1
|
Cai XY, Tang HT, Wang YZ, Ul Haq I, Wang JD, Hou YM. Salivary effector SfPDI modulates plant defense responses to enhance foraging efficiency of Spodoptera frugiperda. Int J Biol Macromol 2025; 308:142548. [PMID: 40147661 DOI: 10.1016/j.ijbiomac.2025.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Research on the interactions between herbivorous insects and plants, facilitated by insect secretions, has increasingly emphasized species with chewing mandibles over time. However, the molecular mechanisms underlying the interaction between Spodoptera frugiperda and plants remain poorly understood. In this study, we identified a protein disulfide isomerase (SfPDI) from the salivary glands of S. frugiperda that regulates the interaction between S. frugiperda and plants. We found that SfPDI is highly expressed in the salivary glands of S. frugiperda and is secreted into plants as a secretory protein. The RNAi revealed that SfPDI contributes to the growth and development of S. frugiperda on host plants, while its overexpression in tobacco induces necrosis in tobacco leaves and triggers a burst of reactive oxygen species (ROS). Differentially expressed genes suggested that SfPDI may suppresses the expression of plant JA by positively regulating MYC2 and TIFYs and negatively regulating WRKYs. Notably, SfPDI may modulate these high expression of receptors (NB-LRR, GL-RLK, and RLK) lead to hypersensitive response (HR) cell death and the accumulation of lignification of plant. This study provides a foundation for further exploring insect-plant interaction mechanisms and a theoretical basis for developing insect-resistant germplasm and environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua-Tao Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Zhou Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Da Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - You-Ming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Onjura CO, Peter E, Asudi GO, Gicheru MM, Mohamed SA, Bruce TJA, Tamiru A. Differential Responses of the Egg-Larval Parasitoid Chelonus Bifoveolatus To Fall Armyworm-Induced and Constitutive Volatiles of Diverse Maize Genotypes. J Chem Ecol 2025; 51:34. [PMID: 40072721 PMCID: PMC11903515 DOI: 10.1007/s10886-025-01585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a serious invasive crop pest and threat to food security. Conventional pest control approaches using chemical pesticides can lead to adverse environmental and human health problems calling for safer alternative pest management options. Volatile organic compounds (VOCs) released by plants constitutively and in response to herbivory have been shown to enhance ecologically benign biocontrol alternatives to chemical insecticides for pest management. However, genotypic variations in VOC emissions have also been reported for plant species including maize (Zea mays). Hence, a better insight into the variations in odor profiles of different maize varieties and their corresponding role in recruiting pests' natural enemies are crucial for developing a sustainable biocontrol strategy. Our present study assessed the behavioral responses of the FAW egg-larval parasitoid, Chelonus bifoveolatus (Braconidae: Hymenoptera), to constitutive and induced volatiles from different maize landraces (Jowi Red, Nyamula) and hybrids (SC Duma, DK 777) grown in Kenya and compared their volatile profiles. In a four-arm olfactometer, female parasitoid wasps were significantly attracted to FAW oviposition-induced VOCs from SC Duma and Nyamula. Chemical analysis of test plant volatiles revealed significant variation in the quantity and quality of key bioactive VOCs such as (E)-2-hexenal, α-pinene, (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene, α-copaene, (E)-β-farnesene and (E, E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. Our findings provide more insights into genetic variation in VOCs emission across maize genotypes and the corresponding differences in attraction of pest natural enemies that provide indirect defense. As such, these traits could be exploited to enhance ecologically sustainable pest management strategies.
Collapse
Affiliation(s)
- Collins O Onjura
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
- Kenyatta University, P. O. BOX 43844-00100, Nairobi, Kenya
| | - Emmanuel Peter
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
- Federal University Gashua, P.M.B 1005, Gashua, Yobe State, Nigeria
| | - George O Asudi
- Kenyatta University, P. O. BOX 43844-00100, Nairobi, Kenya
| | | | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Toby J A Bruce
- School of Life Sciences, Keele University, Staffordshire, Keele, ST5 5BG, UK
| | - Amanuel Tamiru
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
3
|
Xu S, Hu X, Liu Y, Wang X, Wang Y, Li G, Turlings TCJ, Li Y. The Threat of the Fall Armyworm to Asian Rice Production Is Amplified by the Brown Planthopper. PLANT, CELL & ENVIRONMENT 2025; 48:1060-1072. [PMID: 39400920 PMCID: PMC11695769 DOI: 10.1111/pce.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
The recent invasion of the fall armyworm (FAW) into Asia not only has had a major impact on maize yield but is feared to also pose a risk to rice production. We hypothesized that the brown planthopper (BPH) may aggravate this risk based on a recently discovered mutualism between the planthopper and the rice striped stem borer. Here we show that BPH may indeed facilitate a shift of FAW to rice. FAW females were found to strongly prefer to oviposit on BPH-infested rice plants, which emitted significantly elevated levels of five volatile compounds. A synthetic mixture of these compounds had a potent stimulatory effect on ovipositing females. Although FAW caterpillars exhibited relatively poor growth on both uninfested and BPH-infested rice, a considerable portion completed their development on young plants. Moreover, FAW were found to readily pupate and survive in exceedingly moist soils typical for rice cultivation, further highlighting FAW's potential to switch to rice. We conclude that BPH, by changing the bouquet of volatiles emitted by rice plants, may greatly facilitate this switch. These findings, together with a current increase of nonflooded upland rice in Asia, warrant careful monitoring and specific control measures against FAW to safeguard Asian rice production.
Collapse
Affiliation(s)
- Shengliang Xu
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoyun Hu
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yuexian Liu
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaolong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yanan Wang
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
| | - Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural SciencesZhengzhouHenanChina
| | - Ted C. J. Turlings
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
- Laboratory of Fundamental and Applied Research in Chemical EcologyUniversity of NeuchȃtelNeuchȃtelSwitzerland
| | - Yunhe Li
- State Key Laboratory of Cotton Bio‐Breeding and Integrated Utilization, School of Life Sciences, College of AgricultureHenan UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Ishwarya Lakshmi KS, Dhillon MK, Mukri G, Mahendra KR, Gowtham KV, Tanwar AK. Induced biochemical variations in maize parental lines affect the life table and age-specific reproductive potential of Spodoptera frugiperda (J.E. Smith). FRONTIERS IN PLANT SCIENCE 2024; 15:1517848. [PMID: 39717731 PMCID: PMC11663683 DOI: 10.3389/fpls.2024.1517848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
In recent years, the fall armyworm, Spodoptera frugiperda has rapidly emerged as a global invasive pest, challenging the maize production and leading to considerable economic losses. Developing resistant hybrids is essential for sustainable maize cultivation, which requires a comprehensive understanding of resistance traits and the underlying mechanisms in parental lines. To address this need, the present study aimed to identify the sources of resistance, age and stage-specific effects and role of phytochemicals in plant defense against S. frugiperda in thirty diverse maize parental lines [17 female (A) and 13 male (R) lines]. The study revealed that the larvae fed on maize A-lines CML 565, AI 501, AI 544 and PDIM 639, and R-lines AI 125, AI 542, AI 155, AI 1100 and PML 105 exhibited a reduced intrinsic (r) and finite rate of increase (λ), and net (R0) and gross reproduction rates (GRR); while, increased mean generation time (T) and doubling time (DT). Among these, A-lines CML 565, PDIM 639 and AI 544, and R-lines AI 125, AI 155 and AI 1100 showed higher detrimental effect on reproductive value of S. frugiperda. Aforesaid A- and R-lines were also found with greater increase in insect-induced test phytochemicals compared to other lines, accounting for 25.0 to 72.8% variation in the life table parameters, indicating antibiosis effect on S. frugiperda. Among the test phytochemicals, tannins, CAT, PAL, TAL and APX inflicted greater effect, indicating their role in induced-biochemical defense against S. frugiperda.
Collapse
Affiliation(s)
| | - Mukesh K. Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ganapati Mukri
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. R. Mahendra
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. V. Gowtham
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditya K. Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
6
|
Ajmal MS, Ali S, Jamal A, Saeed MF, Radicetti E, Civolani S. Feeding and Growth Response of Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) towards Different Host Plants. INSECTS 2024; 15:789. [PMID: 39452365 PMCID: PMC11508452 DOI: 10.3390/insects15100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The fall armyworm, Spodoptera frugiperda, is a major migratory polyphagous insect pest of various crops. The essential nutrient and mineral profile of the host plants determines the feeding fitness of herbivorous insects. As a result, the growth and development of insects is affected. To determine the effect of the nutrient and mineral profile of different host plants (maize, castor bean, cotton, cabbage, okra, and sugarcane) on the growth and development of S. frugiperda, biological parameters like larval weight, pupal weight (male/female), and feeding and growth indices were calculated. The proximate compositions such as crude protein, crude fat, crude fibre, and ash and mineral contents of the tested host plants showed significant differences (p < 0.05). The feeding indices on these host plants also differed significantly (p < 0.05). The maximum relative growth rate (RGR), relative consumption rate (RCR), and consumption index (CI) were recorded in S. frugiperda larvae that fed on maize and castor bean leaves. The crude protein, dry matter, and ash contents in maize and castor bean were significantly higher and positively correlated with the RGR and RCR of S. frugiperda larvae. The larval, male and female pupal weights were the maximum in the larvae feeding on the castor bean host plant. These findings provide novel information based on nutritional ecology to develop sustainable integrated pest management strategies using selective crop rotation.
Collapse
Affiliation(s)
- Muhammad Saqib Ajmal
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar 25130, Pakistan;
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| | - Stefano Civolani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
7
|
Xu G, Li C, Gui W, Xu M, Lu J, Qian M, Zhang Y, Yang G. Colonization of Piriformospora indica enhances rice resistance against the brown planthopper Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4386-4398. [PMID: 38661024 DOI: 10.1002/ps.8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Piriformospora indica is an endophytic fungus that can promote the growth and confer resistance against diverse stresses in host plants by root colonization. However, the effects of P. indica colonization on improving plant resistance to insect pests are still less explored. The brown planthopper (BPH) Nilaparvata lugens is a serious monophagous pest that causes extensive damage to rice plants. Here, we aimed to evaluate the effects of P. indica colonization on rice resistance against BPH. RESULTS The colonization of P. indica in rice roots resisted damage from BPH. Age-stage, two-sex life table analyses showed that feeding on P. indica-colonized rice plants affected BPH's female adult longevity, oviposition period, fecundity, population parameters and population size. BPH female adults feeding on P. indica-colonized plants excreted less honeydew. P. indica colonization remarkably increased the duration of np, N2, and N3 waveform, as well as the occurrences of N1 and N2, and decreased the duration of N4-b for BPH on rice plants. Meanwhile, the weight of BPH on the colonized plants was significantly lower than the control. In addition, the feeding and oviposition preferences of BPH to P. indica-colonized plants were reduced. qRT-RCR analyses revealed that P. indica colonization induced the expressions of jasmonic acid (JA)- and salicylic acid (SA)-related genes in rice plants. CONCLUSION P. indica colonization can reduce BPH performance on rice plants with potential inhibitory effects on population growth. Collectively, these results support the potential for endophytically colonized P. indica as an effective strategy to improve insect resistance of crops. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chutong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Gui
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Meiqi Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing Lu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Rajesh Chowdary L, Suneel Kumar GV, Bharathi S, Sarada O, Nagaraju Y, Manikyanahalli Chandrashekara K, Naga Harish G. Off-season survival and life history of beet armyworm, Spodoptera exigua (Hubner) on various host plants. Sci Rep 2024; 14:13721. [PMID: 38877078 PMCID: PMC11178929 DOI: 10.1038/s41598-024-64639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
The beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), has become a significant pest of chickpea in recent years. The polyphagous nature allows it to survive on various hosts during the off-season, creating a great menace to the crop in the following season. To assess the incidence and document the alternate hosts of S. exigua, a rapid roving survey was conducted in 11 chickpea-growing areas of Prakasam district, Andhra Pradesh, India. Additionally, the life history traits of S. exigua were studied on major alternate host plants under laboratory conditions (27 ± 1 °C and 70 ± 2% RH) to understand the survival, life expectancy and potential contribution to future populations. The results show that, among the different crops surveyed, the maximum larval incidence was noticed in maize (1.93 larvae/plant), cowpea (1.73 larvae/plant), and sunflower (1.68 larvae/plant) during the off-season. Life history studies of S. exigua showed that highest larval survival percentage was observed on chickpea (83.6%), while the lowest was on maize (44.5%). The mean developmental time for larvae was longest on maize (27.1 days) and shortest on chickpea (14.9 days). Larvae did not develop beyond the third instar when fed with chilli. The growth index statistics showed chickpea (9.2) was the most suitable host plant, whereas maize (0.9) was the least suitable host. The age-stage-specific survival rate (Sxj) varied across developmental stages, and the survival curves overlapped, indicating different growth rates among individuals. The life expectancy (exj) at age zero was highest on groundnut (37.06 days). The intrinsic rate of increase (r) of S. exigua was lowest on maize (0.10 ± 0.0013) and highest on chickpea (0.22 ± 0.0010). Similarly, the net reproductive rate (R0) was highest on chickpea (846.39 ± 18.22) and lowest on maize (59.50 ± 2.06). The population doubled every 3.08 ± 0.011 days on chickpea compared to 7.22 ± 0.80 days on maize. The study conclusively indicates that chickpea and sunflower, primarily cultivated during the rabi season in India, are the most preferred hosts for S. exigua. In contrast, maize and cotton, mainly grown during the kharif season, are less preferred and merely support the pest's survival. Consequently, S. exigua switches hosts between different crops growing seasons, so effective management of S. exigua during the kharif season can help prevent pest outbreaks during the rabi season.
Collapse
Affiliation(s)
- L Rajesh Chowdary
- Agricultural Research Station, Acharya N. G. Ranga Agricultural University, Darsi, Prakasam, 523247, India
| | - G V Suneel Kumar
- Administrative Office, Acharya N. G. Ranga Agricultural University, Lam, Guntur, 522034, Andhra Pradesh, India
| | - S Bharathi
- Agricultural Research Station, Acharya N. G. Ranga Agricultural University, Darsi, Prakasam, 523247, India
| | - O Sarada
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University, Lam, Guntur, 522034, Andhra Pradesh, India
| | - Yalavarthi Nagaraju
- Central Sericultural Research and Training Institute, Central Silk Board, Berhampore, West Bengal, India.
| | | | - Giri Naga Harish
- Agricultural Research Station, Acharya N. G. Ranga Agricultural University, Darsi, Prakasam, 523247, India
| |
Collapse
|
9
|
Ul Haq I, Zhang KX, Gou Y, Hajjar D, Makki AA, Alkherb WAH, Ali H, Liu C. Transcriptomic and biochemical insights into fall armyworm ( Spodoptera frugiperda) responses on silicon-treated maize. PeerJ 2024; 12:e16859. [PMID: 38410805 PMCID: PMC10896081 DOI: 10.7717/peerj.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background The fall armyworm, Spodoptera frugiperda, is an agricultural pest of significant economic concern globally, known for its adaptability, pesticide resistance, and damage to key crops such as maize. Conventional chemical pesticides pose challenges, including the development of resistance and environmental pollution. The study aims to investigate an alternative solution: the application of soluble silicon (Si) sources to enhance plant resistance against the fall armyworm. Methods Silicon dioxide (SiO2) and potassium silicate (K2SiO3) were applied to maize plants via foliar spray. Transcriptomic and biochemical analyses were performed to study the gene expression changes in the fall armyworm feeding on Si-treated maize. Results Results indicated a significant impact on gene expression, with a large number of differentially expressed genes (DEGs) identified in both SiO2 and K2SiO3 treatments. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified critical DEGs involved in specific pathways, including amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification, significantly altered at both Si sources. Biochemical analyses further revealed that Si treatments inhibited several enzyme activities (glutamate dehydrogenase, trehalase, glucose-6-phosphate dehydrogenase, chitinase, juvenile hormone esterase, and cyclooxygenase while simultaneously inducing others (total protein, lipopolysaccharide, fatty acid synthase, ATPase, and cytochrome P450), thus suggesting a toxic effect on the fall armyworm. In conclusion, Si applications on maize influence the gene expression and biochemical activities of the fall armyworm, potentially offering a sustainable pest management strategy.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ke-Xin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dina Hajjar
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa A Makki
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa A H Alkherb
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Zhang Q, Zhang Y, Zhang K, Liu H, Gou Y, Li C, Haq IU, Quandahor P, Liu C. Molecular Characterization Analysis and Adaptive Responses of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Nutritional and Enzymatic Variabilities in Various Maize Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:597. [PMID: 38475444 DOI: 10.3390/plants13050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The fall armyworm, Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), a common agricultural pest known for its extensive migration and wide host ranges, causes considerable harm to maize (Zea mays L.). In this study, we utilized two molecular marker genes, COI and Tpi, to compare the genetic characteristics of the collected original samples. Additionally, through an interactive study between S. frugiperda larvae and six maize varieties aiming to understand the insect's adaptability and resistance mechanisms, our analysis revealed that both the COI and Tpi genes identified S. frugiperda as the corn strain. Further examination of the larvae showed significant differences in nutritional indices, digestive, and detoxification enzyme activities. Special maize varieties were found to offer higher efficiency in nutrient conversion and assimilation compared with common varieties. This study revealed adaptations in S. frugiperda's digestive and detoxification processes in response to the different maize varieties. For instance, larvae reared on common maize exhibited elevated amylase and lipase activities. Interestingly, detoxification enzyme activities exhibited different patterns of variation in different maize varieties. The Pearson correlation analysis between nutritional indices, enzyme activities, and the nutritional content and secondary metabolites of maize leaves provided deeper insights into the pest's adaptability. The results highlighted significant relationships between specific nutritional components in maize and the physiological responses of S. frugiperda. Overall, our findings contribute substantially to the understanding of S. frugiperda's host plant adaptability, offering critical insights for the development of sustainable pest management strategies.
Collapse
Affiliation(s)
- Qiangyan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlei Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Plant Protection and Quarantine Station, Dingxi 743099, China
| | - Kexin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiping Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuping Gou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Inzamam Ul Haq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter Quandahor
- CSIR-Savanna Agricultural Research Institute, Tamale P.O. Box 52, Ghana
| | - Changzhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
11
|
Jeon J, Rahman MM, Han C, Shin J, Sa KJ, Kim J. Spodoptera frugiperda (Lepidoptera: Noctuidae) Life Table Comparisons and Gut Microbiome Analysis Reared on Corn Varieties. INSECTS 2023; 14:358. [PMID: 37103173 PMCID: PMC10146201 DOI: 10.3390/insects14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fall armyworm (Spodoptera frugiperda, FAW) is an invasive migratory pest that has recently spread to Korea, damaging several corn cultivars with significant economic value. Comparisons of the growth stages of FAW were conducted based on the preferred feed. Therefore, we selected six maize cultivars, including three categories: (i) commercial waxy corn (mibaek 2-ho, heukjeom 2-ho, dreamoak); (ii) popcorn (oryun popcorn, oryun 2-ho); and (iii) processing corn (miheukchal). A significant effect was observed during the larvae period, pupal period, egg hatching ratio, and larvae weight, whereas the total survival period and adult period did not show significant variation among the tested corn cultivars. We identified variations in the FAW gut bacterial community that were dependent on the genotype of the corn maize feed. The identified phyla included Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Among these genera, the most abundant bacterial genus was Enterococcus, followed by Ureibacillus. Enterococcus mundtii was the most abundant among the top 40 bacterial species. The intergenic PCR-based amplification and gene sequence of the colony isolates were also matched to the GenBank owing to the prevalence of E. mundtii. These results showed that the bacterial diversity and abundance of particular bacteria in the guts of FAWs were influenced by the six major maize corn cultivars.
Collapse
Affiliation(s)
- Jungwon Jeon
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyu Jin Sa
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Plant Medicine, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Gebretsadik KG, Liu Y, Yin Y, Zhao X, Li X, Chen F, Zhang Y, Chen J, Chen A. Population Growth of Fall Armyworm, Spodoptera frugiperda Fed on Cereal and Pulse Host Plants Cultivated in Yunnan Province, China. PLANTS (BASEL, SWITZERLAND) 2023; 12:950. [PMID: 36840298 PMCID: PMC9968186 DOI: 10.3390/plants12040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 05/12/2023]
Abstract
The fall armyworm, Spodoptera frugiperda is a major agricultural pest in China, and has migrated from its continuous breeding area to other parts of China. In our study, the biological behaviors of S. frugiperda fed on maize, wheat, barley, faba beans, and soya beans were evaluated in a growth chamber. Results indicated that maize-fed S. frugiperda larvae performed well, as evidenced by shorter larva-adult periods, adult pre-oviposition period (APOP), total pre-oviposition period (TPOP), and generation time (T), and a higher survival rate, intrinsic (r) and finite (λ) rate of increase, and net reproductive rate (Ro), However, S. frugiperda larvae performed weakly when fed barley and faba bean plants, as indicated by lower survival rates, r, and λ, and longer pre-adult period, TPOP, and T. A heavier pupal weight of both sexes was recorded on faba beans (0.202 g) and a lighter weight on barley (0.169 g). Fecundity was higher when fed faba beans and maize, and lower when fed wheat and barley. Thus, maize was the most optimal and barley was the least optimal host plant, followed by faba beans, for S. frugiperda larvae growth and development. This study enhances our knowledge of S. frugiperda in these host plants and can help in the design of management approaches.
Collapse
Affiliation(s)
- Kifle Gebreegziabiher Gebretsadik
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
- Tigray Agricultural Research Institute (TARI), Mekelle 5637, Ethiopia
| | - Ying Liu
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| | - Yanqiong Yin
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| | - Xueqing Zhao
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| | - Xiangyong Li
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| | - Fushou Chen
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| | - Yong Zhang
- Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Julian Chen
- Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aidong Chen
- Agricultural Environment and Resources Institute (AERI), Yunnan Academy of Agricultural Science (YAAS), Kunming 650205, China
| |
Collapse
|
13
|
dos Santos MVC, Nascimento PT, Simeone ML, Lima PF, Simeão RM, Auad A, Oliveira I, Mendes S. Performance of Fall Armyworm Preimaginal Development on Cultivars of Tropical Grass Forages. INSECTS 2022; 13:1139. [PMID: 36555049 PMCID: PMC9784468 DOI: 10.3390/insects13121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a polyphagous pest species capable of feeding on almost all forage and grain crops, although the food quality for the larvae likely varies among plant species and cultivars. The cultivation of grass forage species with grains has increasingly been adopted in Brazil, within both no-tillage and crop-livestock integration systems. In this study, we evaluated the performance of S. frugiperda larvae on 14 forage cultivars of Brachiaria, Panicum, and Cynodon, which are widely used in integrated cropping systems in Brazil. The biological performance of S. frugiperda varied among the cultivars. The larval survival rates were lower on Panicum maximum 'Massai' and P. maximum 'Tamani' cultivars. The insects had the highest performance indexes on Brachiaria brizantha 'Paiaguás', B. brizantha 'Marandu', and B. brizantha 'Xaraés' cultivars, followed by Brachiaria ruziziensis, previously proposed as a standard grass forage for comparisons with other species. On P. maximum, the insect had the lowest performance indexes, with values equal to zero when feeding on the P. maximum 'Massai' and 'Tamani' cultivars. These results will help make management decisions when cultivating grass forage plants in crop production systems in which S. frugiperda infestation is of concern.
Collapse
Affiliation(s)
- Marcos V. C. dos Santos
- Campus de Sete Lagoas, Universidade Federal de São João Del Rei, Rodovia MG-424, Km 47, Bairro Indústrias, Caixa Postal 56, Sete Lagoas 35701-970, MG, Brazil
| | | | - Maria L. Simeone
- Embrapa Milho e Sorgo, Rodovia MG 424, Km 45, Sete Lagoas 35701-970, MG, Brazil
| | - Patrick F. Lima
- Campus de Sete Lagoas, Universidade Federal de São João Del Rei, Rodovia MG-424, Km 47, Bairro Indústrias, Caixa Postal 56, Sete Lagoas 35701-970, MG, Brazil
| | - Rosangela M. Simeão
- Embrapa Gado de Corte, Av. Rádio Maia, 850, Campo Grande 79106-550, MS, Brazil
| | - Alexander Auad
- Embrapa Gado de Leite, Av. Eugênio do Nascimento, 610, Juiz de Fora 36038-330, MG, Brazil
| | - Ivênio Oliveira
- Embrapa Milho e Sorgo, Rodovia MG 424, Km 45, Sete Lagoas 35701-970, MG, Brazil
| | - Simone Mendes
- Embrapa Milho e Sorgo, Rodovia MG 424, Km 45, Sete Lagoas 35701-970, MG, Brazil
| |
Collapse
|