1
|
Meng Z, Wang Y, Kong X, Cen M, Duan Z. Chicken speckle-type POZ protein (SPOP) negatively regulates MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote the replication of Newcastle disease virus. Poult Sci 2024; 103:103461. [PMID: 38290339 PMCID: PMC10844869 DOI: 10.1016/j.psj.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The speckle-type POZ protein (SPOP) is demonstrated to be a specific adaptor of the cullin-RING-based E3 ubiquitin ligase complex that participates in multiple cellular processes. Up to now, SPOP involved in inflammatory response has attracted more attention, but the association of SPOP with animal virus infection is scarcely reported. In this study, chicken MyD88 (chMyD88), an innate immunity-associated protein, was screened to be an interacting partner of chSPOP using co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry methods. This interaction was further confirmed by fluorescence co-localization, Co-IP, and pull-down assays. It was interesting that exogenous recombinant protein HA-chSPOP or endogenous chSPOP alone was mainly located in the nucleus but was translocated to the cytoplasm upon co-expression with chMyD88 or lipopolysaccharide stimulation. In addition, chSPOP reduced chMyD88 expression by ubiquitination in a dose-dependent manner, and the regulation of NF-κB activity by chSPOP was dependent solely on chMyD88. Importantly, chSPOP played a negative regulatory role in the MyD88/NF-κB signaling pathway and the production of proinflammatory cytokines. Moreover, we found that velogenic Newcastle disease virus (NDV) infection changed the subcellular localization of chSPOP and the expression patterns of chSPOP and chMyD88, and overexpression of chSPOP decreased the production of proinflammatory cytokines to enhance velogenic and lentogenic NDV replication, while siRNA-mediated chSPOP knockdown obtained the opposite results, thereby indicating that chSPOP negatively regulated MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote NDV replication. These findings highlight the important role of the SPOP/MyD88/NF-κB signaling pathway in NDV replication and may provide insightful information about NDV pathogenesis.
Collapse
Affiliation(s)
- Zhongming Meng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yanbi Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xianya Kong
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mona Cen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Diop A, Pietrangeli P, Pennacchietti V, Pagano L, Toto A, Di Felice M, Di Matteo S, Marcocci L, Malagrinò F, Gianni S. Addressing the Binding Mechanism of the Meprin and TRAF-C Homology Domain of the Speckle-Type POZ Protein Using Protein Engineering. Int J Mol Sci 2023; 24:17364. [PMID: 38139193 PMCID: PMC10743451 DOI: 10.3390/ijms242417364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-protein interactions play crucial roles in a wide range of biological processes, including metabolic pathways, cell cycle progression, signal transduction, and the proteasomal system. For PPIs to fulfill their biological functions, they require the specific recognition of a multitude of interacting partners. In many cases, however, protein-protein interaction domains are capable of binding different partners in the intracellular environment, but they require precise regulation of the binding events in order to exert their function properly and avoid misregulation of important molecular pathways. In this work, we focused on the MATH domain of the E3 Ligase adaptor protein SPOP in order to decipher the molecular features underlying its interaction with two different peptides that mimic its physiological partners: Puc and MacroH2A. By employing stopped-flow kinetic binding experiments, together with extensive site-directed mutagenesis, we addressed the roles of specific residues, some of which, although far from the binding site, govern these transient interactions. Our findings are compatible with a scenario in which the binding of the MATH domain with its substrate is characterized by a fine energetic network that regulates its interactions with different ligands. Results are briefly discussed in the context of previously existing work regarding the MATH domain.
Collapse
Affiliation(s)
- Awa Diop
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Paola Pietrangeli
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Valeria Pennacchietti
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Livia Pagano
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Angelo Toto
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Mariana Di Felice
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Sara Di Matteo
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Lucia Marcocci
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| | - Francesca Malagrinò
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 Coppito, Italy
| | - Stefano Gianni
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.); (P.P.); (S.D.M.); (L.M.)
| |
Collapse
|