1
|
Liu L, Li X, Yang H, Xu F, Dong X. Bioinformatic Analysis of Apoptosis-Related Genes in Preeclampsia Using Public Transcriptomic and Single-Cell RNA Sequencing Datasets. J Inflamm Res 2025; 18:4785-4812. [PMID: 40224388 PMCID: PMC11992479 DOI: 10.2147/jir.s507660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Purpose Apoptosis, which is crucial in preeclampsia (PE), affects trophoblast survival and placental function. We used transcriptomics and single-cell RNA sequencing (scRNA-seq) to explore apoptosis-related genes (ARGs) and their cellular mechanisms as potential PE biomarkers. Patients and Methods All the data included in this study were sourced from public databases. We used scRNA-seq and differential expression analysis, combined with five algorithms from the CytoHubba plugin, to identify ARGs as PE biomarkers. These were integrated into diagnostic nomograms. Mechanistic studies involved enrichment analysis and immune profiling. Biomarker expression was examined at the single-cell level, and verified in clinical samples by RT-qPCR. Results Cluster of Differentiation 44 (CD44), Macrophage migration inhibitory factor (MIF), PIK3R1, and Toll-like receptor 4 (TLR4) were identified as PE biomarkers. CD44 and TLR4 were down-regulated, while MIF and PIK3R1 were up-regulated. When integrated into the diagnostic nomogram, they showed clinical utility and affected cell functions. In the immune profile of PE, monocytes decreased, resting NK cells increased, and the activities of APC, checkpoint, T-cell co-stimulation, and MHC class I pathways reduced. ScRNA-seq identified 11 cell types, 10 of which were significantly different. Endothelial cell communication with other cell types decreased, while the interaction between common myeloid progenitors (CMP) and villous cytotrophoblasts (VCT) enhanced. The expression levels of CD44, MIF, and PIK3R1 in VCT were significantly different and key to PE. Their decrease in early PE and increase in late PE reflected the placenta's adaptation to adverse pregnancy conditions. Conclusion Four ARGs, CD44, MIF, PIK3R1, and TLR4, identified through comprehensive analyses, served as significant biomarkers for PE and offered insights into PE's cellular mechanisms of PE, providing valuable references for further research.
Collapse
Affiliation(s)
- Lingyan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Xiuling Li
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Hongfen Yang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Fei Xu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Department of Pain Management, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Xudong Dong
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| |
Collapse
|
2
|
Zhang P, Zhang N, Hu Y, Deng X, Zhu M, Lai C, Zeng W, Ke M. Role of PI3K/AKT/MAOA in glucocorticoid-induced oxidative stress and associated premature senescence of the trabecular meshwork. Aging Cell 2025; 24:e14452. [PMID: 39688282 PMCID: PMC11984687 DOI: 10.1111/acel.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The oxidative stress-induced premature senescence of trabecular meshwork (TM) represents a pivotal risk factor for the development of glucocorticoid-induced glaucoma (GIG). This study aimed to elucidate the pathogenesis of TM senescence in GIG. MethodsIntraocular pressure (IOP), transmission electron microscopy and senescence-associated protein expression in TM were evaluated in GIG mice. Protein expression of phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) and monoamine oxidase A (MAOA), phosphorylation of AKT were quantified. ROS and mitochondrial superoxide levels were measured to evaluate cellular oxidative stress. Cell cycle analysis, β-galactosidase staining, senescence-associated protein expression were employed to assess the aging status of primary human trabecular meshwork cells (pHTMs). ResultsmRNA-seq and KEGG analysis indicating PI3K/AKT pathway as a key regulator in TM of GIG. PI3K inhibitor significantly prevented IOP elevation and abnormal mitochondrial morphology of TM in the GIG mouse model. PI3K inhibitor or selective silencing of PIK3R1 alleviated dexamethasone (DEX)-induced oxidative stress, also mitochondrial dysfunction, inhibiting MAOA expression in pHTMs. The same phenomenon was observed in the GIG models with inhibition of MAOA. Further KEGG analysis indicates that cellular senescence is the key factor in the pathogenesis of GIG. TM senescence was observed in both GIG mouse and cell models. Inhibition of the PI3K/AKT/MAOA pathway significantly alleviated DEX-induced premature cellular senescence of TM in GIG models. Glucocorticoids activated the PI3K/AKT/MAOA pathway, leading to mitochondrial dysfunction, oxidative stress, and premature aging in TM, elevating IOP. This mechanism could be associated with the onset and progression of GIG, providing a potential approach for its treatment.
Collapse
Affiliation(s)
- Pengyu Zhang
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Nan Zhang
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yixin Hu
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xizhi Deng
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Min Zhu
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Cheng Lai
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wen Zeng
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Min Ke
- Department of OphthalmologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
3
|
Zhou X, Dong S, Xu Y. Molecular Mechanisms of Propofol-Induced Cognitive Impairment: Suppression of Critical Hippocampal Pathways. J Neurochem 2025; 169:e70070. [PMID: 40265596 DOI: 10.1111/jnc.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Propofol, a commonly used anesthetic, is known to cause postoperative cognitive dysfunction (POCD), particularly after prolonged or high-dose administration. Its effects on neural remodeling in the hippocampal region, which is vital for cognitive function, remain poorly understood. This study employs single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptomic analysis to elucidate the molecular mechanisms by which propofol impairs hippocampal neural remodeling. Our findings indicate that propofol suppresses the (5-Hydroxytryptamine Receptor 1A/Glutamate Receptor 2/Phosphoinositide 3-Kinase Regulatory Subunit 1) HTR1A/GRIA2/PIK3R1 signaling pathway, contributing to cognitive dysfunction in mice. In vitro experiments reveal that propofol treatment reduces the expression of HTR1A/GRIA2/PIK3R1-related factors, decreases neuronal activity and synaptic plasticity, and increases apoptosis and inflammation. In vivo experiments demonstrate significant impairments in spatial memory and learning abilities in mice treated with propofol. These results provide new insights into the long-term effects of anesthetic drugs and offer a scientific basis for their judicious use in clinical practice. The study highlights potential strategies and targets for preventing and treating POCD, emphasizing the importance of understanding the molecular mechanisms underlying anesthetic-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Xueyue Zhou
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| | - Shasha Dong
- Department of Anesthesiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, China
| |
Collapse
|
4
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
5
|
Lele KA, Patil PP, Kakade SV, Maledavar NR, Ranade SD, Alegaon SG, Biradar PR, Khatib NA. Targeting cardiotoxicity: the potential of Annona squamosa L. in doxorubicin therapy. In Silico Pharmacol 2025; 13:47. [PMID: 40110025 PMCID: PMC11914696 DOI: 10.1007/s40203-025-00333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Doxorubicin, a potent anthracycline used in chemotherapy, is limited by dose-dependent cardiotoxicity, leading to irreversible heart damage and heart failure. Common symptoms include fatigue, dyspnea, lower limb edema, hypotension, tachycardia, and transient arrhythmias. Annona squamosa L. (AS), traditionally used in medicine, was investigated for its cardioprotective action against doxorubicin-induced cardiotoxicity through computational studies. Phytocompounds were identified using literature reviews, Dr. Duke's, IMPPAT, and PubChem databases. Targets associated with Doxorubicin induced cardiotoxicity were accessed from GeneCards, and protein-protein interactions were analyzed using the STRING database. Cytoscape was used for network visualization, revealing 18 bioactives targeting 67 proteins across 14 pathways. PIK3R1 emerged as a key target with the highest interaction count among 767 targets. Molecular docking showed that the PIK3R1-Rutin complex had the lowest binding energy (- 11.873 kcal/mol), and a 100 ns molecular dynamics (MD) simulation confirmed its stability. LC-MS analysis of the crude extract indicated the presence of bioactives. In vitro antioxidant activity of AS, assessed using the DPPH assay, showed significant radical scavenging activity, correlating with the high total phenol (TPC) and total flavonoid content (TFC) detected. This integrated approach highlights AS's potential in mitigating doxorubicin-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00333-5.
Collapse
Affiliation(s)
- Kshitij A Lele
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Priyanka P Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Sneha V Kakade
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Naveen R Maledavar
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Shriram D Ranade
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Shankar G Alegaon
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Prakash R Biradar
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| | - Nayeem A Khatib
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka India
| |
Collapse
|
6
|
Tang S, Borlak J. A comparative genomic study across 396 liver biopsies provides deep insight into FGF21 mode of action as a therapeutic agent in metabolic dysfunction-associated steatotic liver disease. Clin Transl Med 2025; 15:e70218. [PMID: 39962359 PMCID: PMC11832436 DOI: 10.1002/ctm2.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a systemic disease with insulin resistance at its core. It affects one-third of the world population. Fibroblast growth factor (FGF21)-based therapies are effective in lowering hepatic fat content and fibrosis resolution; yet, its molecular functions remain uncertain. To gain insight into FGF21 mode of action (MoA), we investigated the transcriptomes of MASLD liver biopsies in relation to FGF21 expression. METHODS We compared N = 66 healthy controls with 396 MASLD patients and considered clinical characteristics relative to NAS disease activity scores (steatosis, lobular inflammation and ballooning), fibrosis grades and sex. We performed comparative genomics to identify FGF21-responsive DEGs, utilised information from FGF21-transgenic and FGF21-knockout mice and evaluated DEGs following FGF21 treatment of MASLD animal models. Eventually, we explored 188 validated FGF21 targets, and for ≥10 patients showing the same changes, we constructed MASLD-associated networks to determine the effects of FGF21 in reverting metabolic dysfunction. RESULTS We identified patients with increased 30% (N = 117), decreased 40% (N = 159) or unchanged 30% (N = 120) FGF21 expression, and the differences are caused by changes in FGF21 transcriptional control with ATF4 functioning as a key regulator. Based on comparative genomics, we discovered molecular circuitries of FGF21 in MASLD, notably FGF21-dependent induction of autophagy and oxidative phosphorylation/mitochondrial respiration. Conversely, FGF21 repressed hepatic glycogen-storage, its glucose release and gluconeogenesis, and therefore reduced glucose flux in conditions of insulin resistance. Furthermore, FGF21 repressed lipid transporters, and acetyl-CoA carboxylase-β to attenuate hepatic lipid overload and lipogenesis. Strikingly, FGF21 dampened immune response by repressing complement factors, MARCO, CD163, MRC1/CD206, CD4, CD45 and pro-inflammatory cytokine receptors. It also reverted procoagulant imbalance in MASLD, stimulated extracellular matrix degradation, repressed TGFβ- and integrin-signalling and lessened liver sinusoidal endothelial cell defenestration in support of fibrosis resolution. CONCLUSIONS We gained deep insight into FGF21-MoA in MASLD. However, heterogeneity in FGF21 expression calls for molecular stratifications as to identify patients which likely benefit from FGF21-based therapies. KEY POINTS Performed comprehensive genomics across liver biopsies of 396 MASLD patients and identified patients with increased, decreased and unchanged FGF21 expression. Used genomic data from FGF21 transgenic, knock-out and animal MASLD models treated with synthetic FGF21 analogues to identify FGF21-mode-of-action and metabolic networks in human MASLD. Given the significant heterogeneity in FGF21 expression, not all patients will benefit from FGF21-based therapies.
Collapse
Affiliation(s)
- Shifang Tang
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
7
|
He HH, Zhang XG, Chen FF. Identification and verification of autophagy-related gene signatures and their association with immune infiltration and drug responsiveness in epilepsy. Front Neurol 2025; 15:1503632. [PMID: 39911741 PMCID: PMC11794110 DOI: 10.3389/fneur.2024.1503632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/06/2024] [Indexed: 02/07/2025] Open
Abstract
Background Epilepsy, a common neurological disorder, is characterized by susceptibility to recurrent seizures. Increasing evidence suggests that autophagy plays a crucial role in the initiation and progression of epilepsy. However, the precise mechanisms by which autophagy deficiencies involved in epileptogenesis are still not fully understood. Methods Two datasets of epilepsy (GSE143272 and GSE256068) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were employed to screen for autophagy related differential expression genes (ARDEGs) in GSE143272 database. Subsequently, protein-protein interaction, transcription factors and miRNAs networks were constructed. Additionally, the functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied. The hub ARDEGs were identified through CytoHubba, followed by the LASSO analysis. The Immune Cell Abundance Identifier (ImmuCellAI) was used to estimate peripheral immune cells abundance of epilepsy. Furthermore, the expression level of hub ARDEGs were detected in patients treated with different epilepsy monotherapies to explore the role of autophagy in the responsiveness of antiepileptic drug therapy. Finally, the expression level of hub ARDEGs were further validated in hippocampus of GSE256068 to enhance the reliability of the results. Results Twenty ARDEGs in epilepsy were screened out by integrating DEGs and WGCNA analysis. KEGG enrichment analysis showed that the ARDEGs in epilepsy were not only involved in the autophagy, but also apoptosis, the NOD-like receptor signaling pathway, the neurotrophin signaling pathway, etc. Four hub ARDEGs (PIK3R1, TRIM21, TRIM22, and ITPR3) were screened through integrating CytoHubba plug and LASSO analysis. The immune infiltration analysis showed that there was a significantly increased abundance of macrophages and a decreased abundance of CD4 and CD8 T cells, including Tr1, nTreg, Tfh, CD8 naïve, cytotoxic T cells and effector memory T cells in the epilepsy group. Furthermore, the hub ARDEGs were significantly correlated with the abundance of differential immune cells. In expression level validation and anti-epileptic drug responsiveness analysis, PIK3R1 and ITPR3 had significant differences in the hippocampus of patients with epilepsy. PIK3R1 expression level was found to be related with carbamazepine resistance. Conclusion This study elucidated the autophagy-related gene signatures in epilepsy and clarified their association with immune infiltration and anti-epileptic drug responsiveness, providing a novel target for future therapeutic interventions and disease markers in epilepsy.
Collapse
Affiliation(s)
- Han-han He
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xiao-ge Zhang
- Department of Pediatrics, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Fen-fang Chen
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
8
|
He L, Zhu M, Yin R, Dai L, Chen J, Zhou J. Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K. Biomedicines 2025; 13:232. [PMID: 39857815 PMCID: PMC11763245 DOI: 10.3390/biomedicines13010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood. Methods: Isoprenaline injection or transverse aortic constriction-induced animal models and isoprenaline or angiotensin 2 administration-induced cell models of heart failure were established. Baicalin (15 mg/kg/day or 25 mg/kg/day) was administered in vivo, and 10 μM baicalin was administered in vitro. Potential pharmacological targets of baicalin and genes related to heart failure were identified via different databases, which suggested that PI3K-Akt may be involved in the effects of baicalin. Molecular docking was carried out to reveal the effect of baicalin on p85a. Results: We observed significant antihypertrophic and antifibrotic effects of baicalin both in vivo and in vitro. The mean cross-sectional area of cardiomyocytes recovered from 390 μm2 in the HF group to 195 μm2 in the baicalin-treated group. The area of fibrosis was reduced from 2.8-fold in the HF group to 1.62-fold in the baicalin-treated group. Baicalin displayed a significant cardioprotective effect via the inhibition of the PI3K signaling pathway by binding with five amino acid residues of the p85a regulatory subunit of PI3K. The combination treatment of baicalin and an inhibitor of PI3K p110 demonstrated a stronger cardioprotective effect. The mean ejection fraction increased from 54% in the baicalin-treated group to 67% in the combination treatment group. Conclusions: Our work identified baicalin as a new active herbal ingredient that is able to treat isoprenaline-induced heart dysfunction and suggests that p85a is a pharmacological target. These findings reveal the significant potential of baicalin combined with an inhibitor of PI3K p110 for the treatment of heart failure and support more clinical trials in the future.
Collapse
Affiliation(s)
- Lu He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Liangli Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| |
Collapse
|
9
|
Liu Q, Zou X, Zhao M, Guan Q, Xuan Z, Liu L, Gao Z. Integrated transcriptome and metabolome analysis of liver reveals unsynchronized growth mechanisms in blunt-snout bream (Megalobrama amblycephala). BMC Genomics 2025; 26:30. [PMID: 39806290 PMCID: PMC11727267 DOI: 10.1186/s12864-025-11208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish. RESULTS To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M. amblycephala individuals. A total of 2,097 differentially expressed genes (DEGs) were identified between FG and SG, with 830 genes exhibiting significantly higher expression level in FG. KEGG and GO enrichment analysis indicated that the DEGs with higher expression level were significantly correlated with insulin signaling pathway, steroid hormone and lipid metabolism related pathway (PPAR signaling pathway and fatty acid degradation). In the metabolomic analysis, 224 differentially expressed metabolites (DEMs) were detected, of which 128 were significantly more abundant in FG. These more abundant DEMs were prominently enriched in pathways associated with cell proliferation and energy metabolism (Oxidative phosphorylation, mTOR signaling pathway and FoxO signaling pathway). In addition, DEGs and DEMs in adenosine diphosphate (ATP) hydrolysis activity and associate with fatty acid metabolism, glucose metabolism, and amino acid metabolism pathways were both found in the transcriptomic and metabolomic integrated data. These findings suggest that the large amounts of energy generated by fatty acid, glucose metabolism and other energy metabolism pathway promote the rapid growth of FG. CONCLUSIONS This research is the first to integrate metabolomic and transcriptomic analyses of liver to identify key genes, metabolites, and pathways to uncover the molecular and metabolic mechanisms of unsynchronized growth in M. amblycephala. The identified metabolic and genes can be potential targets for selective breeding programs to improve growth performance in aquaculture.
Collapse
Affiliation(s)
- Qi Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Xue Zou
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ming Zhao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Qianqian Guan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Zhaoyang Xuan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
10
|
Brishti A, Johnson SJ, Palmer DG, Raihan MO, Yan L, Casperson SL. Effects of defined voluntary running distances coupled with high-fat diet consumption on the skeletal muscle transcriptome of male mice. Physiol Rep 2025; 13:e70170. [PMID: 39821584 PMCID: PMC11738645 DOI: 10.14814/phy2.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Exercise counters many adverse health effects of consuming a high-fat diet (HFD). However, complex molecular changes that occur in skeletal muscle in response to exercising while consuming a HFD are not yet known. We investigated the interplay between diverse exercise regimes and HFD consumption on the adaptation of skeletal muscle transcriptome. C57BL/6 male mice were randomized into five groups-one sedentary control group and four exercise groups. The exercise groups consisted of an unrestricted running group (8.3 km/day) and three groups that were restricted to 75%, 50%, or 25% of unrestricted running (6.3, 4.2, and 2.1 km/day, respectively). Total RNA was extracted from frozen gastrocnemius muscle for transcriptome analyses. DEG counts were 1347, 1823, 1103, and 1107 and there were 107, 169, 67, and 89 unique genes present in the HFD-25%, HFD-50%, HFD-75%, and HFD-U, respectively. Comparing exercise groups, we found that exercising at 50% resulted in the most differentially expressed transcripts with the MAPK and PPAR signaling pathways enriched in down- and up-regulated genes, respectively. These results demonstrate that running distance impacts the adaptation of the skeletal muscle transcriptome to exercise and suggest that middle-distance running may provide the greatest protection against high-fat diet-induced stress coupled with exercise.
Collapse
Affiliation(s)
- Afrina Brishti
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Sarah J. Johnson
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
- Present address:
Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Daniel G. Palmer
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Md Obayed Raihan
- Department of Pharmaceutical Sciences, College of Health Sciences and PharmacyChicago State UniversityChicagoIllinoisUSA
| | - Lin Yan
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Shanon L. Casperson
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| |
Collapse
|
11
|
Abrego-Guandique DM, Galmés S, García-Rodríguez A, Cannataro R, Caroleo MC, Ribot J, Bonet ML, Cione E. β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization. Int J Mol Sci 2024; 25:12899. [PMID: 39684610 DOI: 10.3390/ijms252312899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring's liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring's liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet.
Collapse
Affiliation(s)
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Su G, Su L, Luo D, Yang X, Liu Z, Lin Q, An T, Weng C, Chen W, Zeng Z, Chen J. Cepharanthine inhibits African swine fever virus replication by suppressing AKT-associated pathways through disrupting Hsp90-Cdc37 complex. Int J Biol Macromol 2024; 282:137070. [PMID: 39486740 DOI: 10.1016/j.ijbiomac.2024.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
African swine fever (ASF) represents one of the most economically important viral infectious diseases in the swine industry worldwide. Presently, there is an absence of commercially available therapeutic drugs and safe vaccines. Cepharanthine (CEP), one of the naturally occurring bisbenzylisoquinoline alkaloids, has been approved as a drug to treat various diseases such as leukopenia, bronchial asthma, and snake bites for 70 years in Japan. Most recently, CEP was reported to inhibit ASFV replication by suppressing endosomal/lysosomal function although the specific molecular mechanisms were not elucidated. In this study, we demonstrate for the first time that ASFV infection promotes co-chaperone Cdc37 expression and its binding to Hsp90, leading to increased AKT phosphorylation to benefit viral replication. Notably, CEP disrupts the Hsp90-Cdc37 complex, subsequently decreasing p-AKT and inhibiting ASFV replication. Furthermore, our investigation reveals that enhanced AKT phosphorylation amplifies glycolysis, resulting in increased lactate production, while it upregulates the NF-κB signaling pathway, resulting in increased expression of IL-1β and other inflammatory cytokines. Elevated lactate enhances ASFV replication, and IL-1β acts synergistically on the proviral effect of lactate. CEP reduces ASFV replication by disrupting the formation of the Hsp90-Cdc37 complex and suppressing its downstream AKT/glycolysis axis and AKT/NF-κB pathway, leading to reduced lactate and IL-1β production. Our findings suggest that CEP could serve as a promising ASFV inhibitor, and the Hsp90-Cdc37 complex and glycolysis represent novel antiviral targets against ASFV infections, offering novel avenues for further exploration in antiviral therapeutic strategies. As the in vivo environment is largely complicated from ex vivo PAMs, anti-ASFV efficacy evaluation of CEP in pigs is the most imperative work in the future.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Laboratory Animal Center, Guangdong Medical University, Dongguan 523808, China
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ding Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Zeng P, Huang H, Li D. Combining bioinformatics, network pharmacology, and artificial intelligence to predict the mechanism of resveratrol in the treatment of rheumatoid arthritis. Heliyon 2024; 10:e37371. [PMID: 39309832 PMCID: PMC11416256 DOI: 10.1016/j.heliyon.2024.e37371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes joint inflammation and destruction, resulting in significant physical and economic burdens. Finding effective and targeted therapy for RA remains a top priority. Resveratrol is a potential candidate with anti-inflammatory and immunomodulatory properties for RA treatment. This study aims to determine the therapeutic targets and signaling pathways of resveratrol in the treatment of RA. Methods The GSE205962 dataset downloaded from The Gene Expression Omnibus (GEO) database was used to obtain the differentially expressed genes (DEGs) in blood samples from the patients and the healthy. PharmMapper database and Cytoscape (v3.9.1) were applied to construct the resveratrol pharmacophore target network. Gene functional enrichment analysis, including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, was based on the BiNGo plug-in of Cytoscape and David's online tool. The intersection of the target genes of resveratrol and the DEGs were considered potential therapeutic genes (PT-genes). The Protein-Protein Interaction (PPI) network of PT-genes was constructed using the STRING tool, and the key therapeutic genes (KT-genes) were determined using the cytoHubba plug-in based on the Maximal Clique Centrality (MCC) algorithms. Molecular docking validation of resveratrol and therapeutic targets was performed based on the protein structure of KT-genes predicted by AlphaFold. Results A total of 2202 DEGs and 47PT-genes were identified. GO analysis showed that the three groups of genes, the DEGs, the resveratrol target genes, and the PT-genes, have similar results for the top-five gene functional enrichment. PT-genes were closely related to the pathways of metabolic pathways, pathways in cancer, proteoglycans in cancer, insulin signaling pathway, and chemokine signaling pathway. The common pathway enriched by KEGG for the DEGs, and the resveratrol target genes was up to 36 %. The nine KT-genes were ABL1, ANXA5, CASP3, HSP90AA1, LCK, MAP2K1, MAPK1, PIK3R1, and RAC1, and the lowest free energy indicating the resveratrol/protein affinity were -8.4, -7.4, -6.4, -6.7, -8.0, -7.9, -7.4, -6.7, and -7.9, respectively. Conclusion Nine KT-genes were identified and validated as the most potential therapeutic targets in the treatment of RA with resveratrol, which provide new insights into therapeutic mechanisms and may improve the efficiency of drug development.
Collapse
Affiliation(s)
- Piaoqi Zeng
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Haohan Huang
- Department of Orthopaedics, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Rd, Shanghai 200011, China
| | - Dongsheng Li
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
15
|
Huang W, Liu X, Li X, Zhang R, Chen G, Mao X, Xu S, Liu C. Integrating network pharmacology, molecular docking and non-targeted serum metabolomics to illustrate pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction in treating hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1438821. [PMID: 39387049 PMCID: PMC11462413 DOI: 10.3389/fendo.2024.1438821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To explore the pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction (HYD) in treating hyperthyroidism via an analysis integrating network pharmacology, molecular docking, and non-targeted serum metabolomics. Methods Therapeutic targets of hyperthyroidism were searched through multi-array analyses in the Gene Expression Omnibus (GEO) database. Hub genes were subjected to the construction of a protein-protein interaction (PPI) network, and GO and KEGG enrichment analyses. Targets of active pharmaceutical ingredients (APIs) in HYD and those of hyperthyroidism were intersected to yield hub genes, followed by validations via molecular docking and non-targeted serum metabolomics. Results 112 hub genes were identified by intersecting APIs of HYD and therapeutic targets of hyperthyroidism. Using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both negative and positive ion polarity modes, 279 compounds of HYD absorbed in the plasma were fingerprinted. Through summarizing data yielded from network pharmacology and non-targeted serum metabolomics, 214 common targets were identified from compounds of HYD absorbed in the plasma and therapeutic targets of hyperthyroidism, including PTPN11, PIK3CD, EGFR, HRAS, PIK3CA, AKT1, SRC, PIK3CB, and PIK3R1. They were mainly enriched in the biological processes of positive regulation of gene expression, positive regulation of MAPK cascade, signal transduction, protein phosphorylation, negative regulation of apoptotic process, positive regulation of protein kinase B signaling and positive regulation of MAP kinase activity; and molecular functions of identical protein binding, protein serine/threonine/tyrosine kinase activity, protein kinase activity, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding and protein binding. A total of 185 signaling pathways enriched in the 214 common targets were associated with cell proliferation and angiogenesis. Conclusion HYD exerts a pharmacological effect on hyperthyroidism via inhibiting pathological angiogenesis in the thyroid and rebalancing immunity.
Collapse
Affiliation(s)
- Wenbin Huang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoju Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ruixiang Zhang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuhang Xu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
17
|
Aisagbonhi O, Ghlichloo I, Hong DS, Roma A, Fadare O, Eskander R, Saenz C, Fisch KM, Song W. Comprehensive next-generation sequencing identifies novel putative pathogenic or likely pathogenic germline variants in patients with concurrent tubo-ovarian and endometrial serous and endometrioid carcinomas or precursors. Gynecol Oncol 2024; 187:241-248. [PMID: 38833993 DOI: 10.1016/j.ygyno.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Endometrial serous carcinoma (ESC) and tubo-ovarian high-grade serous carcinoma (HGSC) are characterized by late-stage presentation and high mortality. Current guidelines for prevention recommend risk-reducing salpingo-oophorectomy (RRSO) in patients with hereditary mutations in cancer susceptibility genes. However, HGSC displays extensive genetic heterogeneity with alterations in 168 genes identified in TCGA study, but current germline testing panels are often limited to the handful of recurrently mutated genes, leaving families with rare hereditary gene mutations potentially at-risk. OBJECTIVE To determine if there are rare germline mutations that may aid in early identification of more patients at-risk for ESC and/or HGSC by evaluating patients with concurrent ESC, HGSC or precursor lesions, and endometrial atypical hyperplasia (CAH) or low-grade endometrial endometrioid adenocarcinoma (LGEEA). METHODS We performed targeted next-generation sequencing using TSO 500, a 523 gene panel, on formalin-fixed paraffin-embedded tumor and matched benign non-tumor tissue blocks from 5 patients with concurrent ESC, HGSC or precursor lesions, and CAH or LGEEA. RESULTS We identified germline pathogenic, likely pathogenic or uncertain significance variants in cancer susceptibility genes in 4 of 5 patients - affected genes included GLI1, PIK3R1, FOXP1, FANCD2, INPP4B and H3F3C. Notably, none of these genes were included in the commercially available germline testing panels initially used to evaluate the patients at the time of their diagnoses. CONCLUSION Comprehensive germline testing of patients with concurrent LGEEA or CAH and ESC, HGSC or precursor lesions may aid in early identification of relatives at-risk for cancer who may be candidates for RRSO with hysterectomy.
Collapse
Affiliation(s)
- Omonigho Aisagbonhi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Ida Ghlichloo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Duncan S Hong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andres Roma
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ramez Eskander
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheryl Saenz
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Wei Song
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
HuangFu R, Li H, Luo Y, He F, Huan C, Ahmed Z, Zhang B, Lei C, Yi K. Illuminating Genetic Diversity and Selection Signatures in Matou Goats through Whole-Genome Sequencing Analysis. Genes (Basel) 2024; 15:909. [PMID: 39062688 PMCID: PMC11275394 DOI: 10.3390/genes15070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.
Collapse
Affiliation(s)
- Ruiyao HuangFu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| |
Collapse
|
20
|
Xu K, Zhang L, Wang T, Yu T, Zhao X, Zhang Y. Transcriptome sequencing and bioinformatics analysis of gastrocnemius muscle in type 2 diabetes mellitus rats. BMC Musculoskelet Disord 2024; 25:457. [PMID: 38851698 PMCID: PMC11161923 DOI: 10.1186/s12891-024-07568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the high risk factors for sarcopenia. However, the pathogenesis of diabetic sarcopenia has not been fully elucidated. This study obtained transcriptome profiles of gastrocnemius muscle in normal and T2DM rats based on high-throughput sequencing technology, which may provide new ideas for exploring the pathogenesis of diabetic sarcopenia. METHODS Twelve adult male Sprague-Dawley rats were randomly divided into Control group and T2DM group, and gastrocnemius muscle tissue was retained for transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) 6 months later. Screening differentially expressed genes (DEGs), Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Gnomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. Six DEGs related to apoptosis were selected for qTR-PCR verification. RESULTS Transcriptomic analysis showed that there were 1016 DEGs between the gastrocnemius muscle of T2DM and normal rats, among which 665 DEGs were up-regulated and 351 DEGs were down-regulated. GO analysis showed that the extracellular matrix organization was the most enriched in biological processes, with 26 DEGs. The extracellular matrix with 35 DEGs was the most abundant cellular component. The extracellular matrix structural constituent, with 26 DEGs, was the most enriched in molecular functions. The highest number of DEGs enriched in biological processes, cellular components and molecular functions were positive regulation of transcription by RNA polymerase II, nucleus and metal ion binding, respectively. There were 78, 230 and 89 DEGs respectively. KEGG pathway enrichment analysis showed that ECM-receptor interaction, PI3K-Akt signaling pathway and TGF-β signaling pathway(p < 0.001) had higher enrichment degree and number of DEGs. qRT-PCR results showed that the fold change of Map3k14, Atf4, Pik3r1, Il3ra, Gadd45b and Bid were 1.95, 3.25, 2.97, 2.38, 0.43 and 3.6, respectively. The fold change of transcriptome sequencing were 3.45, 2.21, 2.59, 5.39, 0.49 and 2.78, respectively. The transcriptional trends obtained by qRT-PCR were consistent with those obtained by transcriptome sequencing. CONCLUSIONS Transcriptomic analysis was used to obtain the "gene profiles" of gastrocnemius muscle of T2DM and normal rats. qRT-PCR verification showed that the genes related to apoptosis were differentially expressed. These DEGs and enrichment pathways may provide new ideas for exploring the pathogenesis of diabetic sarcopenia.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Liang Zhang
- Department of Abdominal ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, 266000, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
21
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
22
|
Zhang Z, Liu X, Zhang S, Song Z, Lu K, Yang W. A review and analysis of key biomarkers in Alzheimer's disease. Front Neurosci 2024; 18:1358998. [PMID: 38445255 PMCID: PMC10912539 DOI: 10.3389/fnins.2024.1358998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects over 50 million elderly individuals worldwide. Although the pathogenesis of AD is not fully understood, based on current research, researchers are able to identify potential biomarker genes and proteins that may serve as effective targets against AD. This article aims to present a comprehensive overview of recent advances in AD biomarker identification, with highlights on the use of various algorithms, the exploration of relevant biological processes, and the investigation of shared biomarkers with co-occurring diseases. Additionally, this article includes a statistical analysis of key genes reported in the research literature, and identifies the intersection with AD-related gene sets from databases such as AlzGen, GeneCard, and DisGeNet. For these gene sets, besides enrichment analysis, protein-protein interaction (PPI) networks utilized to identify central genes among the overlapping genes. Enrichment analysis, protein interaction network analysis, and tissue-specific connectedness analysis based on GTEx database performed on multiple groups of overlapping genes. Our work has laid the foundation for a better understanding of the molecular mechanisms of AD and more accurate identification of key AD markers.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Xiangtao Liu
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Suixia Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zhixin Song
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Ke Lu
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| | - Wenzhong Yang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|