (MYB genes of S. nemorosa) were totally identified, and phylogenetic relationships, conserved motifs, gene structures, and expression profiles during flower development stages were analyzed. A phylogenetic analysis indicated that MYB proteins in S. nemorosa could be categorized into 24 subgroups, as supported by the conserved motif compositions and gene structures. Furthermore, according to their similarity with AtMYB genes associated with the control of anthocyanin production, ten SnMYB genes related to anthocyanin biosynthesis were speculated and chosen for further qRT-PCR analyses. The results indicated that five SnMYB genes (SnMYB75, SnMYB90, SnMYB6, SnMYB82, and SnMYB12) were expressed significantly differently in flower development stages. In conclusion, our study establishes the groundwork for understanding the anthocyanin biosynthesis of the SnMYB gene family and has the potential to enhance the breeding of S. nemorosa.
Collapse
Affiliation(s)
- Huan Yang
- The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China;
| | - Chen Chen
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China; (C.C.); (X.Z.)
| | - Limin Han
- College of Life Sciences and Food Engineering, Shaanxi Normal University, Shenhe Avenue, Xi’an 710100, China;
| | - Xiao Zhang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China; (C.C.); (X.Z.)
| | - Ming Yue
- The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China;
| |
Collapse
|
16
|
Xin Z, Wang W, Yang W, Li Y, Niu L, Zhang Y. Investigation of Volatile Components and Assessment of Antioxidant Potential in Seven Lamiaceae Plant Hydrosols. Molecules 2023; 29:145. [PMID: 38202728 PMCID: PMC10780048 DOI: 10.3390/molecules29010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Aromatic plants of the family Lamiaceae, especially of the genus Thymus, have promising antioxidant applications in pharmacology, medicine, food, cosmetology, and aromatherapy. Hydrosols (HDs) were extracted by hydrodistillation from seven species of Lamiaceae, including Thymus vulgaris, Thymus mongolicus, Mentha × piperita, Melissa officinalis, Rosmarinus officinali, Salvia elegans, and Leonurus artemisia. In total, 369 volatile components were determined and analyzed by gas chromatography-mass spectrometry (GC-MS). Among them, alcohols (2.86-28.48%), ethers (2.46-10.69%), and phenols (0.11-21.78%) constituted a large proportion, mainly linalool (0.28-19.27%), eucalyptol (0.16-6.97%), thymol (0-19.54%), and carvacrol (0-26.82%). Multivariate statistical analyses were performed and 27 differential metabolites were screened. Three different methods (ABTS+•, DPPH•, and FRAP) were used to determine the in vitro antioxidant activity of seven HDs. Thymus vulgaris hydrosols (Tv HDs) and Thymus mongolicus hydrosols (Tm HDs) had the strongest antioxidant activity and their stronger antioxidant capacity was related to their high levels of phenolic constituents, mainly thymol. The antioxidant activity of the other five Lamiaceae HDs was associated with their high alcohol (mainly linalool and eucalyptol) content, and the alcohol constituents may synergistically affect their antioxidant capacity. Therefore, the present study suggests that Lamiaceae plants can be utilized as antioxidant products or antioxidants in different industrial sectors including pharmaceuticals, food, cosmetics, and agrochemicals.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.X.); (W.W.); (W.Y.); (Y.L.)
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.X.); (W.W.); (W.Y.); (Y.L.)
| |
Collapse
|
17
|
Zhumaliyeva G, Zhussupova A, Zhusupova GE, Błońska-Sikora E, Cerreto A, Omirbekova N, Zhunusbayeva Z, Gemejiyeva N, Ramazanova M, Wrzosek M, Ross SA. Natural Compounds of Salvia L. Genus and Molecular Mechanism of Their Biological Activity. Biomedicines 2023; 11:3151. [PMID: 38137372 PMCID: PMC10740457 DOI: 10.3390/biomedicines11123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The study of medicinal plants is important, as they are the natural reserve of potent biologically active compounds. With wide use in traditional medicine and the inclusion of several species (as parts and as a whole plant) in pharmacopeia, species from the genus Salvia L. are known for the broad spectrum of their biological activities. Studies suggest that these plants possess antioxidant, anti-inflammatory, antinociceptive, anticancer, antimicrobial, antidiabetic, antiangiogenic, hepatoprotective, cognitive and memory-enhancing effects. Phenolic acids, terpenoids and flavonoids are important phytochemicals, which are primarily responsible for the medicinal activity of Salvia L. This review collects and summarizes currently available data on the pharmacological properties of sage, outlining its principal physiologically active components, and it explores the molecular mechanism of their biological activity. Particular attention was given to the species commonly found in Kazakhstan, especially to Salvia trautvetteri Regel, which is native to this country.
Collapse
Affiliation(s)
- Gaziza Zhumaliyeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.E.Z.)
| | - Ewelina Błońska-Sikora
- Department of Pharmaceutical Sciences, Collegium Medicum, Jan Kochanowski University, 25-406 Kielce, Poland; (E.B.-S.)
| | - Antonella Cerreto
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (A.C.)
| | - Nargul Omirbekova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Zhazira Zhunusbayeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Nadezhda Gemejiyeva
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Madina Ramazanova
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Laboratory of Biochemistry and Clinical Chemistry at the Preclinical Research Center, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677, USA; (S.A.R.)
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
18
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|