1
|
Song C, Li T, Wang J, Guo P, Yang W, Tang N, Qu Y, Li S, Qiu X, Tan L, Sun Y, Liao Y, Ding C. Development of a blocking ELISA employing a VP1-specific monoclonal antibody for the detection of DHAV3 antibodies. Poult Sci 2025; 104:105080. [PMID: 40188623 PMCID: PMC12001107 DOI: 10.1016/j.psj.2025.105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/08/2025] Open
Abstract
Duck hepatitis A virus (DHAV) causes an acute and severe infectious disease characterized by liver swelling and hemorrhage, predominantly affecting ducklings under three weeks of age. This disease leads to significant economic losses in the duck farming industry. In China, both DHAV1 and DHAV3 are prevalent, with DHAV3 being more dominant. Among the three structural proteins of DHAV, the VP1 protein is the most critical as it induces neutralizing antibody production, serves as the binding protein for viral adsorption to cell-specific receptors, and determines viral antigenicity. The serum neutralization (SN) test is the "gold standard" for evaluating DHAV vaccine-immune serum; however, it is time-consuming and labor-intensive. To address this limitation, we developed a rapid, sensitive, and specific blocking ELISA (bELISA) for detecting DHAV3 antibodies. This assay utilizes DHAV3 virus-like particles (VLPs) as the coating antigen and the VP1-specific monoclonal antibody 4B8 as the blocking antibody. The bELISA demonstrated high sensitivity and specificity, detecting only DHAV3 antibodies without cross-reactivity with DHAV1 or other viral antibodies. The assay's cutoff value was determined to be 38.21 %, with intra- and inter-batch coefficients of variation below 5 %, indicating excellent reproducibility. The bELISA showed a 100 % positive concordance rate and a 93.65 % negative concordance rate with the SN test, resulting in an overall concordance rate of 96 %. In summary, this study presents the development of a high-quality bELISA for the detection of DHAV3 antibodies. This assay is suitable for clinical diagnosis of DHAV3, evaluation of maternal antibody levels, and assessment of vaccine efficacy in ducklings, offering a valuable tool for disease control and prevention in the duck industry.
Collapse
Affiliation(s)
- Cuiping Song
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Tianyuan Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Jing Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China; College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Peidong Guo
- Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Haping Road 678, Harbin 150069, PR China
| | - Wenjing Yang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Ning Tang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Yang Qu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Siyu Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China; College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Ying Liao
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Science, Ziyue Road 518, Shanghai 200241, PR China; College of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| |
Collapse
|
2
|
Gonzalez JC, Park KW, Evans DB, Sharma R, Sahaym O, Gopalakrishnan S, dar AI, Valdez TA, Sharma A. Nano Approaches to Nucleic Acid Delivery: Barriers, Solutions, and Current Landscape. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70010. [PMID: 40223402 PMCID: PMC11994986 DOI: 10.1002/wnan.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Nucleic acid (NA) therapy holds tremendous potential for treating a wide range of genetic diseases by the delivery of therapeutic genes into target cells. However, significant challenges exist in safely and effectively delivering these genes to their intended locations. Viral vectors, though efficient, pose risks such as immunogenicity and mutagenesis. This has resulted in growing interest in non-viral, nanoparticle-based NA delivery systems. This review article describes various physiological barriers to NA delivery and explores nanoparticle-based NA delivery systems, including bioengineered nanoparticles, peptides, lipid nanoparticles, and polymeric nanoparticles, highlighting their unique features to overcome in vivo barriers for NA delivery. While these nanoparticle-based NA delivery systems offer a promising alternative to viral vectors, challenges related to cytotoxicity, reproducible synthesis, and cost need to be addressed. The current clinical landscape of NA delivery is also discussed, emphasizing the need for safer, scalable, and cost-effective solutions. Nanoparticles represent a promising future in NA therapy, with the possibility of developing clinically relevant, non-toxic, stable, and non-immunogenic delivery vehicles, paving the way for broader therapeutic applications and improved clinical outcomes.
Collapse
Affiliation(s)
- Joan Castaneda Gonzalez
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Ki Wan Park
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Dallin Brian Evans
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Rishi Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Om Sahaym
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Shamila Gopalakrishnan
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Aqib Iqbal dar
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| | - Tulio A. Valdez
- Department of Otolaryngology−Head & Neck Surgery DivisionsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anjali Sharma
- Department of ChemistryCollege of Arts and Sciences, Washington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Komane MD, Kayoka-Kabongo PN, Rutkowska DA. The Use of Plant Viral Nanoparticles in Cancer Biotherapy-A Review. Viruses 2025; 17:218. [PMID: 40006973 PMCID: PMC11860677 DOI: 10.3390/v17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is a major global health problem that poses significant challenges. Conventional cancer therapies often have severe side effects, necessitating the development of novel therapeutic approaches that are more effective and less toxic. The utilization of plant viral nanoparticles is one of the more promising strategies for cancer biotherapy. Plant viral nanoparticles exhibit advantageous properties, including safety, high stability, rapid production and scalability, biocompatibility and biodegradability, structural uniformity, inherent immunogenicity, ease of modification and high update efficacy as well as lower cost implications, making them attractive vehicles for health applications. Various studies have demonstrated the efficacy of plant viral nanoparticles in targeted therapeutic drug/molecule delivery, tumor imaging and immunotherapy, highlighting their potential as a versatile platform for cancer biotherapy. The drawbacks of plant viral nanoparticles include their perceived ability to induce a hypersensitive/allergic immune response, non-well-defined regulatory approval processes as well as the reluctance of pharmaceutical companies to adapt their manufacturing processes to facilitate plant-based expression. This review discusses applications of plant virus-derived nanoparticles in cancer therapeutics and prospects for translating these findings into clinical practice.
Collapse
Affiliation(s)
- Mamorake Donty Komane
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag X6 Florida 1710, Pretoria 0002, South Africa; (M.D.K.); (P.N.K.-K.)
| | - Daria Anna Rutkowska
- Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| |
Collapse
|
4
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
5
|
Scalambra L, Ruzzi F, Pittino OM, Semprini MS, Cappello C, Angelicola S, Palladini A, Nanni P, Goksøyr L, Fougeroux C, Penichet ML, Sander AF, Lollini PL. Targeting PCSK9, through an innovative cVLP-based vaccine, enhanced the therapeutic activity of a cVLP-HER2 vaccine in a preclinical model of HER2-positive mammary carcinoma. J Transl Med 2025; 23:136. [PMID: 39885551 PMCID: PMC11784117 DOI: 10.1186/s12967-025-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells. We present an innovative immunization approach combining capsid virus-like particle (cVLP)-based vaccines against HER2 and PCSK9. METHODS The therapeutic activity of the combined vaccine was evaluated in female mice challenged with HER2-positive mammary carcinoma cells. Controls included untreated mice and mice treated with cVLP-PCSK9 and cVLP-HER2 as standalone therapies. Antibodies elicited by vaccinations were detected through ELISA immunoassay. The functional activity of the antibodies was tested in 3D-soft agar assay on human HER2 + + + trastuzumab sensitive and resistant cells. RESULTS Mice vaccinated with cVLP-HER2 + cVLP-PCSK9 displayed tumor regression from the 40th day after cell challenge in 100% of mice remaining tumor-free even 4 months later. In contrast, 83% of mice treated with cVLP-HER2 vaccine alone experienced an initial tumor regression, followed by tumor relapse in 60% of subjects. Untreated mice and mice treated with the cVLP-PCSK9 vaccine alone developed progressive tumors within 1-2 months after cell injection. The combined vaccine approach elicited strong anti-human HER2 antibody responses (reaching 1-2 mg/ml range) comprising multiple immunoglobulins isotypes. cVLP-PCSK9 vaccine elicited anti-PCSK9 antibody responses, resulting in a marked reduction in PCSK9 serum levels. Although the anti-PCSK9 response was reduced when co-administered with cVLP-HER2, it remained significant. Moreover, both cVLP-HER2 + cVLP-PCSK9 and cVLP-HER2 alone induced anti-HER2 antibodies able to inhibit the 3D growth of human HER2 + + + BT-474 and trastuzumab-resistant BT-474 C5 cells. Strikingly, antibodies elicited by the combined vaccination were more effective than those elicited by the cVLP-HER2 vaccine alone in the inhibition of trastuzumab-resistant C5 cells. CONCLUSIONS The results indicate that cVLP-PCSK9 vaccination shows adjuvant activity when combined with cVLP-HER2 vaccine, enhancing its therapeutic efficacy against HER2-positive breast cancer and holding promise in overcoming the challenges posed by resistance and incomplete responses to HER2-targeted therapy.
Collapse
Affiliation(s)
- Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Oncology Division, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular GeneticsThe Molecular Biology InstituteJonsson Comprehensive Cancer Centre, University of California, Los Angeles (UCLA), CA, USA
| | - Adam Frederik Sander
- AdaptVac Aps, Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy.
| |
Collapse
|
6
|
Peralta-Cuevas E, Garcia-Atutxa I, Huerta-Saquero A, Villanueva-Flores F. The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses 2025; 17:148. [PMID: 40006903 PMCID: PMC11861432 DOI: 10.3390/v17020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
Plant virus-like particles (pVLPs) present distinct research advantages, including cost-effective production and scalability through plant-based systems, making them a promising yet underutilized alternative to traditional VLPs. Human exposure to plant viruses through diet for millions of years supports their biocompatibility and safety, making them suitable for biomedical applications. This review offers a practical guide to selecting pVLPs based on critical design factors. It begins by examining how pVLP size and shape influence cellular interactions, such as uptake, biodistribution, and clearance, key for effective drug delivery and vaccine development. We also explore how surface charge affects VLP-cell interactions, impacting binding and internalization, and discuss the benefits of surface modifications to enhance targeting and stability. Additional considerations include host range and biosafety, ensuring safe, effective pVLP applications in clinical and environmental contexts. The scalability of pVLP production across different expression systems is also reviewed, noting challenges and opportunities in large-scale manufacturing. Concluding with future perspectives, the review highlights the innovation potential of pVLPs in vaccine development, targeted therapies, and diagnostics, positioning them as valuable tools in biotechnology and medicine. This guide provides a foundation for selecting optimal pVLPs across diverse applications.
Collapse
Affiliation(s)
- Esperanza Peralta-Cuevas
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| | - Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain;
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico;
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| |
Collapse
|
7
|
Grant M, Ni Lee L, Chinnakannan S, Tong O, Kwok J, Cianci N, Tillman L, Saha A, Pereira Almeida V, Leung C. Unlocking cancer vaccine potential: What are the key factors? Hum Vaccin Immunother 2024; 20:2331486. [PMID: 38564321 PMCID: PMC11657071 DOI: 10.1080/21645515.2024.2331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?
Collapse
|
8
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
10
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
11
|
Lin TW, Chou PY, Shen YT, Sheu MT, Chuang KH, Lin SY, Chang CY. Tumor Antigen-Tethered Spiked Virus-Like- Poly(Lactic-Co-Glycolic Acid)-Nanoparticle Vaccine Enhances Antitumor Ability Through Th9 Promotion in Mice. Int J Nanomedicine 2024; 19:10983-11002. [PMID: 39493273 PMCID: PMC11531760 DOI: 10.2147/ijn.s476715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Immunotherapy emerges as a promising frontier in cancer therapy and prevention. This study investigates the capacity of tumor-antigenic nanoparticles, specifically ovalbumin-tethered spiked virus-like poly(lactic-co-glycolic acid) nanoparticles (OVA-sVLNP), to effectively elicit humoral and cellular immune responses against tumors. Methods OVA-sVLNP were synthesized through thiol-maleimide crosslinking using a single emulsion method. Comprehensive characterization was performed through Nuclear Magnetic Resonance (NMR), dynamic light scattering, Cryo-electron microscopy (Cryo-EM), confocal microscopy, and flow cytometry. Immunogenicity was evaluated using an enzyme-linked immunosorbent assay (ELISA) for quantifying immunoglobulin levels (IgG, IgG1, IgG2a) and cytokines in mouse sera. Flow cytometry profiled cellular immune responses in mouse spleens, and organ biosafety was assessed using immunohistochemistry and hematoxylin and eosin (H&E) staining. Results OVA-sVLNP had a mean particle size of 193.8 ± 11.9 nm, polydispersity index of 0.307 ± 0.04, and zeta potential of -39.6 ± 10.16 mV, remaining stable for one month at 4°C. In vitro studies revealed significant upregulation of CD80/CD86 in dendritic cells, indicating robust activation. In vivo, the optimal concentration (V25) induced potent IgG, IgG1, and IgG2a antibodies, significant populations of CD3+CD4+, CD3+CD8+, and a rare subset of CD3+CD4+CD8+ memory T cells. Notably, Th9 induction resulted in the secretion of IL-9, IL-10, and other cytokines, which are crucial for orchestrating cytotoxic T cell activity and antitumor effects. Overall, higher doses did not improve outcomes, highlighting the significance of optimal dosing. Conclusion This study demonstrated potent immunogenicity of OVA-sVLNP, characterized by the induction of specific IgG antibodies and the stimulation of cellular immune responses, particularly tumor-killing Th9 cells. The simplicity and cost-effectiveness of the manufacturing process augment the potential of OVA-sVLNP as a viable candidate for antitumor vaccines, opening new avenues for cancer prevention and cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Ting-Wei Lin
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ting Shen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
De S, Rai V, Ahmed F, Basak M, Bose S. Deciphering the Nanometabolomics Paradigm: Understanding the Role of Pathophysiology and Biomarkers in Predicting Oral Cancer. J Maxillofac Oral Surg 2024. [DOI: 10.1007/s12663-024-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
|
13
|
Troyer Z, Gololobova O, Koppula A, Liao Z, Horns F, Elowitz MB, Tosar JP, Batish M, Witwer KW. Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses. ACS NANO 2024; 18:26568-26584. [PMID: 39306763 PMCID: PMC11447916 DOI: 10.1021/acsnano.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density. The feature that distinguishes infectious virions from host and hybrid EVs is the HIV genomic RNA (gRNA), which allows the virus to replicate. Single-particle analysis techniques, which provide snapshots of single biological nanoparticles, could resolve infectious virions from EVs. However, current single-particle analysis techniques focus mainly on protein detection, which fail to resolve hybrid EVs from infectious virions. A method to simultaneously detect viral protein and internal gRNA in the same particle would allow resolution of infectious HIV from EVs and noninfectious virions. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein and RNA analysis, combining single particle interferometric reflectance imaging sensor with single-molecule fluorescence in situ hybridization. Using SPIRFISH, we detect HIV-1 envelope protein gp120 and genomic RNA within single infectious virions, allowing resolution against EV background and noninfectious virions. We further show that SPIRFISH can be used to detect specific RNAs within EVs. This may have major utility for EV therapeutics, which are increasingly focused on EV-mediated RNA delivery. SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.
Collapse
Affiliation(s)
- Zach Troyer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aakash Koppula
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Felix Horns
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael B Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Mona Batish
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
14
|
Xiang M, Yang C, Zhang L, Wang S, Ren Y, Gou M. Dissolving microneedles for transdermal drug delivery in cancer immunotherapy. J Mater Chem B 2024; 12:5812-5822. [PMID: 38856691 DOI: 10.1039/d4tb00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Immunotherapy is an important approach in cancer treatment. Transdermal administration is emerging as a promising method for delivering immunotherapeutics. Dissolving microneedles are made mainly of soluble or biodegradable polymers and have garnered widespread attention due to their painlessness, safety, convenience, excellent drug loading capacity, and easy availability of various materials, making them an ideal transdermal delivery system. This review comprehensively summarized the preparation methods, materials, and applications of dissolving microneedles in cancer vaccines, immune checkpoint inhibitors, and adoptive cell therapy. Additionally, the challenges and perspectives associated with their future clinical translation are discussed.
Collapse
Affiliation(s)
- Maya Xiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Department of Chemistry, University of Washington-Seattle Campus, Seattle, WA, USA
| | - Chunli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Huahang Microcreate Technology Co., Ltd, Chengdu, China
| | - Siyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Ya Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
17
|
Wu QJ, Lv WL. Cancer Vaccines Designed Based the Nanoparticle and Tumor Cells for the Treatment of Tumors: A Perspective. IET Nanobiotechnol 2024; 2024:5593879. [PMID: 38863969 PMCID: PMC11095075 DOI: 10.1049/2024/5593879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer vaccines based on tumor cell components have shown promising results in animal and clinical studies. The vaccine system contains abundant tumor antigen components, which can activate the immune system by antigens. However, their efficacy has been limited by the inability of antigens delivery, which are the core components of vaccines, further fail to be presented and activation of effective cells. Nanotechnology offers a novel platform to enhance the immunogenicity of tumor-associated antigens and deliver them to antigen-presenting cells (APCs) more efficiently. In addition, nanotreatment of tumor cells derivate active ingredients could also help improve the effectiveness of cancer vaccines. In this review, we summarize recent advances in the development of cancer vaccines by the combination of nanotechnology and tumor-based ingredients, including liposomes, polymeric nanoparticles, metallic nanoparticles, virus-like particles and tumor cells membrane, tumor lysate, and specific tumor antigens. These nanovaccines have been designed to increase antigen uptake, prolong antigen presentation, and modulate immune responses through codelivery of immunostimulatory agents. We also further discuss challenges and opportunities in the clinical translation of these nanovaccines.
Collapse
Affiliation(s)
- Qing-Juan Wu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Lv M, Ding Y, Zhang Y, Liu S. Targeting EBV-encoded products: Implications for drug development in EBV-associated diseases. Rev Med Virol 2024; 34:e2487. [PMID: 37905912 DOI: 10.1002/rmv.2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus, a human gamma-herpesvirus, has a close connection to the pathogenesis of cancers and other diseases, which are a burden for public health worldwide. So far, several drugs or biomolecules have been discovered that can target EBV-encoded products for treatment, such as Silvestrol, affinity toxin, roscovitine, H20, H31, curcumin, thymoquinone, and ribosomal protein L22. These drugs activate or inhibit the function of some biomolecules, affecting subsequent signalling pathways by acting on the products of EBV. These drugs usually target LMP1, LMP2; EBNA1, EBNA2, EBNA3; EBER1, EBER2; Bam-HI A rightward transcript and BHRF1. Additionally, some promising findings in the fields of vaccines, immunological, and cellular therapies have been established. In this review, we mainly summarise the function of drugs mentioned above and unique mechanisms, hoping that we can help giving insight to the design of drugs for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Mengwen Lv
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, Qingdao University Medical College, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|