1
|
Wada N, Sakai S, Inoue Y, Nishizuka M. Silencing of fibronectin type III domain-containing protein 3A (FNDC3A) attenuates epithelial-to-mesenchymal transition (EMT), cancer invasion, and stemness in triple-negative breast cancer (TNBC). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119935. [PMID: 40120859 DOI: 10.1016/j.bbamcr.2025.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Currently, there are no effective therapeutic targets for triple-negative breast cancer (TNBC), including hormonal therapy, and it has a poor prognosis because of its rapid proliferation, high invasiveness, and metastatic potential. Therefore, it is expected that the elucidation of the characteristics of TNBC at the molecular level may lead to the development of new therapeutic drugs. In this study, Kaplan-Meier curve analysis showed that high expression levels of fibronectin type III domain-containing protein 3A (FNDC3A) were associated with poor overall survival in patients with TNBC. Furthermore, FNDC3A knockdown was found to suppress the epithelial-to-mesenchymal transition (EMT) and invasion potential as well as the stemness in several TNBC cell lines. In addition, RNA-seq analysis revealed that FNDC3A suppression inhibited the expression of Yes-associated protein 1 (YAP1) and its target genes, which have been reported to regulate cancer cell invasion and stemness. These results suggest that FNDC3A is a novel factor that plays an important role in the malignant progression of TNBC by maintaining cancer stemness and promoting cell invasion and that its function may involve the YAP1 pathway regulation. Therefore, FNDC3A is expected to become a potential therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Nanaka Wada
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasumichi Inoue
- Department of Cell signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Makoto Nishizuka
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan; Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
2
|
Peng J, Liu W, Tian J, Shu Y, Zhao R, Wang Y. Non-coding RNAs as key regulators of epithelial-mesenchymal transition in breast cancer. Front Cell Dev Biol 2025; 13:1544310. [PMID: 40201201 PMCID: PMC11975958 DOI: 10.3389/fcell.2025.1544310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
This study examines the critical role of non-coding RNAs (ncRNAs) in regulating epithelial-mesenchymal transition (EMT) in breast cancer, a prevalent malignancy with significant metastatic potential. EMT, wherein cancer cells acquire mesenchymal traits, is fundamental to metastasis. ncRNAs-such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)-modulate EMT by influencing gene expression and signaling pathways, affecting cancer cell migration and invasion. This review consolidates recent findings on ncRNA-mediated EMT regulation and explores their diagnostic and therapeutic potential. Specifically, miRNAs inhibit EMT-related transcription factors, while lncRNAs and circRNAs regulate gene expression through interactions with miRNAs, impacting EMT progression. Given the influence of ncRNAs on metastasis and therapeutic resistance, advancing ncRNA-based biomarkers and treatments holds promise for improving breast cancer outcomes.
Collapse
Affiliation(s)
- Jing Peng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiaju Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuncong Shu
- School of life science, Lanzhou University, Lanzhou, China
| | - Rui Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Hyeon DY, Nam D, Shin HJ, Jeong J, Jung E, Cho SY, Shin DH, Ku JL, Baek HJ, Yoo CW, Hong EK, Lim MC, Lee SJ, Bae YK, Kim JK, Bae J, Choi W, Kim SJ, Back S, Kang C, Madar IH, Kim H, Kim S, Kim DK, Kang J, Park GW, Park KS, Shin Y, Kim SS, Jung K, Hwang D, Lee SW, Kim JY. Proteogenomic characterization of molecular and cellular targets for treatment-resistant subtypes in locally advanced cervical cancers. Mol Cancer 2025; 24:77. [PMID: 40087745 PMCID: PMC11908047 DOI: 10.1186/s12943-025-02256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/01/2025] [Indexed: 03/17/2025] Open
Abstract
We report proteogenomic analysis of locally advanced cervical cancer (LACC). Exome-seq data revealed predominant alterations of keratinization-TP53 regulation and O-glycosylation-TP53 regulation axes in squamous and adeno-LACC, respectively, compared to in early-stage cervical cancer. Integrated clustering of mRNA, protein, and phosphorylation data identified six subtypes (Sub1-6) of LACC among which Sub3, 5, and 6 showed the treatment-resistant nature with poor local recurrence-free survival. Elevated immune and extracellular matrix (ECM) activation mediated by activated stroma (PDGFD and CXCL1high fibroblasts) characterized the immune-hot Sub3 enriched with MUC5AChigh epithelial cells (ECs). Increased epithelial-mesenchymal-transition (EMT) and ECM remodeling characterized the immune-cold squamous Sub5 enriched with PGK1 and CXCL10high ECs. We further demonstrated that CIC mutations could trigger EMT activation by upregulating ETV4, and the elevation of the immune checkpoint PVR and neutrophil-like myeloid-derived suppressive cells (FCN1 and FCGR3Bhigh macrophages) could cause suppression of T-cell activation in Sub5. Increased O-linked glycosylation of mucin characterized adeno-LACC Sub6 enriched with MUC5AChigh ECs. These results provide a battery of somatic mutations, cellular pathways, and cellular players that can be used to predict treatment-resistant LACC subtypes and can serve as potential therapeutic targets for these LACC subtypes.
Collapse
Affiliation(s)
- Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Hye-Jin Shin
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Juhee Jeong
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Eunsoo Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Young Cho
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Dong Hoon Shin
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jung Baek
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chong Woo Yoo
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Eun-Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Myong Cheol Lim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Sang-Jin Lee
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ki Bae
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jong Kwang Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jingi Bae
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Wonyoung Choi
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Su-Jin Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Seunghoon Back
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Inamul Hasan Madar
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Hokeun Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Suhwan Kim
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea
| | - Duk Ki Kim
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jihyung Kang
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geon Woo Park
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ki Seok Park
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yourae Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Soo Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Keehoon Jung
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Won Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul, 02843, Republic of Korea.
| | - Joo-Young Kim
- Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
4
|
Liu X, Zhang X, Zeng T, Chen Y, Ye L, Wang S, Li Y. FOSL1 drives the malignant progression of pancreatic cancer cells by regulating cell stemness, metastasis and multidrug efflux system. J Transl Med 2025; 23:268. [PMID: 40038751 DOI: 10.1186/s12967-025-06304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Targeted therapy is an effective strategy for the treatment of advanced and metastatic pancreatic cancer, one of the leading causes for cancer-related death worldwide. To address the limitations of existing targeted drugs, there is an urgently need to find novel targets and therapeutic strategies. Transcription factor FOS like 1 (FOSL1) is a potential therapeutic target for challenging pancreatic cancer, which contributes to the malignant progression and poor gnosis of pancreatic cancer. High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein that contributes to malignant progression and poor prognosis of cancer. METHODS Human FOSL1 complete RNA, shRNA against FOSL1 and shRNA against HMGA1 lentiviral recombination vectors were used to overexpress FOSL1 and knock down FOSL1 and HMGA1. RNA sequencing, Q-PCR and Western blots were used to investigate the mechanism of FOSL1 in regulating the proliferation of pancreatic cancer cells. The relationship between FOSL1 and HMGA1 were analyzed by co-immunoprecipitation Mass spectrometry, Q-PCR of chromatin immunoprecipitation and Western blots. The regulation of FOSL1 and HMGA1 in the invasion and migration, stemness, and multidrug efflux system were determined by transwell assay, sphere formation assay, immunofluorescence, Q-PCR and Western blots. RESULTS We found that FOSL1 promoted the proliferation and progression of pancreatic cancer by trigging stemness, invasion and metastasis, and drug resistance. HMGA1 was a key downstream target regulated by FOSL1 at the transcriptional level and directly interacted with FOSL1. Knockdown of HMGA1 inhibited the proliferation of pancreatic cancer cells by regulating the expression of genes related to stemness, epithelial-mesenchymal transition and multidrug efflux system. Targeted inhibition of FOSL1 and HMGA1 expression significantly inhibited the proliferation of pancreatic cancer cells. CONCLUSION FOSL1 promote the malignant progression of pancreatic cancer by promoting HMGA1 expression. Targeting FOSL1 and HMGA1 in monotherapy or combination therapy is a promising strategy for the treatment of advanced and metastasis pancreatic cancer.
Collapse
Affiliation(s)
- Xiaolong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Xueyan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liu Ye
- Medical College of Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yulan Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Sad K, Fawwal D, Jones C, Hill E, Skinner K, Adams M, Lustenberger S, Lee R, Lohano S, Elayavalli S, Farhi J, Mehta C, Lemon L, Fasken MB, Hong AL, Sloan SA, Corbett A, Spangle JM. Histone H3E50K remodels chromatin to confer oncogenic activity and support an EMT phenotype. NAR Cancer 2025; 7:zcaf002. [PMID: 39901931 PMCID: PMC11788928 DOI: 10.1093/narcan/zcaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Sequencing of human patient tumors has identified recurrent missense mutations in genes encoding core histones. We report that mutations that convert histone H3 amino acid 50 from a glutamate to a lysine (H3E50K) support an oncogenic phenotype. Expression of H3E50K is sufficient to transform human cells as evidenced by an increase in cell migration and invasion, and an increase in proliferation and clonogenicity. H3E50K also increases the invasive phenotype in the context of co-occurring BRAF mutations, which are present in patient tumors characterized by H3E50K. H3E50 lies on the globular domain surface in a region that contacts H4 within the nucleosome. We find that H3E50K selectively increases chromatin accessibility and perturbs proximal H3 post-translational modifications including H3K27me3; together these changes to chromatin dynamics dysregulate gene expression to support the epithelial-to-mesenchymal transition. Functional studies using Saccharomyces cerevisiae reveal that, while yeast cells that express H3E50K as the sole copy of histone H3 show sensitivity to cellular stressors, including caffeine, H3E50K cells display some genetic interactions that are distinct from the characterized H3K36M oncohistone yeast model. Taken together, these data suggest that additional H3 mutations have the potential to support oncogenic activity and function through distinct mechanisms that dysregulate gene expression.
Collapse
Affiliation(s)
- Kirti Sad
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Dorelle V Fawwal
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, United States
| | - Celina Y Jones
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Emily J Hill
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, United States
| | - Katie T Skinner
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, United States
| | - Miranda L Adams
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, United States
| | - Severin Lustenberger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, United States
| | - Richard S Lee
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Sandhya V Lohano
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Satvik R Elayavalli
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Jonathan Farhi
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, United States
| | - Christina C Mehta
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Laramie D Lemon
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Milo B Fasken
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Andrew L Hong
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Steven A Sloan
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Anita H Corbett
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA 30322, United States
| | - Jennifer M Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
6
|
Xue X, Li Z, Zhao J, Zhao Z, Li Z, Li Y, Liu Y, He H. Advances in the relationship between AP-1 and tumorigenesis, development and therapy resistance. Discov Oncol 2025; 16:61. [PMID: 39831917 PMCID: PMC11747019 DOI: 10.1007/s12672-025-01783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Activating protein 1 (AP-1) is a transcription factor composed of several protein families, Jun proteins and Fos proteins are the components of AP-1. AP-1 is involved in various cellular processes, such as proliferation, differentiation, apoptosis and inflammation. For tumor cells, AP-1 is considered to be a driver whose activity is associated with dysfunction and the onset, development, invasion, and migration of cancer. In addition, AP-1 has been reported to be involved in the drug resistance and radiation resistance of tumor cells during the treatment process. Therefore, AP-1 is a potential target for cancer therapy. At present, a number of inhibitors targeting AP-1 have been developed and have shown certain anti-cancer effects. However, due to the complex structure and function of AP-1, different structures of AP-1 show different effects in different tumor cells, and more studies are needed to reveal its mechanism of action. This article introduces the relationship between AP-1 and tumor development, summarize the current studies and developments of AP-1 related drugs, and provide the future development values of AP-1.
Collapse
Affiliation(s)
- Xinni Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Zhiwei Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Jiahui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Ziyi Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Zhihang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| | - Huan He
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
7
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Zhao G, Liu Y, Yin S, Cao R, Zhao Q, Fu Y, Du Y. FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer. J Transl Med 2025; 23:1. [PMID: 39748430 PMCID: PMC11697476 DOI: 10.1186/s12967-024-06014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) cohort was utilized to identify genes associated with glycolysis. The role of FOSL1 in glycolysis and tumor growth in TNBC cells was confirmed through both loss-of-function and gain-of-function experiments. The subcutaneous xenograft model was established to evaluate the therapeutic potential of targeting FOSL1 in TNBC. Additionally, chromatin immunoprecipitation and luciferase reporter assays were employed to investigate the transcriptional regulation of glycolytic genes mediated by FOSL1. RESULTS FOSL1 is identified as a pivotal glycolysis-related transcription factor in TNBC. Functional verification shows that FOSL1 enhances the glycolytic metabolism of TNBC cells, as evidenced by glucose uptake, lactate production, and extracellular acidification rates. Notably, FOSL1 promotes tumor growth in TNBC in a glycolysis-dependent manner, as inhibiting glycolysis with 2-Deoxy-D-glucose markedly diminishes the oncogenic effects of FOSL1 in TNBC. Mechanistically, FOSL1 transcriptionally activates the expression of genes such as SLC2A1, ENO1, and LDHA, which further accelerate the glycolytic flux. Moreover, FOSL1 is highly expressed in doxorubicin (DOX)-resistant TNBC cells and clinical samples from cases of progressive disease following neoadjuvant chemotherapy. Targeting FOSL1 proves effective in overcoming chemoresistance in DOX-resistant MDA-MB-231 cells. CONCLUSION In summary, FOSL1 establishes a robust link between aerobic glycolysis and carcinogenesis, positioning it as a promising therapeutic target, especially in the context of TNBC chemotherapy.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Runxiang Cao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Qian Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yifan Fu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
| |
Collapse
|
9
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
10
|
Wu D, Zhang H, Li F, Liu S, Wang Y, Zhang Z, Wang J, Wu Q. Sec13 promotes glycolysis by inhibiting Ubqln1 mediated Pgm1 ubiquitination in ALI. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167475. [PMID: 39159700 DOI: 10.1016/j.bbadis.2024.167475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Acute lung injury (ALI) is a severe lung damage characterized by acute hypoxemia, increased pulmonary vascular permeability, and inflammatory reactions. Despite current treatments, mortality from ALI remains high. This study found that Sec13 is highly expressed in ALI and regulates it by glycolysis and epithelial-mesenchymal transition (EMT). In an ALI mouse model and cell model, Sec13 expression increased, accompanied by enhanced glycolysis, EMT, and inflammation. Sec13 knockdown suppressed these effects, alleviating ALI. Sec13 forms a protein complex with Pgm1, an enzyme regulating glucose-6-phosphate (G6P) production, and Ubqln1, an ubiquitin ligase. Sec13 inhibits Ubqln1-mediated Pgm1 ubiquitination, thereby stabilizing Pgm1. In ALI, Pgm1 binding to Sec13 increased but binding to Ubqln1 decreased. Sec13 knockdown decreased lactate, G6P, EMT markers, and inflammatory cytokines. Pgm1 knockdown produced similar effects. Ubqln1 overexpression suppressed inflammation but decreased Pgm1 expression. In conclusion, Sec13 plays a key role in ALI by inhibiting Ubqln1-mediated Pgm1 ubiquitination, affecting glycolysis and EMT. Sec13 and Pgm1 may be new targets for treating ALI.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiannan Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuge Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Saranya I, Preetha D, Nivruthi S, Selvamurugan N. A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression. Comput Biol Chem 2024; 113:108208. [PMID: 39276678 DOI: 10.1016/j.compbiolchem.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
A potent growth inhibitor for normal mammary epithelial cells is transforming growth factor beta 1 (TGF-β1). When breast tissues lose the anti-proliferative activity of this factor, invasion and bone metastases increase. Human breast cancer (hBC) cells express more activating transcription factor 3 (ATF3) when exposed to TGF-β1, and this transcription factor is essential for BC development and bone metastases. Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and microRNAs (miRNAs), have emerged as key regulators controlling several cellular processes. In hBC cells, TGF-β1 stimulated the expression of hsa-miR-4653-5p that putatively targets ATF3. Bioinformatics analysis predicted that hsa-miR-4653-5p targets several key signaling components and transcription factors, including NFKB1, STAT1, STAT3, NOTCH1, JUN, TCF3, p300, NRF2, SUMO2, and NANOG, suggesting the diversified role of hsa-miR-4653-5p under physiological and pathological conditions. Despite the high abundance of hsa-miR-4653-5p in hBC cells, the ATF3 level remained elevated, indicating other ncRNAs could inhibit hsa-miR-4653-5p's activity. In silico analysis identified several circRNAs having the binding sites for hsa-miR-4653-5p, indicating the sponging activity of circRNAs towards hsa-miR-4653-5p. The study's findings suggest that TGF-β1 regulates circRNAs and hsa-miR-4653-5p, which in turn affects ATF3 expression, thus influencing BC progression and bone metastasis. Therefore, focusing on the TGF-β1/circRNAs/hsa-miR-4653-5p/ATF3 network could lead to new ways of diagnosing and treating BC.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Dilipkumar Preetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sasi Nivruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
12
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
13
|
Zhao S, Song C, Chen F, Li M. LncRNA XIST/miR-455-3p/HOXC4 axis promotes breast cancer development by activating TGF-β/SMAD signaling pathway. Funct Integr Genomics 2024; 24:159. [PMID: 39261346 DOI: 10.1007/s10142-024-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is the second primary cause of cancer death among women. Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is a central regulator for X chromosome inactivation, and its abnormal expression is a primary feature of breast cancer. So far, the mechanism of XIST in breast cancer has not been fully elucidated. We attempted to illustrate the mechanism of XIST in breast cancer. The expressions of XIST, microRNA-455-3p (miR-455-3p) in breast cancer were measured using quantitative real-time PCR. The expressions of homeobox C4 (HOXC4) were assessed with immunohistochemical and Western blot. Also, the functions of XIST in breast cancer were assessed by Cell Counting Kit-8 analysis, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch assays. Meanwhile, the mechanism of XIST in breast cancer was validated using database analysis and dual-luciferase reporter assay. Furthermore, the function of XIST in breast cancer in vivo was estimated by tumor xenograft model, immunohistochemical assay, and hematoxylin-eosin staining. XIST and HOXC4 expressions were increased, but miR-455-3p expressions were decreased in breast cancer tissues and cells. Knocking down XIST restrained breast cancer cell proliferation, invasion, migration, epithelial-mesenchymal transformation (EMT), and induced cell cycle arrest at G0/G1. Meanwhile, XIST interacted with miR-455-3p, while miR-455-3p interacted with HOXC4. XIST knockdown repressed breast cancer cell proliferation, invasion, and EMT, while miR-455-3p inhibitor or HOXC4 overexpression abolished those impacts. HOXC4 overexpression also blocked the impacts of miR-455-3p mimic on breast cancer cell malignant behavior. In vivo experimental data further indicated that XIST knockdown repressed breast cancer cell tumorigenic ability, and decreased HOXC4 and p-SMAD3 (TGF-β/SMAD-related protein) expressions.XIST/miR-455-3p/HOXC4 facilitated breast cancer development by activating the TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, China.
| |
Collapse
|
14
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
15
|
Rondeau JD, Van de Velde JA, Bouidida Y, Sonveaux P. Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species. Cancer Metab 2024; 12:20. [PMID: 38978126 PMCID: PMC11229245 DOI: 10.1186/s40170-024-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy). METHODS Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H2O2. RESULTS Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation. CONCLUSION Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.
Collapse
Affiliation(s)
- Justin D Rondeau
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Justine A Van de Velde
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Yasmine Bouidida
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium.
- WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium.
| |
Collapse
|
16
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
17
|
Terragno M, Vetrova A, Semenov O, Sayan AE, Kriajevska M, Tulchinsky E. Mesenchymal-epithelial transition and AXL inhibitor TP-0903 sensitise triple-negative breast cancer cells to the antimalarial compound, artesunate. Sci Rep 2024; 14:425. [PMID: 38172210 PMCID: PMC10764797 DOI: 10.1038/s41598-023-50710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a difficult-to-treat, aggressive cancer type. TNBC is often associated with the cellular program of epithelial-mesenchymal transition (EMT) that confers drug resistance and metastasis. EMT and reverse mesenchymal-epithelial transition (MET) programs are regulated by several signaling pathways which converge on a group of transcription factors, EMT- TFs. Therapy approaches could rely on the EMT reversal to sensitise mesenchymal tumours to compounds effective against epithelial cancers. Here, we show that the antimalarial ROS-generating compound artesunate (ART) exhibits higher cytotoxicity in epithelial than mesenchymal breast cancer cell lines. Ectopic expression of EMT-TF ZEB1 in epithelial or ZEB1 depletion in mesenchymal cells, respectively, reduced or increased ART-generated ROS levels, DNA damage and apoptotic cell death. In epithelial cells, ZEB1 enhanced expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 8 (GPX8) implicated in ROS scavenging. Although SOD2 or GPX8 levels were unaffected in mesenchymal cells in response to ZEB1 depletion, stable ZEB1 knockdown enhanced total ROS. Receptor tyrosine kinase AXL maintains a mesenchymal phenotype and is overexpressed in TNBC. The clinically-relevant AXL inhibitor TP-0903 induced MET and synergised with ART to generate ROS, DNA damage and apoptosis in TNBC cells. TP-0903 reduced the expression of GPX8 and SOD2. Thus, TP-0903 and ZEB1 knockdown sensitised TNBC cells to ART, likely via different pathways. Synergistic interactions between TP-0903 and ART indicate that combination approaches involving these compounds can have therapeutic prospects for TNBC treatment.
Collapse
Affiliation(s)
- Mirko Terragno
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
| | - Anastassiya Vetrova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint Petersburg, Russia
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - Marina Kriajevska
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
18
|
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, Chaubey KK, Dayal D, Chiang CW, Kumar S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci 2023; 10:1214489. [PMID: 37469704 PMCID: PMC10352522 DOI: 10.3389/fmolb.2023.1214489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a third-generation genome editing method that has revolutionized the world with its high throughput results. It has been used in the treatment of various biological diseases and infections. Various bacteria and other prokaryotes such as archaea also have CRISPR/Cas9 systems to guard themselves against bacteriophage. Reportedly, CRISPR/Cas9-based strategy may inhibit the growth and development of triple-negative breast cancer (TNBC) via targeting the potentially altered resistance genes, transcription, and epigenetic regulation. These therapeutic activities could help with the complex issues such as drug resistance which is observed even in TNBC. Currently, various methods have been utilized for the delivery of CRISPR/Cas9 into the targeted cell such as physical (microinjection, electroporation, and hydrodynamic mode), viral (adeno-associated virus and lentivirus), and non-viral (liposomes and lipid nano-particles). Although different models have been developed to investigate the molecular causes of TNBC, but the lack of sensitive and targeted delivery methods for in-vivo genome editing tools limits their clinical application. Therefore, based on the available evidences, this review comprehensively highlighted the advancement, challenges limitations, and prospects of CRISPR/Cas9 for the treatment of TNBC. We also underscored how integrating artificial intelligence and machine learning could improve CRISPR/Cas9 strategies in TNBC therapy.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tin-Hsien Ko
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei City, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Centre, New York, NY, United States
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City, Taiwan
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, Sharda School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|