1
|
He SS, Huang XD, Zhang SZ, Zhuang QQ, Chen XX, Wang HD, Mao XL. A prospective cohort study on prognostic implications of serum platelet derived microparticles levels in acute cerebral infarction. Sci Rep 2025; 15:14197. [PMID: 40268995 DOI: 10.1038/s41598-025-92732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/03/2025] [Indexed: 04/25/2025] Open
Abstract
Platelet-derived microparticles (PDMPs) participate in ischemic brain injury. We further determined the relationships between serum PDMPs levels and early neurological deterioration (END) as well as functional outcome after acute cerebral infarction (ACI). In this prospective cohort study, serum PDMPs levels were measured in 125 controls and 621 patients with ACI. Univariate analysis and multivariate analysis were sequentially applied to investigate the relations of serum PDMPs levels to END and poor prognosis (modified Rankin scale score > 2) at six months after ACI. Serum PDMPs levels were significantly higher in patients than in controls (median, 14.00 ng/L vs. 27.00 ng/L; P < 0.001). Serum PDMPs levels were strongly correlated with infarction volume (ρ = 0.532, P < 0.001), National Institutes of Health Stroke Scale score (ρ = 0.627, P < 0.001) and modified Rankin scale score (ρ = 0.528, P < 0.001). It was independently associated with END [odds ratio (OR) 1.117, 95% confidence interval (CI) 1.008-1.238; P = 0.001] and poor prognosis (OR 1.092, 95% CI 1.066-1.119; P = 0.001). There were linear relationships between serum PDMPs levels and risks of poor prognosis (P for non-linear = 0.055) plus END (P for non-linear = 0.061) under restricted cubic spline. Using subgroup analysis, significant interaction existed between serum PDMPs levels and age in association of poor prognosis (P for interaction = 0.006), as well as between serum PDMPs levels and coronary heart disease in association of END (P for interaction = 0.017). Serum PDMPs levels significantly discriminated the development of poor prognosis (Area under curve 0.705, 95% CI 0.632-0.778; P < 0.001) and END (The area 0.733, 95% CI 0.664-0.803; P < 0.001). Serum PDMPs levels may predict the risk of END and 6-month poor prognosis in patients with ACI.
Collapse
Affiliation(s)
- Si-Si He
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Xiang-Dong Huang
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Shi-Zheng Zhang
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Qing-Qing Zhuang
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Xin-Xin Chen
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Hao-Dong Wang
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China
| | - Xin-Lei Mao
- Department of Neurology, The Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, 252 Bailidong Road, Wenzhou, 325000, China.
- Panvascular Disease Management Center, The Wenzhou Central Hospital, 252 Bailidong Road, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Xin X, Koenen RR. Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases. Expert Opin Ther Targets 2025; 29:17-28. [PMID: 39817690 DOI: 10.1080/14728222.2025.2454617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration. AREAS COVERED This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV. EXPERT OPINION Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Xin
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Benariba MA, Hannachi K, Zhu S, Zhang Y, Wang X, Zhou N. A liposome-based assay for cancer biomarker detection: exploring the correlation between platelet-derived microvesicles and NSCLC-associated miRNAs. NANOSCALE 2024; 16:22037-22046. [PMID: 39527124 DOI: 10.1039/d4nr03704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advances in molecular biology have enabled the identification of numerous cancer biomarkers, offering the potential to improve the diagnosis and prognosis of cancer. In non-small cell lung cancer (NSCLC), the role of platelet-derived microvesicles (PMVs) in cancer progression has received limited attention. While previous studies have focused on the increase of extracellular vesicles in plasma and their interaction with cancer, the expression of microRNAs (miRNAs) delivered through PMVs following platelet activation has remained largely unexplored. This study fills this knowledge gap by investigating miRNA expression in PMVs isolated from healthy donors and NSCLC patients following calcium treatment, a known platelet activator. A significant correlation was found between PMV levels and the expression of specific miRNAs; specifically, miRNA-21 expression increased 7.89 ± 0.44-fold in NSCLC patients and 7.12 ± 0.49-fold in healthy donors after calcium treatment. These findings highlight the potential of PMVs and their miRNA cargo to serve as specific biomarkers for NSCLC, offering valuable insights into cancer diagnosis and prognosis. To facilitate the sensitive detection of these miRNAs, a novel carboxyfluorescein (CF)-loaded liposome-based assay was developed. This assay demonstrated enhanced sensitivity, achieving a detection limit of 1.03 pg mL-1, when combined with a calcium platelet-activation approach. This research has the potential to lead to the development of innovative diagnostic tools and therapeutic strategies, ultimately improving outcomes for patients with NSCLC and other cancers.
Collapse
Affiliation(s)
- Mohamed Aimene Benariba
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Bioengineering Laboratory, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Kanza Hannachi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sha Zhu
- Department of Urology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi 214002, China.
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
5
|
Anitua E, Zalduendo M, Prado R, Troya M, Tierno R, de la Fuente M, Alkhraisat MH. The Biological Effect of Enriching the Plasma Content in Platelet-Rich Plasma: An In Vitro Study. Biomolecules 2024; 14:1328. [PMID: 39456261 PMCID: PMC11506755 DOI: 10.3390/biom14101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) formulations have become valuable therapeutic tools in regenerative medicine. In addition, these blood derivates have been successfully included in cell therapy as fetal bovine serum substitutes, due to the real need to avoid the risk of host immunologic reactions and the animal disease transmission associated with reagents from animal origin. However, the protocols for obtaining them should be optimized to improve their biological potential. METHODS PRP-derived preparations with different concentrations of the platelet and plasma components were obtained from the blood of five donors by freeze-drying. Measurements of the pH, protein, and growth factor concentration were performed. Moreover, their biological effects on cell proliferation and migration and their angiogenic potential were assessed. RESULTS An increased plasma component concentration resulted in an augmented quantity of the total protein content, a significative variation in the hepatocyte growth factor concentration, and an experimental but clinically irrelevant alteration of the pH value. No significant changes were induced in their potential to enhance proliferative and migratory responses in epithelial cells, with the latter being reduced for dermal fibroblasts. The endothelial cell capacity for tube formation was significatively reduced. CONCLUSIONS An increased blood plasma content did not improve the biological potential of the formulations. However, they have emerged as a promising approach for regenerative therapies where neovascularization must be avoided.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mar Zalduendo
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Prado
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María Troya
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María de la Fuente
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mohammad H. Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| |
Collapse
|
6
|
Anees F, Montoya DA, Pisetsky DS, Payne CK. DNA corona on nanoparticles leads to an enhanced immunostimulatory effect with implications for autoimmune diseases. Proc Natl Acad Sci U S A 2024; 121:e2319634121. [PMID: 38442162 PMCID: PMC10945806 DOI: 10.1073/pnas.2319634121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Autoimmune and inflammatory diseases are highly complex, limiting treatment and the development of new therapies. Recent work has shown that cell-free DNA bound to biological microparticles is linked to systemic lupus erythematosus, a prototypic autoimmune disease. However, the heterogeneity and technical challenges associated with the study of biological particles have hindered a mechanistic understanding of their role. Our goal was to develop a well-controlled DNA-particle model system to understand how DNA-particle complexes affect cells. We first characterized the adsorption of DNA on the surface of polystyrene nanoparticles (200 nm and 2 µm) using transmission electron microscopy, dynamic light scattering, and colorimetric DNA concentration assays. We found that DNA adsorbed on the surface of nanoparticles was resistant to degradation by DNase 1. Macrophage cells incubated with the DNA-nanoparticle complexes had increased production of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). We probed two intracellular DNA sensing pathways, toll-like receptor 9 (TLR9) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), to determine how cells sense the DNA-nanoparticle complexes. We found that the cGAS-STING pathway is the primary route for the interaction between DNA-nanoparticles and macrophages. These studies provide a molecular and cellular-level understanding of DNA-nanoparticle-macrophage interactions. In addition, this work provides the mechanistic information necessary for future in vivo experiments to elucidate the role of DNA-particle interactions in autoimmune diseases, providing a unique experimental framework to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Faisal Anees
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| | - Diego A. Montoya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| | - David S. Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, and Medical Research Service, Durham VA Medical Center, Durham, NC27705
| | - Christine K. Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| |
Collapse
|
7
|
Saberian M, Abak N. Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon 2024; 10:e24584. [PMID: 38312628 PMCID: PMC10835177 DOI: 10.1016/j.heliyon.2024.e24584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this scholarly review, we conduct a thorough examination of the significant role played by platelet-derived exosomes (Plt-Exos) and hydrogels in the fields of tissue engineering and regenerative medicine. Our detailed investigation highlights the central involvement of Plt-Exos in various physiological and pathological processes, underscoring their potential contributions to diverse areas such as wound healing, neural rejuvenation, and cancer progression. Despite the promising therapeutic aspects, the notable variability in the isolation and characterization of pEVs underscores the need for a more rigorous and standardized methodology. Shifting our focus to hydrogels, they have emerged as promising biomaterials relevant to tissue engineering and regenerative medicine. Their unique characteristics, especially their chemical and physical adaptability, along with the modifiability of their biochemical properties, make hydrogels a captivating subject. These exceptional features open avenues for numerous tissue engineering applications, facilitating the delivery of essential growth factors, cytokines, and microRNAs. This analysis explores the innovative integration of Plt-Exos with hydrogels, presenting a novel paradigm in tissue engineering. Through the incorporation of Plt-Exos into hydrogels, there exists an opportunity to enhance tissue regeneration endeavors by combining the bioactive features of Plt-Exos with the restorative capabilities of hydrogel frameworks. In conclusion, the cooperative interaction between platelet-derived exosomes and hydrogels indicates a promising path in tissue engineering and regenerative medicine. Nevertheless, the successful execution of this approach requires a deep understanding of molecular dynamics, coupled with a dedication to refining isolation techniques.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Hematology and Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
9
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
10
|
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023; 11:2681. [PMID: 37893055 PMCID: PMC10604227 DOI: 10.3390/biomedicines11102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications-premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast-survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms.
Collapse
Affiliation(s)
- Svetlana Vrzić Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Sanja Kostić
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Miloš Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Ljiljana Vićovac
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|