1
|
Wang X, Sun M, Tian L, Yang M, Gao Q, Wang LI, Yan H, Yang L, Hou X, Liu P, Zhang L. Microbial fertilizers modulate tobacco growth and development through reshaping soil microbiome and metabolome. Microbiol Spectr 2025:e0260524. [PMID: 40401958 DOI: 10.1128/spectrum.02605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/12/2025] [Indexed: 05/23/2025] Open
Abstract
To elucidate the mechanisms of microbial fertilizers in enhancing tobacco growth and quality, this greenhouse-based pot experiment conducted over 40 days post-transplanting employed integrated microbiomics and metabolomics approaches to conduct a comparative analysis among conventional chemical, organic, and microbial fertilizers. Plant agronomic traits were systematically assessed at 20, 30, and 40 days post-transplanting, while soil physicochemical parameters were analyzed at the experimental terminus (40 days). The findings underscored the remarkable potential of microbial fertilizers in augmenting soil's quick-release nutrient pool and bolstering soil enzymatic activity, surpassing both chemical and organic counterparts. The application of microbial fertilizers accelerated tobacco growth and development, and significantly elevated agronomic indices, including plant stature, stem girth, leaf extension, and the abundance of aromatic precursors, thereby facilitating a marked improvement in tobacco leaf quality. Furthermore, the microbial community composition underwent pronounced alterations subsequent to the application of microbial fertilizers, with the emergence of pivotal microorganisms such as Rhodanobacter and Pseudolabrys within the treatment group. These microorganisms emerged as vital players in nutrient cycling processes, fostered plant growth, and mitigated the incidence of plant diseases. Microbial fertilizers demonstrated a significantly superior capacity to stimulate metabolic vigor in tobacco plants compared to other treatments, concomitant with a substantial enrichment of several metabolites, such as 3-methylindole. These data collectively imply that microbial fertilizers represent a more efficacious means of ameliorating soil physicochemical attributes, thereby fostering superior tobacco growth, development, and quality enhancement.IMPORTANCEIn recent years, there has been a surge in research examining the impacts of various fertilizers on the microbial composition of tobacco rhizosphere soils, and numerous studies have consecutively reported the growth-promoting mechanisms of diverse fertilizers on tobacco plants. However, despite these advancements, the existing body of literature remains inadequate in conclusively demonstrating the superiority of microbial fertilizers over traditional organic and inorganic fertilizers in tobacco cultivation. Consequently, our research aims to demonstrate the superiority of microbial fertilizers in enhancing plant growth by utilizing a comprehensive approach that integrates microbiomics and metabolomics techniques.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mingming Sun
- China Tobacco Shandong Industrial Co., Ltd., Qing'dao, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Linyi, China
| | - Mingfeng Yang
- China Tobacco Shandong Industrial Co., Ltd., Qing'dao, China
| | - Qiang Gao
- China Tobacco Shandong Industrial Co., Ltd., Qing'dao, China
| | - LIli Wang
- Shandong Linyi Tobacco Co., Ltd., Linyi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Sun Y, Liu K, Liu Z, Liu Y, Yang X, Du B, Li X, Li N, Zhou B, Zhu X, Wang H, Peng B, Wang C. Bacillus paralicheniformis SYN-191 isolated from ginger rhizosphere soil and its growth-promoting effects in ginger farming. BMC Microbiol 2025; 25:75. [PMID: 39953394 PMCID: PMC11829480 DOI: 10.1186/s12866-025-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The use of chemical fertilizers and pesticides and the farming without crop rotation may negatively impact the microbial community and the quality of the soils in ginger farm. It is important to improve soil properties to promote the healthy growth of ginger in ginger farm. RESULTS We isolated and identified the pathogenic Fusarium ramigenum from infected ginger roots. We then isolated a new Bacillus paralicheniformis strain SYN-191 from the rhizosphere soil around healthy ginger roots, and showed B. paralicheniformis SYN-91 could inhibit F. ramigenum growth, degrade proteins, dissolve silicate, and decompose cellulose. SYN-191 treatment significantly improved the agronomic traits of ginger seedlings in healthy soil and continuous cropping soil. Furthermore, SYN-191 treatment restructured the microbial microbiomes in rhizosphere soil, including reducing the number of harmful fungi, such as Fusarium, and increasing the beneficial bacterial populations such as Bacillus and Pseudomonas. Field experiments showed that SYN-191 application increased ginger yield by 26.47% (P < 0.01). Whole-genome sequencing of strain SYN-191 revealed the relevant genes for antibiotic synthesis, potassium dissolution, and cellulose decomposition. CONCLUSIONS A new plant-growth-promoting B. paralicheniformis SYN-191 was obtained. This strain could antagonize ginger root rot pathogenic fungus, improve agronomic traits and ginger yield in field, and improve the microbial community structure in the ginger rhizosphere soil. This study provides a valuable bacterial resource for overcoming obstacles in the continuous cropping of ginger.
Collapse
Affiliation(s)
- Yanan Sun
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Zhongliang Liu
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Yayu Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xuerong Yang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xiang Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Bo Zhou
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China.
| |
Collapse
|
3
|
Wang Q, Zhang X, Xie Q, Tao J, Jia Y, Xiao Y, Tang Z, Li Q, Yuan M, Bu T. Exploring Plant Growth-Promoting Traits of Endophytic Fungi Isolated from Ligusticum chuanxiong Hort and Their Interaction in Plant Growth and Development. J Fungi (Basel) 2024; 10:713. [PMID: 39452665 PMCID: PMC11508408 DOI: 10.3390/jof10100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Endophytic fungi inhabit various plant tissues and organs without inducing evident disease symptoms. They can contribute positively to the growth of plants, bolster plants resilience to environmental and biological stresses, and facilitate the accumulation of secondary metabolites. These microbial resources possess significant developmental and utilization value in various applications. Hence, this study focused on exploring the plant growth-promoting (PGP) traits of 14 endophytic fungi from Ligusticum chuanxiong Hort (CX) and elucidating the effects and mechanisms that facilitate plant growth. According to PGP activity evaluation, the majority of strains demonstrated the capacity to produce IAA (78.57%), siderophores (50.00%), ammonia (35.71%), potassium solubilization (21.43%), nitrogen fixation (57.14%), and phosphate solubilization (42.86%). Further investigations indicated that the levels of IAA ranged from 13.05 to 301.43 μg/mL, whereas the soluble phosphorus levels ranged from 47.32 to 125.95 μg/mL. In cocultivation assays, it was indicated that Fusarium sp. YMY5, Colletotrichum sp. YMY6, Alternaria sp. ZZ10 and Fusarium sp. ZZ13 had a certain promoting effect on lateral root number and fresh weight of tobacco. Furthermore, ZZ10 and ZZ13 significantly enhanced the germination potential, germination index, and vigor index of tobacco seeds. The subsequent potted trials demonstrated that the four endophytic fungi exhibited an enhancement to growth parameters of tobacco to a certain extent. ZZ10 and ZZ13 treatment had the best promotion effect. Inoculation with YMY5 increased the chlorophyll a and total chlorophyll content. ZZ10 and ZZ13 treatment remarkably increased the net photosynthetic rate, soluble sugars and soluble protein content, catalase and peroxidase activities, and lowered malondialdehyde content in tobacco leaves. In addition, YMY5 remarkably elevated superoxide dismutase activities. ZZ13 upregulated the expression of growth-related gene. Among them, ZZ13 had a better growth-promoting effect. In conclusion, these endophytic fungi possessing multi-trait characteristics and the capacity to enhance plant growth exhibit promising potential as biofertilizers or plant growth regulators.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Xinyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Qiqi Xie
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Jiwen Tao
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Yujie Jia
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an 625014, China;
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| |
Collapse
|
4
|
Yuan XQ, Liu YY, Wang SC, Lu YQ, Li YJ, Chen JQ, Duan CQ. Trifolium repens L. recruits root-associated Microbacterium species to adapt to heavy metal stress in an abandoned Pb-Zn mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174057. [PMID: 38914340 DOI: 10.1016/j.scitotenv.2024.174057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.
Collapse
Affiliation(s)
- Xin-Qi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Yi-Yi Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Si-Chen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Ya-Qi Lu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yin-Jie Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China
| | - Jin-Quan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China.
| | - Chang-Qun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming 650091, China; Southwestern United Graduate School & Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China.
| |
Collapse
|
5
|
Deng X, Shi R, Elnour RO, Guo Z, Wang J, Liu W, Li G, Jiao Z. Analysis of rhizosphere fungal diversity in lavender at different planting years based on high-throughput sequencing technology. PLoS One 2024; 19:e0310929. [PMID: 39361671 PMCID: PMC11449376 DOI: 10.1371/journal.pone.0310929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Continuous cropping is a common cultivation practice in lavender cultivation, and the structure of the soil microbial community is one of the main reasons affecting the continuous cropping disorder in lavender; however, the relationship between the number of years of cultivation and inter-root microbial composition has not yet been investigated; using Illumina high-throughput sequencing we detected fungal community structure of rhizosphere soil under 1 (L1), 3 (L3), 5 (L5) and 0 (L0) years' of lavender cultivation in Yili, Xinjiang China. The results showed that with the extension of planting years, the physical-chemical characteristics of the soil shifted, and the diversity of the fungal communities shrank, the abundance and richness of species decreased and then increased, and the phylogenetic diversity increased, The structure of the soil fungal communities varied greatly. At phylum level, dominant fungal phyla were Ascomycetes, Basidiomycetes, etc. At genus level, dominant genera were Gibberella, Mortierella, etc, whose absolute abundance all increased with increasing planting years (P < 0.05); redundancy analysis showed that thesoil physicochemical characteristics significantly correlated with dominant bacterial genera. The FUN Guild prediction showed that six groups of plant pathogens and plant saprotrophs changed significantly (P < 0.05), the amount of harmful bacteria in the soil increased while the amount of arbuscular mycorrhizal fungui (AMF) decreased, leading to a continuous cropping obstacle of lavender. The findings of this study provida theoretical foundation for the management of continuous cropping and the prevention fungus-related diseases in lavender.
Collapse
Affiliation(s)
- Xia Deng
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Renzeng Shi
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Rehab O Elnour
- Faculty of Sciences and Arts, Biology Department, King Khalid University, Dahran Al-Janoub, Saudi Arabia
| | - Zixuan Guo
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Junzhu Wang
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Wenwen Liu
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Guihua Li
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| |
Collapse
|
6
|
Can-Ubando LC, Ramírez-Durán N, Aranda E, Manzanares-Leal GL, Sánchez-Reyes A, Ángeles de Paz G, Isaac-Olivé K, Sandoval-Trujillo H. Complete genome sequence of the Bacillus paralicheniformis strain HAS-1. Microbiol Resour Announc 2024; 13:e0033724. [PMID: 38967466 PMCID: PMC11323802 DOI: 10.1128/mra.00337-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
We present the complete genome of the halotolerant strain Bacillus paralicheniformis HAS-1.
Collapse
Affiliation(s)
- Lorna Catalina Can-Ubando
- Laboratorio de Investigación en Microbiología
Médica y Ambiental, Facultad de Medicina, Universidad
Autónoma del Estado de México, Toluca, México,
México
| | - Ninfa Ramírez-Durán
- Laboratorio de Investigación en Microbiología
Médica y Ambiental, Facultad de Medicina, Universidad
Autónoma del Estado de México, Toluca, México,
México
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua,
Universidad de Granada, Granada, Spain
| | - Gauddy Lizeth Manzanares-Leal
- Laboratorio de Investigación en Microbiología
Médica y Ambiental, Facultad de Medicina, Universidad
Autónoma del Estado de México, Toluca, México,
México
| | - Ayixon Sánchez-Reyes
- Investigador por México, CONAHCYT-Instituto de
Biotecnología, Universidad Nacional Autónoma de
México, Cuernavaca, Morelos,
Mexico
| | - Gabriela Ángeles de Paz
- Laboratorio de Investigación en Microbiología
Médica y Ambiental, Facultad de Medicina, Universidad
Autónoma del Estado de México, Toluca, México,
México
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica,
Facultad de Medicina, Universidad Autónoma del Estado de
México, Toluca, Mexico
| | - Horacio Sandoval-Trujillo
- Departamento de Sistemas Biológicos, Laboratorio de
Producción de Biológicos, Universidad Autónoma
Metropolitana-Xochimilco, Ciudad de México,
Mexico
| |
Collapse
|
7
|
Ji S, Liu B, Han J, Kong N, Yang Y, Zhang J, Wang Y, Liu Z. Bacillus-derived consortium enhances Ginkgo biloba's health and resistance to Alternaria tenuissima. PEST MANAGEMENT SCIENCE 2024; 80:4110-4124. [PMID: 38578650 DOI: 10.1002/ps.8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Bacillus, as a plant-growth-promoting rhizobacteria, can enhance the resistance of plants to phytopathogens. In our study, Bacillus strains showing excellent biocontrol were screened and used to control ginkgo leaf blight (Alternaria tenuissima). RESULTS Four biocontrol Bacillus strains-Bsa537, Bam337, Bso544, and Bsu503-were selected from 286 isolates based on their capacity to inhibit pathogens and promote plant growth. The four Bacillus strains significantly improved the resistance of ginkgo to leaf blight. This was especially the case when the four strains were used as a mixture, which contributed to a decrease in lesion area of >40%. Hence, a mixture of Bacillus strains was used to control ginkgo leaf blight in the field. Treatment efficiency varied from 30% to 100% (average 81.5%) and was higher than that of the control (-2% to -18%, average - 8.5%); the antioxidant capacity of the treated ginkgo was also stronger. In addition, ginkgo biomass increased as a result of treatment with the Bacillus mixture, including leaf weight, area, thickness, number of lateral roots and root weight. Furthermore, the Bacillus mixture improved the ginkgo rhizosphere soil by boosting the number of beneficial microorganisms, lowering the number of pathogens and hastening soil catabolism. CONCLUSION The Bacillus mixture improved the health status of ginkgo by protecting it from pathogen attack, promoting its growth and improving the microorganism community in the rhizosphere. This work closes a technological gap in the biological control of ginkgo leaf blight, investigates application methods for compound Bacillus biofertilizers and establishes a framework for the popularity and commercialization of these products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shida Ji
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Horticulture, ShenYang Agricultural University, Shenyang, China
| | - Bin Liu
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Jing Han
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Ning Kong
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Yongfeng Yang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Jianxia Zhang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
| | - Yucheng Wang
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhihua Liu
- College of Forestry, ShenYang Agricultural University, Shenyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Sermkaew N, Atipairin A, Wanganuttara T, Krobthong S, Aonbangkhen C, Yingchutrakul Y, Uchiyama J, Songnaka N. A Novel Bacitracin-like Peptide from Mangrove-Isolated Bacillus paralicheniformis NNS4-3 against MRSA and Its Genomic Insights. Antibiotics (Basel) 2024; 13:716. [PMID: 39200016 PMCID: PMC11350868 DOI: 10.3390/antibiotics13080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
The global rise of antimicrobial resistance (AMR) presents a critical challenge necessitating the discovery of novel antimicrobial agents. Mangrove microbes are valuable sources of new antimicrobial compounds. This study reports the discovery of a potent antimicrobial peptide (AMP) from Bacillus paralicheniformis NNS4-3, isolated from mangrove sediment, exhibiting significant activity against methicillin-resistant Staphylococcus aureus (MRSA). The AMP demonstrated a minimum inhibitory concentration ranging from 1 to 16 µg/mL in the tested bacteria and exhibited bactericidal effects at higher concentrations. Structural analysis revealed a bacitracin-like configuration and the peptide acted by disrupting bacterial membranes in a time- and concentration-dependent manner. The AMP maintained stability under heat, proteolytic enzymes, surfactants, and varying pH treatments. The ten biosynthetic gene clusters (BGCs) of secondary metabolites were found in the genome. Detailed sequence comparison of the predicted bacitracin BGC indicated distinct DNA sequences compared to previously reported strains. Although the antibiotic resistance genes were found, this strain was susceptible to antibiotics. Our findings demonstrated the potential of Bacillus paralicheniformis NNS4-3 and its AMP as a promising agent in combating AMR. The genetic information could be pivotal for future applications in the healthcare industry, emphasizing the need for continued exploration of marine microbial diversity in drug discovery.
Collapse
Affiliation(s)
- Namfa Sermkaew
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thamonwan Wanganuttara
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; (N.S.); (A.A.); (T.W.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Bao X, Chong P, He C, Wang X, Zhang F. Mechanism on the promotion of host growth and enhancement of salt tolerance by Bacillaceae isolated from the rhizosphere of Reaumuria soongorica. Front Microbiol 2024; 15:1408622. [PMID: 38881656 PMCID: PMC11176432 DOI: 10.3389/fmicb.2024.1408622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.
Collapse
Affiliation(s)
- Xinguang Bao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Peifang Chong
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Wuwei Academy of Forestry, Wuwei, China
| | - Xueying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|