1
|
Andersen MK, Robertson RM, MacMillan HA. Temperature sensitivity of spreading depolarization in the CNS of Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 2025; 329:R134-R149. [PMID: 40392029 DOI: 10.1152/ajpregu.00040.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
During exposure to extreme stress, the central nervous system (CNS) of mammals and insects fails through a phenomenon known as spreading depolarization (SD). SD is characterized by an abrupt disruption of ion gradients across neural and glial membranes that spreads through the CNS, silencing neural activity. In humans, SD is associated with neuropathological conditions like migraine and stroke, while it coincides with critical thermal limits for activity in insects. In the latter, SD is conveniently monitored by recording the transperineurial potential (TPP), which we used to explore the plasticity and temperature dependence of SD thresholds and electrophysiological parameters in fruit flies (Drosophila melanogaster). Specifically, we characterized the effects of thermal acclimation on the characteristics of TPP changes during cold-induced SD, after which we induced SD with anoxia at different temperatures in both acclimation groups to examine the interactive effects of temperature and acclimation status. Lastly, we investigated how these affect the rate of SD propagation across the fly CNS. Cold acclimation enhanced resistance to both cold and anoxic SD, and our TPP measurements revealed independent and interactive effects of temperature and acclimation on the TPP and SD propagation. This suggests that thermodynamic processes and physiological mechanisms interact to modulate the thermal threshold for activity through SD and its electrophysiological phenomenology. These findings are discussed in relation to conceptual models for SD and established mechanisms for variation in the thermal threshold for SD, and we emphasize that future comparative or cross-species studies or translations must account for thermodynamic effects to improve inferences based on electrophysiology.NEW & NOTEWORTHY Thermal acclimation induces variation in the temperatures leading to spreading depolarization at the critical thermal limits in invertebrates, but mechanistic inferences based on electrophysiology might be skewed by thermodynamic effects. Here, we quantify the thermal dependence of spreading depolarization parameters in fruit flies, use it to infer mechanisms, and provide perspectives for future comparative research. In addition, we propose Drosophila as a model system to understand this event in vertebrates, including humans.
Collapse
Affiliation(s)
- Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
2
|
de Lange M, Yarosh V, Farell K, McDonnell C, Patil R, Hawthorn I, Jung MM, Wenje S, Steinert JR. High fat diet induces differential age- and gender-dependent changes in neuronal function in Drosophila linked to redox stress. Behav Brain Res 2025; 484:115510. [PMID: 40010512 DOI: 10.1016/j.bbr.2025.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The prevalence of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, is steadily increasing, thus posing significant challenges to global healthcare systems. Emerging evidence suggests that dietary habits, particularly consumption of high-fat diets, may play a pivotal role in the development and progression of neurodegenerative disorders. Moreover, several studies have shed light on the intricate communication between the gut and the brain, linking gut health with neuroinflammation and its involvement in neurodegenerative processes. This study aims to assess the effects of a high-fat dietary intake on various aspects of neuronal function during aging in a gender specific manner to help understand the potential contributions of diet to neuronal function. To investigate the effects of a high-fat diet, Drosophila melanogaster was used and exposed to a standard normal food diet (NF) and a high-fat diet (HF). Adults were grouped at 10 and 45 days of age in male and female flies reared under the same conditions starting the HF diet at 5 days of age with data showing differential gender- and HF diet-induced phenotypes. Malondialdehyde (MDA) levels were higher in males at 10 and 45 days (p < 0.05), caspase-3 expression increased at 45 days (p < 0.01) implicating apoptosis induction and a reduced climbing activity at 10 and 45 days was apparent in females only (p < 0.01). Adult lifespan under both dietary conditions was unchanged when reared at 18°C but odour-associated learning ability was reduced in larvae reared in a HF diet throughout their development (p < 0.05). This is the first study to characterise effects of a HF diet on neuronal phenotypes in an age- and gender-specific manner in a Drosophila model. Our findings suggest a HF diet induces differential effects of neuronal dysfunction with age and sex-specific outcomes, characterised by enhanced oxidative stress and cell death impacting on behaviour.
Collapse
Affiliation(s)
- Megan de Lange
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Vladyslava Yarosh
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Kevin Farell
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Caitlin McDonnell
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Renee Patil
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Isabel Hawthorn
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Mok-Min Jung
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Sophie Wenje
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK
| | - Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham NG7 2NR, UK.
| |
Collapse
|
3
|
Kirio K, Patop IL, Anduaga AM, Harris J, Pamudurti N, Su TN, Martel C, Kadener S. Circular RNAs exhibit exceptional stability in the aging brain and serve as reliable age and experience indicators. Cell Rep 2025; 44:115485. [PMID: 40184256 PMCID: PMC12105716 DOI: 10.1016/j.celrep.2025.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/06/2025] Open
Abstract
Circular RNAs (circRNAs) increase in the brain with age across various animal systems. To elucidate the reasons behind this phenomenon, we profile circRNAs from fly heads at six time points throughout their lifespan. Our results reveal a linear increase in circRNA levels with age, independent of changes in mRNA levels, overall transcription, intron retention, or host gene splicing, demonstrating that the age-related accumulation is due to high stability rather than increased biogenesis. This remarkable stability suggests that circRNAs can serve as markers of environmental experience. Indeed, flies exposed to a 10-day regimen at 29°C exhibit higher levels of specific circRNAs even 6 weeks after returning to standard conditions, indicating that circRNAs can reveal past environmental stimuli. Moreover, half-life measurements show circRNA stability exceeding 20 days, with some displaying virtually no degradation. These findings underscore the remarkable stability of circRNAs in vivo and their potential as markers for stress and life experiences.
Collapse
Affiliation(s)
- Ken Kirio
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | | | | - Jenna Harris
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | | - The Nandar Su
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Claire Martel
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
4
|
Carmona J, Madruga B, Mendoza S, Jeong B, Bentolila L, Arisaka K. Transverse Sheet Illumination Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.642160. [PMID: 40166348 PMCID: PMC11957050 DOI: 10.1101/2025.03.14.642160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recording the neural activity of biological organisms is paramount in understanding how they process the world around them. Fluorescence microscopy has served as the standard in recording this neural activity due to its ability to capture large populations of neurons simultaneously. Recent efforts in fluorescence microscopy have been concentrated in imaging large scale volumes, however, most of these efforts have been limited by spatiotemporal and bandwidth constraints. We present a novel system called Transverse-Sheet Illumination Microscopy (TranSIM), which captures spatially separated planes onto multiple two-dimensional sCMOS sensors at near diffraction limited resolution with 1.0 µm, 1.4 µm, and 4.3 µm (x, y, and z respectively). The parallel use of sensors reduces the bandwidth bottlenecks typically found in other systems. TranSIM allows for the capturing of data at large-scale volumetric field-of-views up to 748 × 278 × 100 µm 3 at 100 Hz. Moreover, we were able to capture smaller field-of-views of 374 × 278 × 100 µm 3 at a faster volumetric rate of 200 Hz. Additionally, we found that the system's versatile design allowed us the ability to change the vertical magnification programmatically rather than necessitating a change of objectives. With this system we were able to observe intricate communication between neuron populations separated by vast three-dimensional distances, raising the potential to answer complex questions in Neurobiology.
Collapse
|
5
|
Brischetto C, Rossi V, Salotti I, Languasco L, Fedele G. Temperature Requirements Can Affect the Microbial Composition Causing Sour Rot in Grapes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70061. [PMID: 39871424 PMCID: PMC11772317 DOI: 10.1111/1758-2229.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g., Drosophila spp.), the presence of wounds or microcracks on grape berry surfaces, and environmental conditions during berry ripening. The microbial complexes within SR-affected grapes exhibit variability among different bioclimates and seasons, with certain microorganisms predominating under specific conditions. This study examined the influence of environmental conditions on the microbiome composition associated with SR-affected grape bunches, utilising data from 41 locations across three distinct Italian bioclimates. We selected nine yeast and two bacterial species frequently isolated from sour-rotted grapes for analysis. The growth responses of these microorganisms to temperature were assessed by categorising them into four ecophysiological clusters. Furthermore, we analysed the distribution of these microorganisms and their respective ecophysiological clusters across the three bioclimates. The results indicate that the microbiomes involved in SR can vary according to the bioclimatic conditions of the grape-growing area. Further research is required to comprehend the ecological requirements of these microorganisms, define their ecological niches to understand their geographical distribution and epidemiology, and enhance SR management strategies.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Luca Languasco
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
6
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
7
|
Baleba SBS, Jiang NJ, Hansson BS. Temperature-mediated dynamics: Unravelling the impact of temperature on cuticular hydrocarbon profiles, mating behaviour, and life history traits in three Drosophila species. Heliyon 2024; 10:e36671. [PMID: 39263086 PMCID: PMC11387341 DOI: 10.1016/j.heliyon.2024.e36671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
In a world grappling with climate change, understanding the enduring impact of changes in temperatures on insect adult traits is crucial. It is proposed that cold- and warm-adapted species exhibit specialized behavioural and physiological responses to their respective temperature ranges. In contrast, generalist species maintain more stable metabolic and developmental rates across a broader range of temperatures, reflecting their ability to exploit diverse thermal niches. Here, we explored this intricate response to temperature exposure in three Drosophila species: Drosophila ezoana originating in Arctic regions, D. novamexicana in arid, hot environments, and in the cosmopolitan species D. virilis. Rearing these flies at 15, 20, 25, and 30 °C revealed striking variations in their cuticular hydrocarbon (CHC) profiles, known to mediate mate recognition and prevent water loss in insects. The cold-adapted D. ezoana consistently exhibited reduced CHC levels with increasing temperatures, while the warm-adapted D. novamexicana and the cosmopolitan D. virilis displayed more nuanced responses. Additionally, we observed a significant influence of rearing temperature on the mating behaviour of these flies, where those reared at the extreme temperatures, 15 and 30 °C, exhibiting reduced mating success. Consequently, this led to a decrease in the production of adult offspring. Also, these adult offspring underwent notable alterations in life history traits, reaching adulthood more rapidly at 25 and 30 °C but with lower weight and reduced longevity. Furthermore, among these offspring, those produced by the cold-adapted D. ezoana were more vulnerable to desiccation and starvation than those from the warm-adapted D. novamexicana and the cosmopolitan D. virilis. In summary, our research demonstrates that Drosophila species from diverse ecological regions exhibit distinct responses to temperature changes, as evidenced by variations in CHC profiles, mating behaviours, fertility, and life history traits. This provides valuable insights into how environmental conditions shape the biology and ecology of insects.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Nan-Ji Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
8
|
Barr JS, Martin LE, Tate AT, Hillyer JF. Warmer environmental temperature accelerates aging in mosquitoes, decreasing longevity and worsening infection outcomes. Immun Ageing 2024; 21:61. [PMID: 39261928 PMCID: PMC11389126 DOI: 10.1186/s12979-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Most insects are poikilotherms and ectotherms, so their body temperature is predicated by environmental temperature. With climate change, insect body temperature is rising, which affects how insects develop, survive, and respond to infection. Aging also affects insect physiology by deteriorating body condition and weakening immune proficiency via senescence. Aging is usually considered in terms of time, or chronological age, but it can also be conceptualized in terms of body function, or physiological age. We hypothesized that warmer temperature decouples chronological and physiological age in insects by accelerating senescence. To investigate this, we reared the African malaria mosquito, Anopheles gambiae, at 27 °C, 30 °C and 32 °C, and measured survival starting at 1-, 5-, 10- and 15-days of adulthood after no manipulation, injury, or a hemocoelic infection with Escherichia coli or Micrococcus luteus. Then, we measured the intensity of an E. coli infection to determine how the interaction between environmental temperature and aging shapes a mosquito's response to infection. RESULTS We demonstrate that longevity declines when a mosquito is infected with bacteria, mosquitoes have shorter lifespans when the temperature is warmer, older mosquitoes are more likely to die, and warmer temperature marginally accelerates the aging-dependent decline in survival. Furthermore, we discovered that E. coli infection intensity increases when the temperature is warmer and with aging, and that warmer temperature accelerates the aging-dependent increase in infection intensity. Finally, we uncovered that warmer temperature affects both bacterial and mosquito physiology. CONCLUSIONS Warmer environmental temperature accelerates aging in mosquitoes, negatively affecting both longevity and infection outcomes. These findings have implications for how insects will serve as pollinators, agricultural pests, and disease vectors in our warming world.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Damschroder D, Sun J, McDonald KO, Buttitta L. Cell cycle re-entry in the aging Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609689. [PMID: 39253469 PMCID: PMC11383271 DOI: 10.1101/2024.08.26.609689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The brain is an organ comprised mostly of long-lived, quiescent cells that perform vital functions throughout an animal's life. Due to the brain's limited regenerative ability, these long-lived cells must engage unique mechanisms to cope with accumulated damage over time. We have shown that a subset of differentiated neuronal and glial cells in the fruit fly brain become polyploid during adulthood. Cell cycle re-entry in the brain has previously been associated with neurodegeneration, but there may be a more complex relationship between polyploidy and cell fitness in the brain. Here, we examine how known lifespan modifiers influence the accumulation of polyploidy in the aging fly brain. Flies aged at a low temperature, or with a low protein diet, accumulate polyploid cells in the brain more slowly than expected if this phenotype were solely regulated by lifespan mechanisms. Despite the slower accumulation of polyploid cells, animals under conditions that extend lifespan eventually reach similar levels of polyploidy in the brain as controls. Our work suggests known lifespan modifiers can influence the timing of cell cycle re-entry in the adult brain, indicating there is a flexible window of cell cycle plasticity in the aging brain.
Collapse
Affiliation(s)
| | - Jenny Sun
- University of Michigan, MCDB, Ann Arbor, MI 48109
| | | | | |
Collapse
|
10
|
Nagaraju MT, Mohan KM, Keerthi MC, Prabhulinga T, Thube S, Shah V, Elansary HO, Mousa IM, El-Sheikh MA. Effect of temperature on the biological parameters of pink bollworm, Pectinophora gossypiella Saunders (Lepidoptera: Gelechiidae). Sci Rep 2024; 14:15047. [PMID: 38951576 PMCID: PMC11217350 DOI: 10.1038/s41598-024-65241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Pink bollworm (PBW) Pectinophora gossypiella is an important pest cotton worldwide. There are multiple factors which determines the occurrence and distribution of P. gossypiella across different cotton growing regions of the world, and one such key factor is 'temperature'. The aim was to analyze the life history traits of PBW across varying temperature conditions. We systematically explored the biological and demographic parameters of P. gossypiella at five distinct temperatures; 20, 25, 30, 35 and 40 ± 1 °C maintaining a photoperiod of LD 16:8 h. The results revealed that the total developmental period of PBW shortens with rising temperatures, and the highest larval survival rates were observed between 30 °C and 35 °C, reaching 86.66% and 80.67%, respectively. Moreover, significant impacts were observed as the pupal weight, percent mating success, and fecundity exhibited higher values at 30 °C and 35 °C. Conversely, percent egg hatching, larval survival, and adult emergence were notably lower at 20 °C and 40 °C, respectively. Adult longevity decreased with rising temperatures, with females outliving males across all treatments. Notably, thermal stress had a persistent effect on the F1 generation, significantly affecting immature stages (egg and larvae), while its impact on reproductive potential was minimal. These findings offer valuable insights for predicting the population dynamics of P. gossypiella at the field level and developing climate-resilient management strategies in cotton.
Collapse
Affiliation(s)
- Madhu Tadagavadi Nagaraju
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India.
- ICAR-Central Plantation Crops Research Institute, Regional Station, Vittal, 574243, Karnataka, India.
| | | | | | - Tenguri Prabhulinga
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | - Shivaji Thube
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | - Hosam O Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, 11451, Riyadh, Saudi Arabia
| | - Ihab Mohamed Mousa
- Department of Botany and Microbiology, College of Food and Agricultural Sciences, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
12
|
Li Q, Chen L, Yang L, Zhang P. FA2H controls cool temperature sensing through modifying membrane sphingolipids in Drosophila. Curr Biol 2024; 34:997-1009.e6. [PMID: 38359821 DOI: 10.1016/j.cub.2024.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Animals have evolved the ability to detect ambient temperatures, allowing them to search for optimal living environments. In search of the molecules responsible for cold-sensing, we examined a Gal4 insertion line in the larvae of Drosophila melanogaster from previous screening work, which has a specific expression pattern in the cooling cells (CCs). We identified that the targeted gene, fa2h, which encodes a fatty acid 2-hydroxylase, plays an important role in cool temperature sensing. We found that fa2h mutants exhibit defects in cool avoidance behavior and that this phenotype could be rescued by genetically re-introducing the wild-type version of FA2H in CCs but not the enzymatically disabled point mutation version. Calcium imaging data showed that CCs require fa2h to respond to cool temperature. Lipidomic analysis revealed that the 2-hydroxy sphingolipids content in the cell membranes diminished in fa2h mutants, resulting in increased fluidity of CC neuron membranes. Furthermore, in mammalian systems, we showed that FA2H strongly regulates the function of the TRPV4 channel in response to its agonist treatment and warming. Taken together, our study has uncovered a novel role of FA2H in temperature sensing and has provided new insights into the link between membrane lipid composition and the function of temperature-sensing ion channels.
Collapse
Affiliation(s)
- Qiaoran Li
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Limin Chen
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Libo Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
13
|
Chiang MH, Lin YC, Wu T, Wu CL. Thermosensation and Temperature Preference: From Molecules to Neuronal Circuits in Drosophila. Cells 2023; 12:2792. [PMID: 38132112 PMCID: PMC10741703 DOI: 10.3390/cells12242792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Temperature has a significant effect on all physiological processes of animals. Suitable temperatures promote responsiveness, movement, metabolism, growth, and reproduction in animals, whereas extreme temperatures can cause injury or even death. Thus, thermosensation is important for survival in all animals. However, mechanisms regulating thermosensation remain unexplored, mostly because of the complexity of mammalian neural circuits. The fruit fly Drosophila melanogaster achieves a desirable body temperature through ambient temperature fluctuations, sunlight exposure, and behavioral strategies. The availability of extensive genetic tools and resources for studying Drosophila have enabled scientists to unravel the mechanisms underlying their temperature preference. Over the past 20 years, Drosophila has become an ideal model for studying temperature-related genes and circuits. This review provides a comprehensive overview of our current understanding of thermosensation and temperature preference in Drosophila. It encompasses various aspects, such as the mechanisms by which flies sense temperature, the effects of internal and external factors on temperature preference, and the adaptive strategies employed by flies in extreme-temperature environments. Understanding the regulating mechanisms of thermosensation and temperature preference in Drosophila can provide fundamental insights into the underlying molecular and neural mechanisms that control body temperature and temperature-related behavioral changes in other animals.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Ramos Aguila LC, Li X, Akutse KS, Bamisile BS, Sánchez Moreano JP, Lie Z, Liu J. Host-Parasitoid Phenology, Distribution, and Biological Control under Climate Change. Life (Basel) 2023; 13:2290. [PMID: 38137891 PMCID: PMC10744521 DOI: 10.3390/life13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | - Jessica Paola Sánchez Moreano
- Grupo Traslacional en Plantas, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador;
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| |
Collapse
|
15
|
Chennuri PR, Zapletal J, Monfardini RD, Ndeffo-Mbah ML, Adelman ZN, Myles KM. Repeat mediated excision of gene drive elements for restoring wild-type populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568397. [PMID: 38045402 PMCID: PMC10690251 DOI: 10.1101/2023.11.23.568397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We demonstrate here that single strand annealing (SSA) repair can be co-opted for the precise autocatalytic excision of a drive element. Although SSA is not the predominant form of DNA repair in eukaryotic organisms, we increased the likelihood of its use by engineering direct repeats at sites flanking the drive allele, and then introducing a double-strand DNA break (DSB) at a second endonuclease target site encoded within the drive allele. We have termed this technology Repeat Mediated Excision of a Drive Element (ReMEDE). Incorporation of ReMEDE into the previously described mutagenic chain reaction (MCR) gene drive, targeting the yellow gene of Drosophila melanogaster, replaced drive alleles with wild-type alleles demonstrating proof-of-principle. Although the ReMEDE system requires further research and development, the technology has a number of attractive features as a gene drive mitigation strategy, chief among these the potential to restore a wild-type population without releasing additional transgenic organisms or large-scale environmental engineering efforts.
Collapse
Affiliation(s)
- Pratima R Chennuri
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Josef Zapletal
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Raquel D Monfardini
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Martial Loth Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin M Myles
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
17
|
Gruss I, Twardowski J, Samsel-Czekała M, Beznosiuk J, Wandzel C, Twardowska K, Wiglusz RJ. The isothermal Boltzmann-Gibbs entropy reduction affects survival of the fruit fly Drosophila melanogaster. Sci Rep 2023; 13:14166. [PMID: 37644276 PMCID: PMC10465501 DOI: 10.1038/s41598-023-41482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
To the best of our knowledge, this is the first experimental evidence of the effect of isothermal changes in entropy on a living organism. In greater detail, the effect of the reduction of the total Boltzmann-Gibbs entropy (S) of the aquatic environment on the survival rate and body mass of the fruit fly Drosophila melanogaster was investigated. The tests were carried out in standard thermodynamic states at room temperature of 296.15 K and ambient atmospheric pressure of 1 bar. Two variants of entropy reduction (ΔS) were tested for ΔS = 28.49 and 51.14 J K-1 mol-1 compared to the blind and control samples. The entropy level was experimentally changed, using the quantum system for isothermal entropy reduction. This system is based on quantum bound entanglement of phonons and the phenomenon of phonon resonance (interference of phonon modes) in condensed matter (Silicon dioxide (SiO2) and single crystals of Silicon (Si0), Aluminum (Al0) plates ("chips"), glass, and water). All studied organisms were of the same age (1 day). Mortality was observed daily until the natural death of the organisms. The investigations showed that changes in the Boltzmann-Gibbs entropy affected the survival and body mass of the fruit flies. On the one hand, the reduction in entropy under isothermal conditions in the aquatic environment for ΔS = 28.49 J K-1 mol-1 resulted in an extension of the lifespan and an increase in the body mass of female fruit flies. On the other hand, the almost twofold reduction in this entropy for ΔS = 51.14 J K-1 mol-1 shortened the lives of the males. Thus, the lifespan and body mass of flies turned out to be a specific reaction of metabolism related to changes in the entropy of the aquatic environment.
Collapse
Affiliation(s)
- Iwona Gruss
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland.
| | - Jacek Twardowski
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland
| | - Małgorzata Samsel-Czekała
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50422, Wroclaw, Poland
| | - Jarosław Beznosiuk
- PER Poland S.A, Ul. Zygmunta Starego 9, 44100, Gliwice, Poland
- PER Switzerland AG, Landstrasse 151, 9494, Schaan, Liechtenstein
| | - Czesław Wandzel
- PER Poland S.A, Ul. Zygmunta Starego 9, 44100, Gliwice, Poland
| | - Kamila Twardowska
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24a, 50363, Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50422, Wroclaw, Poland.
| |
Collapse
|
18
|
Barr JS, Estevez-Lao TY, Khalif M, Saksena S, Yarlagadda S, Farah O, Shivere Y, Hillyer JF. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2023; 148:104525. [PMID: 37236342 DOI: 10.1016/j.jinsphys.2023.104525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Most insects are poikilotherms and ectotherms, so their body temperature fluctuates and closely aligns with the temperature of their environment. The rise in global temperatures is affecting the physiology of insects by altering their ability to survive, reproduce, and transmit disease. Aging also impacts insect physiology because the body deteriorates via senescence as the insect ages. Although temperature and age both impact insect biology, these factors have historically been studied in isolation. So, it is unknown whether or how temperature and age interact to shape insect physiology. Here, we investigated the effects of warmer temperature (27 °C, 30 °C and 32 °C), aging (1, 5, 10, and 15 days post-eclosion), and their interaction on the size and body composition of the mosquito, Anopheles gambiae. We found that warmer temperatures result in slightly smaller adult mosquitoes, as measured by abdomen and tibia length. Aging alters both abdominal length and dry weight in a manner that correlates with the increase in energetic resources and tissue remodeling that occurs after metamorphosis and the senescence-based decline that ensues later. Moreover, the carbohydrate and lipid contents of adult mosquitoes are not meaningfully affected by temperature but are altered by aging: carbohydrate content increases with age whereas lipid content increases over the first few days of adulthood and then decreases. Protein content decreases with both rising temperature and aging, and the aging-associated decrease accelerates at warmer temperatures. Altogether, temperature and age, individually and to a lesser extent interactively, shape the size and composition of adult mosquitoes.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tania Y Estevez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marina Khalif
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saksham Saksena
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Sagnik Yarlagadda
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ommay Farah
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Yasmine Shivere
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Hawley HR, Roberts CJ, Fitzsimons HL. Comparison of neuronal GAL4 drivers along with the AGES (auxin-inducible gene expression system) and TARGET (temporal and regional gene expression targeting) systems for fine tuning of neuronal gene expression in Drosophila. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000885. [PMID: 37396791 PMCID: PMC10314298 DOI: 10.17912/micropub.biology.000885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Spatial and temporal control of gene expression in Drosophila is essential in elucidating gene function. Spatial control is facilitated by the UAS/GAL4 system, and this can be coupled with additional adaptations for precise temporal control and fine tuning of gene expression levels. Here we directly compare the level of pan-neuronal transgene expression governed by nSyb-GAL4 and elav-GAL4, as well as mushroom body-specific expression alongside OK107-GAL4. We also compare the temporal modulation of gene expression in neurons with the auxin-inducible gene expression system (AGES) and temporal and regional gene expression targeting (TARGET) systems.
Collapse
Affiliation(s)
- Hannah R Hawley
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - Celestine J Roberts
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - Helen L Fitzsimons
- School of Natural Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| |
Collapse
|
20
|
Glastad KM, Roessler J, Gospocic J, Bonasio R, Berger SL. Long ant life span is maintained by a unique heat shock factor. Genes Dev 2023; 37:398-417. [PMID: 37257919 PMCID: PMC10270196 DOI: 10.1101/gad.350250.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Eusocial insect reproductive females show strikingly longer life spans than nonreproductive female workers despite high genetic similarity. In the ant Harpegnathos saltator (Hsal), workers can transition to reproductive "gamergates," acquiring a fivefold prolonged life span by mechanisms that are poorly understood. We found that gamergates have elevated expression of heat shock response (HSR) genes in the absence of heat stress and enhanced survival with heat stress. This HSR gene elevation is driven in part by gamergate-specific up-regulation of the gene encoding a truncated form of a heat shock factor most similar to mammalian HSF2 (hsalHSF2). In workers, hsalHSF2 was bound to DNA only upon heat stress. In gamergates, hsalHSF2 bound to DNA even in the absence of heat stress and was localized to gamergate-biased HSR genes. Expression of hsalHSF2 in Drosophila melanogaster led to enhanced heat shock survival and extended life span in the absence of heat stress. Molecular characterization illuminated multiple parallels between long-lived flies and gamergates, underscoring the centrality of hsalHSF2 to extended ant life span. Hence, ant caste-specific heat stress resilience and extended longevity can be transferred to flies via hsalHSF2. These findings reinforce the critical role of proteostasis in health and aging and reveal novel mechanisms underlying facultative life span extension in ants.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian Roessler
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Janko Gospocic
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Jung F, Frey K, Zimmer D, Mühlhaus T. DeepSTABp: A Deep Learning Approach for the Prediction of Thermal Protein Stability. Int J Mol Sci 2023; 24:ijms24087444. [PMID: 37108605 PMCID: PMC10138888 DOI: 10.3390/ijms24087444] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proteins are essential macromolecules that carry out a plethora of biological functions. The thermal stability of proteins is an important property that affects their function and determines their suitability for various applications. However, current experimental approaches, primarily thermal proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage. To close the gap between available experimental data and sequence information, a novel protein thermal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based protein language model for sequence embedding and state-of-the-art feature extraction in combination with other deep learning techniques for end-to-end protein melting temperature prediction. DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and efficient tool for large-scale prediction. The model captures the structural and biological properties that impact protein stability, and it allows for the identification of the structural features that contribute to protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it accessible to researchers in various fields.
Collapse
Affiliation(s)
- Felix Jung
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin Frey
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
22
|
Abaquita TAL, Damulewicz M, Tylko G, Pyza E. The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosophila melanogaster. Front Physiol 2023; 14:1060175. [PMID: 36860519 PMCID: PMC9969482 DOI: 10.3389/fphys.2023.1060175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Accumulating evidence from mammalian studies suggests the dual-faced character of heme oxygenase (HO) in oxidative stress-dependent neurodegeneration. The present study aimed to investigate both neuroprotective and neurotoxic effects of heme oxygenase after the ho gene chronic overexpression or silencing in neurons of Drosophila melanogaster. Our results showed early deaths and behavioral defects after pan-neuronal ho overexpression, while survival and climbing in a strain with pan-neuronal ho silencing were similar over time with its parental controls. We also found that HO can be pro-apoptotic or anti-apoptotic under different conditions. In young (7-day-old) flies, both the cell death activator gene (hid) expression and the initiator caspase Dronc activity increased in heads of flies when ho expression was changed. In addition, various expression levels of ho produced cell-specific degeneration. Dopaminergic (DA) neurons and retina photoreceptors are particularly vulnerable to changes in ho expression. In older (30-day-old) flies, we did not detect any further increase in hid expression or enhanced degeneration, however, we still observed high activity of the initiator caspase. In addition, we used curcumin to further show the involvement of neuronal HO in the regulation of apoptosis. Under normal conditions, curcumin induced both the expression of ho and hid, which was reversed after exposure to high-temperature stress and when supplemented in flies with ho silencing. These results indicate that neuronal HO regulates apoptosis and this process depends on ho expression level, age of flies, and cell type.
Collapse
Affiliation(s)
- Terence Al L. Abaquita
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
23
|
Yang D, Xiao F, Li J, Wang S, Fan X, Ni Q, Li Y, Zhang M, Yan T, Yang M, He Z. Age-related ceRNA networks in adult Drosophila ageing. Front Genet 2023; 14:1096902. [PMID: 36926584 PMCID: PMC10012872 DOI: 10.3389/fgene.2023.1096902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
As Drosophila is an extensively used genetic model system, understanding of its regulatory networks has great significance in revealing the genetic mechanisms of ageing and human diseases. Competing endogenous RNA (ceRNA)-mediated regulation is an important mechanism by which circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) regulate ageing and age-related diseases. However, extensive analyses of the multiomics (circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA) characteristics of adult Drosophila during ageing have not been reported. Here, differentially expressed circRNAs and microRNAs (miRNAs) between 7 and 42-day-old flies were screened and identified. Then, the differentially expressed mRNAs, circRNAs, miRNAs, and lncRNAs between the 7- and 42-day old flies were analysed to identify age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks in ageing Drosophila. Several key ceRNA networks were identified, such as the dme_circ_0009500/dme_miR-289-5p/CG31064, dme_circ_0009500/dme_miR-289-5p/frizzled, dme_circ_0009500/dme_miR-985-3p/Abl, and XLOC_027736/dme_miR-985-3p/Abl XLOC_189909/dme_miR-985-3p/Abl networks. Furthermore, real-time quantitative PCR (qPCR) was used to verify the expression level of those genes. Those results suggest that the discovery of these ceRNA networks in ageing adult Drosophila provide new information for research on human ageing and age-related diseases.
Collapse
Affiliation(s)
- Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Augustin J, Bourgeois G, Brodeur J, Boivin G. Low and high temperatures decrease the mating success of an egg parasitoid and the proportion of females in the population. J Therm Biol 2022; 110:103382. [DOI: 10.1016/j.jtherbio.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/06/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
|
25
|
Shaver AO, Garcia BM, Gouveia GJ, Morse AM, Liu Z, Asef CK, Borges RM, Leach FE, Andersen EC, Amster IJ, Fernández FM, Edison AS, McIntyre LM. An anchored experimental design and meta-analysis approach to address batch effects in large-scale metabolomics. Front Mol Biosci 2022; 9:930204. [PMID: 36438654 PMCID: PMC9682135 DOI: 10.3389/fmolb.2022.930204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Untargeted metabolomics studies are unbiased but identifying the same feature across studies is complicated by environmental variation, batch effects, and instrument variability. Ideally, several studies that assay the same set of metabolic features would be used to select recurring features to pursue for identification. Here, we developed an anchored experimental design. This generalizable approach enabled us to integrate three genetic studies consisting of 14 test strains of Caenorhabditis elegans prior to the compound identification process. An anchor strain, PD1074, was included in every sample collection, resulting in a large set of biological replicates of a genetically identical strain that anchored each study. This enables us to estimate treatment effects within each batch and apply straightforward meta-analytic approaches to combine treatment effects across batches without the need for estimation of batch effects and complex normalization strategies. We collected 104 test samples for three genetic studies across six batches to produce five analytical datasets from two complementary technologies commonly used in untargeted metabolomics. Here, we use the model system C. elegans to demonstrate that an augmented design combined with experimental blocks and other metabolomic QC approaches can be used to anchor studies and enable comparisons of stable spectral features across time without the need for compound identification. This approach is generalizable to systems where the same genotype can be assayed in multiple environments and provides biologically relevant features for downstream compound identification efforts. All methods are included in the newest release of the publicly available SECIMTools based on the open-source Galaxy platform.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Department of Genetics, University of Georgia, Athens, GA, United States,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Brianna M. Garcia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States,Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Goncalo J. Gouveia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States,Department of Biochemistry, University of Georgia, Athens, GA, United States
| | - Alison M. Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Zihao Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Carter K. Asef
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ricardo M. Borges
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Franklin E. Leach
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States,Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arthur S. Edison
- Department of Genetics, University of Georgia, Athens, GA, United States,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States,Department of Biochemistry, University of Georgia, Athens, GA, United States
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States,University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States,*Correspondence: Lauren M. McIntyre,
| |
Collapse
|
26
|
Guillén L, Pascacio-Villafán C, Osorio-Paz I, Ortega-Casas R, Enciso-Ortíz E, Altúzar-Molina A, Velázquez O, Aluja M. Coping with global warming: Adult thermal thresholds in four pestiferous Anastrepha species determined under experimental laboratory conditions and development/survival times of immatures and adults under natural field conditions. Front Physiol 2022; 13:991923. [PMID: 36304579 PMCID: PMC9593313 DOI: 10.3389/fphys.2022.991923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Climate change, particularly global warming, is disturbing biological processes in unexpected ways and forcing us to re-study/reanalyze the effects of varying temperatures, among them extreme ones, on insect functional traits such as lifespan and fecundity/fertility. Here we experimentally tested, under both laboratory and field conditions, the effects of an extreme range of temperatures (5, 10, 15, 20, 30, 40, and 45 °C, and the naturally varying conditions experienced in the field), on survivorship/lifespan, fecundity, and fertility of four pestiferous fruit fly species exhibiting contrasting life histories and belonging to two phylogenetic groups within the genus Anastrepha: A. ludens, A. obliqua, A. striata, and A. serpentina. In the field, we also measured the length of the entire life cycle (egg to adult), and in one species (A. ludens), the effect on the latter of the host plant (mango and grapefruit). Under laboratory conditions, none of the adults, independent of species, could survive a single day when exposed to a constant temperature of 45 °C, but A. striata and A. serpentina females/males survived at the highly contrasting temperatures of 5 and 40 °C at least 7 days. Maximum longevity was achieved in all species at 15 °C (375, 225, 175 and 160 days in A. ludens, A. serpentina, A. striata and A. obliqua females, respectively). Anastrepha ludens layed many eggs until late in life (368 days) at 15 °C, but none eclosed. Eclosion was only observed in all species at 20 and 30 °C. Under natural conditions, flies lived ca. 100 days less than in the laboratory at 15 °C, likely due to the physiological cost of dealing with the highly varying environmental patterns over 24 h (minimum and maximum temperatures and relative humidity of ca. 10–40 °C, and 22–100%, respectively). In the case of A. ludens, the immature’s developmental time was shorter in mango, but adult survival was longer than in grapefruit. We discuss our results considering the physiological processes regulating the traits measured and tie them to the increasing problem of global warming and its hidden effects on the physiology of insects, as well as the ecological and pest management implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martín Aluja
- *Correspondence: Larissa Guillén, ; Martín Aluja,
| |
Collapse
|
27
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
28
|
Macartney EL, Bonduriansky R. Does female resistance to mating select for live-fast-die-young strategies in males? A comparative analysis in the genus Drosophila. J Evol Biol 2021; 35:192-200. [PMID: 34547153 DOI: 10.1111/jeb.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Female promiscuity is a pervasive selective force on male reproductive traits, and the strength of sexual selection is predicted to influence the trade-off between lifespan and reproduction. In species where sexual selection is intense, males are predicted to invest in sexual strategies that shorten their lifespan, potentially resulting in female-biased sexual dimorphism in longevity. However, comparative analyses have provided contrasting results, potentially due to the use of broad mating system categories or sexual size dimorphism as a proxy for sexual selection. Here, we used female remating rate (i.e. female promiscuity) as a more direct measure of sexual selection strength and conducted a phylogenetic comparative analysis of the relationship between female remating rate and sexual dimorphism in lifespan in 29 species of Drosophila. We did not find strong evidence that female remating rate was correlated with sexual dimorphism in lifespan. However, we found that male and female lifespans are positively correlated among species and that phylogeny and residual variance (i.e. variation in non-phylogenetic factors) are important in determining female remating rate, male and female lifespans separately, and the correlation between male and female lifespan. We suggest that variation in the nature of sexual competition and variation between studies could account for some of the unexplained variation among species in the relation between female remating rate and sexual dimorphism in lifespan.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Faculty of Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Faculty of Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Thermal and Oxygen Flight Sensitivity in Ageing Drosophila melanogaster Flies: Links to Rapamycin-Induced Cell Size Changes. BIOLOGY 2021; 10:biology10090861. [PMID: 34571738 PMCID: PMC8464818 DOI: 10.3390/biology10090861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Cold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature. Abstract Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Collapse
|
30
|
Malod K, Roets PD, Bosua H, Archer CR, Weldon CW. Selecting on age of female reproduction affects lifespan in both sexes and age-dependent reproductive effort in female (but not male) Ceratitis cosyra. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Durak R, Dampc J, Kula-Maximenko M, Mołoń M, Durak T. Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase. Antioxidants (Basel) 2021; 10:1181. [PMID: 34439429 PMCID: PMC8388978 DOI: 10.3390/antiox10081181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids' development, and a negative correlation between the activity of the antioxidant enzymes and aphids' development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.
Collapse
Affiliation(s)
- Roma Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Jan Dampc
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Mateusz Mołoń
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| | - Tomasz Durak
- Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland; (J.D.); (M.M.); (T.D.)
| |
Collapse
|
32
|
Dampc J, Mołoń M, Durak T, Durak R. Changes in Aphid-Plant Interactions under Increased Temperature. BIOLOGY 2021; 10:480. [PMID: 34071458 PMCID: PMC8227038 DOI: 10.3390/biology10060480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Thermal stress in living organisms causes an imbalance between the processes of creating and neutralizing reactive oxygen species (ROS). The work aims to explain changes in the aphid-host plant interaction due to an increase in temperature. Tests were carried out at three constant temperatures (20, 25, or 28 °C). Firstly, changes in development of Macrosiphum rosae were determined. Secondly, the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) in aphid M. rosae tissues and host plant were analyzed at all temperatures. An increase in temperature to 28 °C had a negative effect on the biology of M. rosae by shortening the period of reproduction and longevity, thus reducing the demographic parameters and fecundity. Two stages of the aphid's defensive response to short-term (24-96 h) and long-term (2 weeks) thermal stress were observed. Aphid defense responses varied considerably with temperature and were highest at 28 °C. In turn, for the plants, which were exposed to both abiotic stress caused by elevated temperature and biotic stress caused by aphid feeding, their enzymatic defense was more effective at 20 °C, when enzyme activities at their highest were observed.
Collapse
Affiliation(s)
- Jan Dampc
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
| | - Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Durak
- Department of Plant Physiology and Ecology, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland;
| | - Roma Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
| |
Collapse
|
33
|
Privalova V, Szlachcic E, Sobczyk Ł, Szabla N, Czarnoleski M. Oxygen Dependence of Flight Performance in Ageing Drosophila melanogaster. BIOLOGY 2021; 10:327. [PMID: 33919761 PMCID: PMC8070683 DOI: 10.3390/biology10040327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen conditions. We measured two types of locomotor performance in ageing Drosophila melanogaster flies: the frequency of wing beats and the capacity to climb vertical surfaces. Flight performance was measured under normoxia and hypoxia. As anticipated, ageing flies showed systematic deterioration of climbing performance, and low oxygen impeded flight performance. Against predictions, flight performance did not deteriorate with age, and younger and older flies showed similar levels of tolerance to low oxygen during flight. We suggest that among different insect locomotory activities, flight performance deteriorates slowly with age, which is surprising, given that insect flight is one of the most energy-demanding activities in animals. Apparently, the superior capacity of insects to rapidly deliver oxygen to flight muscles remains little altered by ageing, but we showed that insects can become oxygen limited in habitats with a poor oxygen supply (e.g., those at high elevations) during highly oxygen-demanding activities such as flight.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Czarnoleski
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (V.P.); (E.S.); (Ł.S.); (N.S.)
| |
Collapse
|