1
|
Lu Z, Wu X, Zhang T, Tang C. Ultrastructural Changes in Final Instar Larvae of Papilio polytes (Lepidoptera: Papilionidae) Lead to Differences in Epidermal Spreading of Water and Adjuvants. Biomimetics (Basel) 2025; 10:251. [PMID: 40277650 PMCID: PMC12025132 DOI: 10.3390/biomimetics10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Papilio polytes is a cosmopolitan Lepidoptera species of controversial use and management. It remained unclear how its epidermal ultrastructure changes during development and how this affects its wetting properties in relation to water and pesticide adjuvants. In this study, the epidermis of P. polytes was systematically examined at the important feeding stage (from 3rd to 5th instar). Its ultrastructure was quantitatively observed by scanning electron microscopy. Its wetting properties towards the three main types of adjuvants and water were evaluated by contact angle. The chemical functional group differences between different instars and different adjuvant treatments were analyzed by mid-infrared spectroscopy. The correlation between the ultrastructural deformation and variations in wetting properties was verified by simulation tests. It was found that the complication of the epidermal structure was the leading factor for the significant increase in hydrophobicity during development. Cationic adjuvants had the best infiltrating effect on complex epidermal structures and organosilicon adjuvants had the best infiltrating effect on simple epidermal structures. The results provide data for biomimetic design for different wetting properties and suggest the feasibility and advantages of selecting pesticide adjuvants based on developmental changes in the structural characteristics of the insect epidermis.
Collapse
Affiliation(s)
- Zhengyu Lu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xue Wu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Chufei Tang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| |
Collapse
|
2
|
Issar S, Leroy C, d'Ettorre P, Kilner R. Seasonal Patterns of Resource Use Within Natural Populations of Burying Beetles. Ecol Evol 2024; 14:e70429. [PMID: 39463740 PMCID: PMC11502939 DOI: 10.1002/ece3.70429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
For organisms in temperate environments, seasonal variation in resource availability and weather conditions exert fluctuating selection pressures on survival and fitness, resulting in diverse adaptive responses. By manipulating resource availability on a local spatial scale, we studied seasonal patterns of resource use within natural populations of burying beetles Nicrophorus vespilloides in a Norfolk woodland. Burying beetles are necrophagous insects that breed on vertebrate carcasses. They are active in Europe between April and October, after which they burrow into the soil and overwinter. Using breeding and chemical analyses, we compared the fecundity and physiological state of beetles that differed in their seasonal resource use. We found seasonal variation in carrion use by wild burying beetles and correlated differences in their reproductive success and cuticular hydrocarbon profiles. Our results provide novel insight into the seasonal correlates of behaviour, physiology and life history in burying beetles.
Collapse
Affiliation(s)
- Swastika Issar
- Department of ZoologyUniversity of CambridgeCambridgeUK
- National Centre for Biological Sciences‐Tata Institute of Fundamental ResearchBangaloreIndia
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443University Sorbonne Paris NordVilletaneuseFrance
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR4443University Sorbonne Paris NordVilletaneuseFrance
| | | |
Collapse
|
3
|
Triana MF, Melo N. Dynamics of Aedes aegypti mating behaviour. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101237. [PMID: 39047975 DOI: 10.1016/j.cois.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The use of pheromones, while common, remains underexplored in mosquito research. Understanding Aedes aegypti's mating behaviour and pheromones is crucial for expanding knowledge and advancing vector control strategies. Unlike other species, Aedes mosquitoes have adaptable mating behaviour, complicating the study of their communication mechanisms. Current literature on Aedes communication is sparse, not due to lack of effort but because of its complexity. Ae. aegypti's mating behaviour is influenced by sensory cues and environmental factors. Swarming, which facilitates mating aggregation, is triggered by host odours, highlighting the role of semiochemicals alongside aggregation pheromones. Cuticular hydrocarbons may act as chemical signals in mating, though their roles are unclear. Acoustic signals significantly contribute to mate attraction and male fitness assessment, showcasing the multidimensional nature of Ae. aegypti sexual communication. Understanding these aspects can enhance targeted control strategies and reduce mosquito populations and disease transmission.
Collapse
Affiliation(s)
- Merybeth F Triana
- Department of Biology, Lund University, Sweden; Max Planck Center next Generation Chemical Ecology, Sweden
| | - Nadia Melo
- Department of Biology, Lund University, Sweden.
| |
Collapse
|
4
|
Adams K, Roux O. No sexual pheromones in Anopheles mosquitoes? CURRENT OPINION IN INSECT SCIENCE 2024; 64:101227. [PMID: 38936474 DOI: 10.1016/j.cois.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Swarming behavior is the cornerstone of the anopheline mating system. At dusk, males congregate in monospecific swarms in which females come to find a mate once in their lives. Although many Anopheles species coexist in sympatry, hybrids are infrequent, suggesting the existence of strong premating reproductive barriers. Chemical cues, particularly pheromones, often play a crucial role in bringing sexes together in a species-specific manner among insects. While the existence of sexual pheromones in Anopheles species has been postulated, only a few studies developed experimental designs to investigate their presence. Here, we discuss the contrasting and debatable findings regarding both long-range and contact sex pheromones in the context of swarm ecology in Anopheles species.
Collapse
Affiliation(s)
- Kelsey Adams
- Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA; Howard Hughes Medical Institute, Chevy Chase, USA
| | - Olivier Roux
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Ceballos-González AV, da Silva RC, Lima LD, Kaminski LA, Turatti ICC, Lopes NP, do Nascimento FS. Influence of Host Plants and Tending Ants on the Cuticular Hydrocarbon Profile of a Generalist Myrmecophilous Caterpillar. J Chem Ecol 2024; 50:222-236. [PMID: 38748380 DOI: 10.1007/s10886-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 07/10/2024]
Abstract
In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in interspecific communication and defense against chemical-oriented predators. Although these interactions form complex information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidoptera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65-82%), but a low similarity between caterpillars and their tending ants (30 - 25%). Cluster analysis showed that caterpillars, ants, and plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical profile, though slightly affected by biotic environmental factors.
Collapse
Affiliation(s)
- Amalia Victoria Ceballos-González
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil.
| | | | - Luan Dias Lima
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Lucas Augusto Kaminski
- Núcleo de Ecologia e Biodiversidade, Instituto de Ciências Básicas e da Saúde, Universidade Federal de Alagoas - UFAL, Maceió, 57072-900, AL, Brazil
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul- UFRGS, Porto Alegre, 91540-000, RS, Brazil
| | - Izabel Cristina Casanova Turatti
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Fábio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| |
Collapse
|
6
|
Weger AA, Rittschof CC. The diverse roles of insulin signaling in insect behavior. FRONTIERS IN INSECT SCIENCE 2024; 4:1360320. [PMID: 38638680 PMCID: PMC11024295 DOI: 10.3389/finsc.2024.1360320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
Collapse
Affiliation(s)
| | - Clare C. Rittschof
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Bell MA, Lim G, Caldwell C, Emlen DJ, Swanson BO. Rhinoceros beetle (Trypoxylus dichotomus) cuticular hydrocarbons contain information about body size and sex. PLoS One 2024; 19:e0299796. [PMID: 38483942 PMCID: PMC10939270 DOI: 10.1371/journal.pone.0299796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated horns that are used to compete for territories. Larger males with larger horns tend to win these competitions, giving them access to females. Agonistic interactions include what appears to be assessment and often end without escalating to physical combat. However, it is unknown what information competitors use to assess each other. In many insect species chemical signals can carry a range of information, including social position, nutritional state, morphology, and sex. Specifically, cuticular hydrocarbons (CHCs), which are waxes excreted on the surface of insect exoskeletons, can communicate a variety of information. Here, we asked whether CHCs in rhinoceros beetles carry information about sex, body size, and condition that could be used by males during assessment behavior. Multivariate analysis of hydrocarbon composition revealed patterns associated with both sex and body size. We suggest that Rhinoceros beetles could be communicating information through CHCs that would explain behavioral decisions.
Collapse
Affiliation(s)
- Micah A. Bell
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Garrett Lim
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Chelsey Caldwell
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Douglas J. Emlen
- Division of Biological Sciences, The University of Montana, Missoula, Montana, United States of America
| | - Brook O. Swanson
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| |
Collapse
|
8
|
Steurer M, Ruther J, Pokorny T. Behavioural consequences of intraspecific variability in a mate recognition signal. Proc Biol Sci 2024; 291:20232518. [PMID: 38444335 PMCID: PMC10915540 DOI: 10.1098/rspb.2023.2518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.
Collapse
Affiliation(s)
- Maximilian Steurer
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Tamara Pokorny
- Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Santos GKN, Navarro DMDAF, Maia ACD. Cuticular lipid profiles of selected species of cyclocephaline beetles (Melolonthidae, Cyclocephalini). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:124-133. [PMID: 38268108 DOI: 10.1017/s0007485323000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Neotropical cyclocephaline beetles, a diverse group of flower-loving insects, significantly impact natural and agricultural ecosystems. In particular, the genus Cyclocephala, with over 350 species, displays polymorphism and cryptic complexes. Lacking a comprehensive DNA barcoding framework, accessible tools for species differentiation are needed for research in taxonomy, ecology, and crop management. Moreover, cuticular hydrocarbons are believed to be involved in sexual recognition mechanisms in these beetles. In the present study we examined the cuticular chemical profiles of six species from the genus Cyclocephala and two populations of Erioscelis emarginata and assessed their efficiency in population, species, and sex differentiation. Overall we identified 74 compounds in cuticular extracts of the selected taxa. Linear alkanes and unsaturated hydrocarbons were prominent, with ten compounds between them explaining 85.6% of species dissimilarity. Although the cuticular chemical profiles efficiently differentiated all investigated taxa, only C. ohausiana showed significant cuticular profile differences between sexes. Our analysis also revealed two E. emarginata clades within a larger group of 'Cyclocephala' species, but they were not aligned with the two studied populations. Our research underscores the significance of cuticular lipid profiles in distinguishing selected cyclocephaline beetle species and contemplates their potential impact as contact pheromones on sexual segregation and speciation.
Collapse
Affiliation(s)
- Geanne Karla N Santos
- Secretaria Executiva de Meio Ambiente de Paulista (SEMA), Prefeitura Municipal do Paulista, Paulista, 53401-441, Brazil
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Daniela Maria do Amaral F Navarro
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Artur Campos D Maia
- Department of Zoology, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE, 50670-901, Brazil
- Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio, France
| |
Collapse
|
10
|
Chartrain J, Knott KE, Michalczyk Ł, Calhim S. First evidence of sex-specific responses to chemical cues in tardigrade mate searching behaviour. J Exp Biol 2023; 226:jeb245836. [PMID: 37599615 DOI: 10.1242/jeb.245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Chemical cues are widely used in intraspecific and interspecific communication, either as substances deposited in the substrate or as molecules diffused in water or air. In tardigrades, an emerging microscopic study system, chemical communication and its role in reproduction are poorly known. Here, we assessed sex differences in the detection of (a) short-range diffusing signals and (b) deposited cue trails during the mate-searching behaviour of freely moving virgin male and female Macrobiotus polonicus. We tracked individual behaviour (a) in simultaneous double-choice chambers, where live conspecifics of each sex were presented in water and (b) of freely moving pairs on agar without water. We found that males, but not females, preferentially associated with opposite-sex individuals in trials conducted in water. In contrast, neither sex detected nor followed cues deposited on agar. In conclusion, our study suggests that mate discrimination and approach are male-specific traits and are limited to waterborne chemical cues. These results support the existence of Darwinian sex roles in pre-mating behaviour in an animal group with virtually non-existing sex differences in morphology or ecology.
Collapse
Affiliation(s)
- Justine Chartrain
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Łukasz Michalczyk
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
11
|
Caselli A, Favaro R, Petacchi R, Valicenti M, Angeli S. The Cuticular Hydrocarbons of Dasineura Oleae Show Differences Between Sex, Adult Age and Mating Status. J Chem Ecol 2023; 49:369-383. [PMID: 37093418 PMCID: PMC10611616 DOI: 10.1007/s10886-023-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In insects, cuticular lipids prevent water loss and act as semiochemicals. Because of their ecological function, the profile change across the insects' sex and development offers insight into insect biology and possible tools for pest management. Here, the first work on cecidomyiid cuticular extracts is proposed considering Dasineura oleae (Diptera: Cecidomyiidae) males and females at different adult ages (0-12 h, 12-24 h, 24-36 h) and distinct sexual conditions (virgin and mated). A set of 49 compounds were recorded (12 alkanes, 1 monomethyl alkane, 11 fatty acids, 4 esters, 1 aldehyde, 1 allylbenzene, 1 amine, 1 flavonoid, 1 ketone, 1 phenol, 1 steradiene, 1 sterol, 1 terpene, 1 triterpene and 11 unknown compounds), and 18 of them showed significant differences between groups. Among alkanes, hexacosane (nC26) exhibited a decreasing trend from the youngest to the oldest females, while pentacosane (nC25) and nonacosane (nC29) showed a decreasing trend from 0 to 12 h to 12-24 h virgin females. In addition, nonadecane (nC19) was significantly more abundant in the youngest males compared to older males and females. The alkanes nC25, nC26 and nC29 have been reported to be age-related also in other dipterans, while nC19 has been described as gender-specific chemical cue for platygastrid parasitoids. Further behavioural trials and analyses are required to assign the specific ecological roles to the characterized compounds. Our results may contribute to develop new low-impact control strategies relying on the manipulation of D. oleae's chemical communication (e.g. disruption of mating or species recognition). HIGHLIGHTS: • Cuticular hydrocarbons are often involved in dipteran intraspecific communication. • We explored the cuticular profile of D. oleae at different age, sex, mating condition. • Five alkanes and one mono-methyl alkane showed differences among groups. • Linoleic acid is the most abundant compound in virgins, absent in mated insects. • Eleven compounds disappear in mated insects, but were present in all virgins.
Collapse
Affiliation(s)
- Alice Caselli
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| | - Riccardo Favaro
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
| | - Ruggero Petacchi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Marta Valicenti
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
12
|
Charrat B, Amat I, Allainé D, Desouhant E. Reproductive behaviours in male parasitoids: From mating system to pairing pattern. Ethology 2022. [DOI: 10.1111/eth.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Blandine Charrat
- UMR CNRS 5558, Biométrie et Biologie Evolutive, VetAgro Sup Université Claude Bernard Lyon 1, Université de Lyon Villeurbanne Cedex France
| | - Isabelle Amat
- UMR CNRS 5558, Biométrie et Biologie Evolutive, VetAgro Sup Université Claude Bernard Lyon 1, Université de Lyon Villeurbanne Cedex France
| | - Dominique Allainé
- UMR CNRS 5558, Biométrie et Biologie Evolutive, VetAgro Sup Université Claude Bernard Lyon 1, Université de Lyon Villeurbanne Cedex France
| | - Emmanuel Desouhant
- UMR CNRS 5558, Biométrie et Biologie Evolutive, VetAgro Sup Université Claude Bernard Lyon 1, Université de Lyon Villeurbanne Cedex France
| |
Collapse
|
13
|
Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. Metabolomics-Guided Comparison of Pollen and Microalgae-Based Artificial Diets in Honey Bees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9790-9801. [PMID: 35881882 PMCID: PMC9372997 DOI: 10.1021/acs.jafc.2c02583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Managed honey bee colonies used for crop pollination are fed artificial diets to offset nutritional deficiencies related to land-use intensification and climate change. In this study, we formulated novel microalgae diets using Chlorella vulgaris and Arthrospira platensis (spirulina) biomass and fed them to young adult honey bee workers. Diet-induced changes in bee metabolite profiles were studied relative to a natural pollen diet using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics. Untargeted analyses of pollen- and microalgae-fed bees revealed significant overlap, with 248 shared features determined by LC-MS and 87 shared features determined by GC-MS. Further metabolomic commonalities were evident upon subtraction of unique diet features. Twenty-five identified metabolites were influenced by diet, which included complex lipids, essential fatty acids, vitamins, and phytochemicals. The metabolomics results are useful to understand mechanisms underlying favorable growth performance as well as increased antioxidant and heat shock protein gene expression in bees fed the microalgae diets. We conclude that the tested microalgae have potential as sustainable feed additives and as a source of bee health-modulating natural products. Metabolomics-guided diet development could eventually help tailor feed interventions to achieve precision nutrition in honey bees and other livestock animals.
Collapse
Affiliation(s)
- Vincent A. Ricigliano
- Vincent
A. Ricigliano—Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton
Rouge, Louisiana 70820, United States
| | - Kristof B. Cank
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Sonja L. Knowles
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
- .
Fax: (336) 334-5402
| |
Collapse
|
14
|
Hare RM, Larsdotter-Mellström H, Simmons LW. Sexual dimorphism in cuticular hydrocarbons and their potential use in mating in a bushcricket with dynamic sex roles. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Pavković-Lučić S, Trajković J, Miličić D, Anđelković B, Lučić L, Savić T, Vujisić L. "Scent of a fruit fly": Cuticular chemoprofiles after mating in differently fed Drosophila melanogaster (Diptera: Drosophilidae) strains. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21866. [PMID: 35020218 DOI: 10.1002/arch.21866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In the world of complex smells in natural environment, feeding and mating represent two important olfactory-guided behaviors in Drosophila melanogaster (Diptera: Drosophilidae). Diet affects the chemoprofile composition of the individuals, which, indirectly, may significantly affect their mating success. In this study, chemoprofiles of recently mated flies belonging to four D. melanogaster strains, which were fed for many generations on different substrates (standard cornmeal-S strain; banana-B strain; carrot-C strain; tomato-T strain) were identified and quantified. In total, 67 chemical compounds were identified: 48 compounds were extracted from males maintained on banana and carrot, and 47 compounds from males maintained on cornmeal and tomato substrates, while total of 60 compounds were identified in females from all strains. The strains and the sexes significantly differed in qualitative nature of their chemoprofiles after mating. Significant differences in the relative amount of three major male pheromones (cis-vaccenyl acetate-cVA, (Z)-7-pentacosene, and (Z)-7-tricosene) and in female pheromone (Z,Z)-7,11-nonacosadiene among strains were also recorded. Furthermore, multivariate analysis of variance (MANOVA) pointed to significant differences between virgin and mated individuals of all strains and within both sexes. Differences in some of the well known sex pheromones were also identified when comparing their relative amount before and after mating. The presence of typical male pheromones in females, and vice versa may indicate their bidirectional transfer during copulation. Our results confirm significant effect of mating status on cuticular hydrocarbon (CHC) phenotypes in differently fed D. melanogaster flies.
Collapse
Affiliation(s)
| | | | - Dragana Miličić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Luka Lučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tatjana Savić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
Lack of discrimination of sex and maturity of conspecifics in the copulation attempts of the male stalk-eyed fly, Sphyracephala detrahens (Diptera: Diopsidae). J ETHOL 2022. [DOI: 10.1007/s10164-021-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
18
|
Dutta R, Chechi TS, Yadav A, Prasad NG. Indirect selection on cuticular hydrocarbon divergence in
Drosophila melanogaster
populations evolving under different operational sex ratios. J Zool (1987) 2021. [DOI: 10.1111/jzo.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Dutta
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| | - T. S. Chechi
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| | - A. Yadav
- Department of Earth and Environmental Sciences Indian Institute of Science Education and Research Mohali India
| | - N. G. Prasad
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| |
Collapse
|
19
|
Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors. Commun Biol 2021; 4:911. [PMID: 34312484 PMCID: PMC8313523 DOI: 10.1038/s42003-021-02434-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where traits underlying male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be determinants of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results suggest that CHC abundance may be subject to sexual selection in addition to selection by insecticide pressure. This has implications for insecticide resistance management, as these traits may be sustained in the population due to their benefits in mating even in the absence of insecticides. In this study, Adams et al. investigate the effect of cuticular hydrocarbons on mating success in natural mosquito mating swarms. These hydrocarbons confer both higher mating success and increased resistance to pyrethroid, suggesting sexual selection for insecticide resistance in this population secondary to mating success.
Collapse
|
20
|
Serrato-Capuchina A, Schwochert TD, Zhang S, Roy B, Peede D, Koppelman C, Matute DR. Pure species discriminate against hybrids in the Drosophila melanogaster species subgroup. Evolution 2021; 75:1753-1774. [PMID: 34043234 DOI: 10.1111/evo.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Introgression, the exchange of alleles between species, is a common event in nature. This transfer of alleles between species must happen through fertile hybrids. Characterizing the traits that cause defects in hybrids illuminates how and when gene flow is expected to occur. Inviability and sterility are extreme examples of fitness reductions but are not the only type of defects in hybrids. Some traits specific to hybrids are more subtle but are important to determine their fitness. In this report, we study whether F1 hybrids between two species pairs of Drosophila are as attractive as the parental species. We find that in both species pairs, the sexual attractiveness of the F1 hybrids is reduced and that pure species discriminate strongly against them. We also find that the cuticular hydrocarbon (CHC) profile of the female hybrids is intermediate between the parental species. Perfuming experiments show that modifying the CHC profile of the female hybrids to resemble pure species improves their chances of mating. Our results show that behavioral discrimination against hybrids might be an important component of the persistence of species that can hybridize.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephania Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Caleigh Koppelman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
21
|
Elsensohn JE, Aly MFK, Schal C, Burrack HJ. Social signals mediate oviposition site selection in Drosophila suzukii. Sci Rep 2021; 11:3796. [PMID: 33589670 PMCID: PMC7884846 DOI: 10.1038/s41598-021-83354-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
The information that female insects perceive and use during oviposition site selection is complex and varies by species and ecological niche. Even in relatively unexploited niches, females interact directly and indirectly with conspecifics at oviposition sites. These interactions can take the form of host marking and re-assessment of prior oviposition sites during the decision-making process. Considerable research has focused on the niche breadth and host preference of the polyphagous invasive pest Drosophila suzukii Matsumura (Diptera: Drosophilidae), but little information exists on how conspecific signals modulate oviposition behavior. We investigated three layers of social information that female D. suzukii may use in oviposition site selection-(1) pre-existing egg density, (2) pre-existing larval occupation, and (3) host marking by adults. We found that the presence of larvae and host marking, but not egg density, influenced oviposition behavior and that the two factors interacted over time. Adult marking appeared to deter oviposition only in the presence of an unmarked substrate. These results are the first behavioral evidence for a host marking pheromone in a species of Drosophila. These findings may also help elucidate D. suzukii infestation and preference patterns within crop fields and natural areas.
Collapse
Affiliation(s)
- Johanna E. Elsensohn
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| | - Marwa F. K. Aly
- grid.411806.a0000 0000 8999 4945Department of Plant Protection, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Coby Schal
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| | - Hannah J. Burrack
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, NC State University, Raleigh, NC USA
| |
Collapse
|
22
|
Wiman NG, Andrews H, Rudolph E, Lee J, Choi MY. Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. INSECTS 2020; 11:insects11110752. [PMID: 33153021 PMCID: PMC7694155 DOI: 10.3390/insects11110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Spotted-wing drosophila, Drosophila suzukii, is an invasive pest of soft-skinned fruits. Adult female flies oviposit, or lay eggs, into fruits where the larvae develop, making infested fruit unmarketable. The flies rely on alternative hosts, both cultivated and wild, to survive and maintain populations throughout the year. Better understanding of how the flies migrate between different hosts could be beneficial to improving management of the pest in crops. This study demonstrates potential to discriminate larval host of adult flies by analysis of fatty acids carried from the larvae to the adult stage in the body using a machine learning algorithm as an alternative to linear discriminant methods. Our study shows that fatty acids in adult flies can be used to determine larval host and that the machine learning algorithm can perform the discriminant analysis without making any assumptions about the data. Abstract Drosophila suzukii is a severe economic invasive pest of soft-skinned fruit crops. Management typically requires killing gravid adult female flies with insecticides to prevent damage resulting from oviposition and larval development. Fruits from cultivated and uncultivated host plants are used by the flies for reproduction at different times of the year, and knowledge of D. suzukii seasonal host plant use and movement patterns could be better exploited to protect vulnerable crops. Rearing and various marking methodologies for tracking movement patterns of D. suzukii across different landscapes have been used to better understand host use and movement of the pest. In this study, we report on potential to determine larval host for adult D. suzukii using their fatty acid profile or signature, and to use larval diet as an internal marker for adult flies in release-recapture experiments. Fatty acids can pass efficiently through trophic levels unmodified, and insects are constrained in the ability to synthesize fatty acids and may acquire them through diet. In many holometabolous insects, lipids acquired in the larval stage carry over to the adult stage. We tested the ability of a machine learning algorithm to discriminate adult D. suzukii reared from susceptible small fruit crops (blueberry, strawberry, blackberry and raspberry) and laboratory diet based on the fatty acid profile of adult flies. We found that fatty acid components in adult flies were significantly different when flies were reared on different hosts, and the machine learning algorithm was highly successful in correctly classifying flies according to their larval host based on fatty acid profile.
Collapse
Affiliation(s)
- Nik G. Wiman
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
- Correspondence: ; Tel.: +503-678-1264 (ext. 6782)
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Erica Rudolph
- North Willamette Research and Extension Center, Oregon State University, 15210 NE Miley Rd, Aurora, OR 97002, USA; (H.A.); (E.R.)
| | - Jana Lee
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, 3420 NW Orchard Ave, Corvallis, OR 97330, USA; (J.L.); (M.-Y.C.)
| |
Collapse
|
23
|
Qiao JW, Fan YL, Wu BJ, Wang D, Liu TX. Involvement of apolipoprotein D in desiccation tolerance and adult fecundity of Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104160. [PMID: 33137328 DOI: 10.1016/j.jinsphys.2020.104160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Apolipoprotein D (ApoD) is a lipocalin superfamily member that plays important roles in the transport of small hydrophobic molecules, lipid metabolism, and stress resistance. Cuticular hydrocarbons are the principal components of the epicuticular lipid layer and play a critical role in water retention against environmental desiccation stress; however, the mechanism underlying the role of ApoD in insect desiccation tolerance has not yet been elucidated. Here, we report the molecular constitution, functional analysis, and phylogenetic relationship of the ApoD gene in Acyrthosiphon pisum (ApApoD). We found that ApApoD was transcribed throughout the life cycle of A. pisum, but was prominently expressed in the embryonic period and abdominal cuticle. In addition, we optimized the dose and silencing duration of RNAi, observing that RNAi against ApApoD significantly reduced the levels of both internal and cuticular hydrocarbons and adult fecundity. Moreover, cuticular hydrocarbon deficiency increased the sensitivity of aphids to desiccation stress and reduced their survival time, while desiccation stress significantly increased ApApoD expression. Together, it is confirmed that ApApoD participates in regulating cuticular hydrocarbon content of aphids under desiccation stress and is crucial for aphid reproduction. Therefore, the ApApoD gene of A. pisum may be a potential target for RNAi-based insect pest control due to its involvement in cuticular hydrocarbon accumulation and reproduction.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis. J Chem Ecol 2020; 46:1032-1046. [PMID: 33123870 PMCID: PMC7677283 DOI: 10.1007/s10886-020-01227-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Cuticular hydrocarbons (CHCs) of host insects are used by many parasitic wasps as contact kairomones for host location and recognition. As the chemical composition of CHCs varies from species to species, the CHC pattern represents a reliable indicator for parasitoids to discriminate host from non-host species. Holepyris sylvanidis is an ectoparasitoid of beetle larvae infesting stored products. Previous studies demonstrated that the larval CHC profile of the confused flour beetle, Tribolium confusum, comprises long chain linear and methyl-branched alkanes (methyl alkanes), which elicit trail following and host recognition in H. sylvanidis. Here we addressed the question, whether different behavioral responses of this parasitoid species to larvae of other beetle species are due to differences in the larval CHC pattern. Our study revealed that H. sylvanidis recognizes and accepts larvae of T. confusum, T. castaneum and T. destructor as hosts, whereas larvae of Oryzaephilus surinamensis were rejected. However, the latter species became attractive after applying a sample of T. confusum larval CHCs to solvent extracted larvae. Chemical analyses of the larval extracts revealed that CHC profiles of the Tribolium species were similar in their composition, while that of O. surinamensis differed qualitatively and quantitatively, i.e. methyl alkanes were present as minor components on the cuticle of all Tribolium larvae, but were absent in the O. surinamensis CHC profile. Furthermore, the parasitoid successfully recognized solvent extracted T. confusum larvae as hosts after they had been treated with a fraction of methyl alkanes. Our results show that methyl alkanes are needed for host recognition by H. sylvanidis.
Collapse
|
25
|
Batalha MDMC, Goulart HF, Santana AEG, Barbosa LAO, Nascimento TG, da Silva MKH, Dornelas CB, Grillo LAM. Chemical composition and antimicrobial activity of cuticular and internal lipids of the insect Rhynchophorus palmarum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21723. [PMID: 32623787 DOI: 10.1002/arch.21723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticle lipids are involved in various types of chemical communication between species, and reduce the penetration of insecticides, chemicals, and toxins, as well as provide protection against the attack of microorganisms, parasitic insects, and predators. Ecological studies related to the insect Rhynchophorus palmarum are well-known; however, very little is known about its resistance mechanisms, which includes its lipid composition and its importance, specifically the cuticle layer. This study aimed to characterize the cuticle and internal lipid compounds of the male and female R. palmarum adult insects and to evaluate the presence of antimicrobial activity. We performed by gas chromatography coupled to mass spectrometry (GC-MS) analyzes of lipid extracts fractions and we identified 10 methyl esters of fatty acids esters of C14 to C23, with variation between the sexes of C22:0, C21:0, present only in male cuticle, and C20:2 in female. The lipid content of this insect showed relevant amount of C16:1, C18:1, and C18:2. The antimicrobial activity of the cuticular and internal fractions obtained was tested, which resulted in minimum inhibitory concentrations between 12.5 and 20 μg/ml against Gram-positive bacteria (Staphylococcus epidermidis, Enterococcus faecalis), Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia), and fungal species (Candida albicans e Candida tropicalis). The antimicrobial effect of the R. palmarum cuticle open perspectives for a new source to bioinsecticidal strategies, in addition to elucidating a bioactive mixture against bacteria and fungi.
Collapse
Affiliation(s)
- Mariana de M C Batalha
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Henrique F Goulart
- Agrarian Sciences Center, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Antônio E G Santana
- Agrarian Sciences Center, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Leandro A O Barbosa
- Laboratory of Cell Biochemistry, Federal University of São João del Rei, Dona Lindú Centro-Oeste Campus, Divinópolis, Minas Gerais, Brazil
| | - Ticiano G Nascimento
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Meirielly K H da Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Camila B Dornelas
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Luciano A M Grillo
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
26
|
Butterworth NJ, Wallman JF, Drijfhout FP, Johnston NP, Keller PA, Byrne PG. The evolution of sexually dimorphic cuticular hydrocarbons in blowflies (Diptera: Calliphoridae). J Evol Biol 2020; 33:1468-1486. [PMID: 32722879 DOI: 10.1111/jeb.13685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Cuticular hydrocarbons (CHCs) are organic compounds found on the cuticles of all insects which can act as close-contact pheromones, while also providing a hydrophobic barrier to water loss. Given their widespread importance in sexual behaviour and survival, CHCs have likely contributed heavily to the adaptation and speciation of insects. Despite this, the patterns and mechanisms of their diversification have been studied in very few taxa. Here, we perform the first study of CHC diversification in blowflies, focussing on wild populations of the ecologically diverse genus Chrysomya. We convert CHC profiles into qualitative and quantitative traits and assess their inter- and intra-specific variation across 10 species. We also construct a global phylogeny of Chrysomya, onto which CHCs were mapped to explore the patterns of their diversification. For the first time, we demonstrate that blowflies express an exceptional diversity of CHCs, which have diversified in a nonphylogenetic and punctuated manner, are species-specific and sexually dimorphic. It is likely that both ecological and sexual selection have shaped these patterns of CHC diversification, and our study now provides a comprehensive framework for testing such hypotheses.
Collapse
Affiliation(s)
- Nathan J Butterworth
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - James F Wallman
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Falko P Drijfhout
- School of Chemical and Physical Sciences, Keele University, Keele, UK
| | - Nikolas P Johnston
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Phillip G Byrne
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
27
|
Müller C, Caspers BA, Gadau J, Kaiser S. The Power of Infochemicals in Mediating Individualized Niches. Trends Ecol Evol 2020; 35:981-989. [PMID: 32723498 DOI: 10.1016/j.tree.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Infochemicals, including hormones, pheromones, and allelochemicals, play a central role in mediating information and shaping interactions within and between individuals. Due to their high plasticity, infochemicals are predestined mediators in facilitating individualized niches of organisms. Only recently it has become clear that individual differences are essential to understand how and why individuals realize a tiny subset of the species' niche. Moreover, individual differences have a central role in both ecological adjustment and evolutionary adaptation in a rapidly changing world. Here we highlight that infochemicals act as key signals or cues and empower the realization of the individualized niche through three proposed processes: niche choice, niche conformance, and niche construction.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Behavioral Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
28
|
Berson JD, Zuk M, Simmons LW. Natural and sexual selection on cuticular hydrocarbons: a quantitative genetic analysis. Proc Biol Sci 2020; 286:20190677. [PMID: 31064302 DOI: 10.1098/rspb.2019.0677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While the reproductive benefits of sexual displays have been widely studied, we have relatively limited evidence of the fitness costs associated with most display traits. Insect cuticular hydrocarbon (CHC) profiles are sexually selected traits that also protect against desiccation. These two functions are thought to oppose each other, with investment in particular compounds believed to increase attractiveness at the expense of compounds that protect against water loss. We investigated this potential trade-off in a quantitative genetic framework using the Australian field cricket, Teleogryllus oceanicus. Several compounds were significantly genetically correlated with either attractiveness or desiccation resistance. Of these compounds, one was negatively genetically correlated with attractiveness but positively genetically correlated with desiccation resistance. Furthermore, scoring each individual's overall CHC profile for its level of attractiveness and desiccation resistance indicated a negative genetic correlation between these multivariate phenotypes. Together, our results provide evidence for a genetic trade-off between sexually and naturally selected functions of the CHC profile. We suggest that the production of an attractive CHC profile may be costly for males, but highlight the need for further work to support this finding experimentally. Genetic covariation between the CHC profile and attractiveness suggests that females can gain attractive sons through female choice.
Collapse
Affiliation(s)
- Jacob D Berson
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Marlene Zuk
- 2 Department of Ecology, Evolution and Behavior, and Minnesota Center for Philosophy of Science, University of Minnesota , Twin Cities, St Paul, MN 55108 , USA
| | - Leigh W Simmons
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| |
Collapse
|
29
|
Ala-Honkola O, Kauranen H, Tyukmaeva V, Boetzl FA, Hoikkala A, Schmitt T. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. INSECT SCIENCE 2020; 27:304-316. [PMID: 30176124 DOI: 10.1111/1744-7917.12639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Environmental cues, mainly photoperiod and temperature, are known to control female adult reproductive diapause in several insect species. Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season. Male diapause (a reversible inability to inseminate receptive females) has been studied much less than female diapause. However, if the males maximized their chances to fertilize females while minimizing their energy expenditure, they would be expected to be in diapause at the same time as females. We investigated Drosophila montana male mating behavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive. We also found that males reared under long-day conditions (reproducing individuals) court reproducing postdiapause females, but not diapausing ones. The diapausing flies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones, which presumably increase their survival under stressful conditions, but at the same time decrease their attractiveness. Our study shows that the mating behavior of females and males is well coordinated during and after overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Distinct Roles of Cuticular Aldehydes as Pheromonal Cues in Two Cotesia Parasitoids. J Chem Ecol 2020; 46:128-137. [PMID: 31907752 DOI: 10.1007/s10886-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Cuticular compounds (CCs) that cover the surface of insects primarily serve as protection against entomopathogens, harmful substances, and desiccation. However, CCs may also have secondary signaling functions. By studying the role of CCs in intraspecific interactions, we may advance our understanding of the evolution of pheromonal communication in insects. We previously found that the gregarious parasitoid, Cotesia glomerata (L.), uses heptanal as a repellent pheromone to help avoid mate competition among sibling males, whereas another cuticular aldehyde, nonanal, is part of the female-produced attractive sex pheromone. Here, we show that the same aldehydes have different pheromonal functions in a related solitary parasitoid, Cotesia marginiventris (Cresson). Heptanal enhances the attractiveness of the female's sex pheromone, whereas nonanal does not affect a female's attractiveness. Hence, these common aldehydes are differentially used by the two Cotesia species to mediate, synergistically, the attractiveness of the main constituents of their respective sex pheromones. The specificity of the complete sex pheromone blend is apparently regulated by two specific, less volatile compounds, which evoke strong electroantennographic (EAG) responses. This is the first demonstration that volatile CCs have evolved distinct pheromonal functions to aid divergent mating strategies in closely related species. We discuss the possibility that additional compounds are involved in attraction and that, like the aldehydes, they are likely oxidative products of unsaturated cuticular hydrocarbons.
Collapse
|
31
|
Neves EF, Lima LD, Sguarizi-Antonio D, Andrade LHC, Lima SM, Lima-Junior SE, Antonialli-Junior WF. Intraspecific Cuticular Chemical Profile Variation in the Social Wasp Mischocyttarus consimilis (Hymenoptera, Vespidae). NEOTROPICAL ENTOMOLOGY 2019; 48:1030-1038. [PMID: 31456168 DOI: 10.1007/s13744-019-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Chemical compounds present on the cuticle of social insects are important in communication, as they are used in recognition of nestmates and sexual partners as well as in caste distinction, varying according to several factors, such as genetic and environmental. In this context, some studies have explored the cuticular chemical profile as a tool for assessing intra- and interspecific differences in social insects, although few studies have investigated this in social wasps. This study aimed to assess the differences in cuticular chemical profiles among different geographic samples of the wasp Mischocyttarus consimilis Zikán. Our hypothesis was that environmental factors are decisive to compose the cuticular chemical profiles of colonies of these social wasps and that there are differences regarding the geographic distribution among colonies. We used Fourier Transform Infrared-Photoacoustic Spectroscopy (FTIR-PAS) to assess the chemical profiles of samples. Our results show that despite there are differences between the cuticular chemical composition of the wasps' samples from different populations, there is no significant correlation compared to the spatial distribution of the colonies nor with the environment. Thus, our hypothesis was refuted, and we can infer that in this species neither exogenous nor genetic factors stand out to differentiate the chemical signature of their colonies, but a combination of both.
Collapse
Affiliation(s)
- E F Neves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Univ Federal da Grande Dourados, Dourados, MS, Brasil.
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil.
| | - L D Lima
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - D Sguarizi-Antonio
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - L H C Andrade
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S M Lima
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S E Lima-Junior
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W F Antonialli-Junior
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| |
Collapse
|
32
|
Wylde Z, Adler L, Crean A, Bonduriansky R. Perceived dominance status affects chemical signalling in the neriid fly Telostylinus angusticollis. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Stamps GF, Shaw KL. Male use of chemical signals in sex discrimination of Hawaiian swordtail crickets (genus Laupala). Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
|
35
|
Patlar B, Weber M, Ramm SA. Genetic and environmental variation in transcriptional expression of seminal fluid proteins. Heredity (Edinb) 2019; 122:595-611. [PMID: 30356222 PMCID: PMC6461930 DOI: 10.1038/s41437-018-0160-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Seminal fluid proteins (SFPs) are crucial mediators of sexual selection and sexual conflict. Recent studies have chiefly focused on environmentally induced plasticity as one source of variation in SFP expression, particularly in response to differing sperm competition levels. However, understanding the evolution of a trait in heterogenous environments requires estimates of both environmental and genetic sources of variation, as well as their interaction. Therefore, we investigated how environment (specifically mating group size, a good predictor of sperm competition intensity), genotype and genotype-by-environment interactions affect seminal fluid expression. To do so, we reared 12 inbred lines of a simultaneously hermaphroditic flatworm Macrostomum lignano in groups of either two or eight worms and measured the expression levels of 58 putative SFP transcripts. We then examined the source of variation in the expression of each transcript individually and for multivariate axes extracted from a principal component analysis. We found that mating group size did not affect expression levels according to the single transcript analyses, nor did it affect the first principal component (presumably representing overall investment in seminal fluid production). However, mating group size did affect the relative expression of different transcripts captured by the second principal component (presumably reflecting variation in seminal fluid composition). Most transcripts were genetically variable in their expression level and several exhibited genotype-by-environment interactions; relative composition also showed high genetic variation. Collectively, our results reveal the tightly integrated nature of the seminal fluid transcriptome and provide new insights into the quantitative genetic basis of seminal fluid investment and composition.
Collapse
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.
| | - Michael Weber
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
36
|
Gilbert R, Uetz GW. Male chemical cues as reliable indicators of infection in the wolf spider
Schizocosa ocreata. Ethology 2019. [DOI: 10.1111/eth.12841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rachel Gilbert
- Department of Biological Sciences University of Cincinnati Cincinnati Ohio
| | - George W. Uetz
- Department of Biological Sciences University of Cincinnati Cincinnati Ohio
| |
Collapse
|
37
|
Buellesbach J, Whyte BA, Cash E, Gibson JD, Scheckel KJ, Sandidge R, Tsutsui ND. Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California. J Chem Ecol 2018; 44:1101-1114. [PMID: 30430363 DOI: 10.1007/s10886-018-1029-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects' epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant's expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.
Collapse
Affiliation(s)
- Jan Buellesbach
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA. .,Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Brian A Whyte
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA.,Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA
| | - Kelsey J Scheckel
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Rebecca Sandidge
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Neil D Tsutsui
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
38
|
Sánchez-Alcañiz JA, Silbering AF, Croset V, Zappia G, Sivasubramaniam AK, Abuin L, Sahai SY, Münch D, Steck K, Auer TO, Cruchet S, Neagu-Maier GL, Sprecher SG, Ribeiro C, Yapici N, Benton R. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun 2018; 9:4252. [PMID: 30315166 PMCID: PMC6185939 DOI: 10.1038/s41467-018-06453-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Through analysis of the Drosophila ionotropic receptors (IRs), a family of variant ionotropic glutamate receptors, we reveal that most IRs are expressed in peripheral neuron populations in diverse gustatory organs in larvae and adults. We characterise IR56d, which defines two anatomically-distinct neuron classes in the proboscis: one responds to carbonated solutions and fatty acids while the other represents a subset of sugar- and fatty acid-sensing cells. Mutational analysis indicates that IR56d, together with the broadly-expressed co-receptors IR25a and IR76b, is essential for physiological responses to carbonation and fatty acids, but not sugars. We further demonstrate that carbonation and fatty acids both promote IR56d-dependent attraction of flies, but through different behavioural outputs. Our work provides a toolkit for investigating taste functions of IRs, defines a subset of these receptors required for carbonation sensing, and illustrates how the gustatory system uses combinatorial expression of sensory molecules in distinct neurons to coordinate behaviour. Little is known about the role of variant ionotropic glutamate receptors (IRs) in insect taste. Here the authors characterise the expression pattern of IRs in the Drosophila gustatory system and highlight the role of one receptor, IR56d, in the detection of carbonation
Collapse
Affiliation(s)
- Juan Antonio Sánchez-Alcañiz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Ana Florencia Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Vincent Croset
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland.,Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, United Kingdom
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Anantha Krishna Sivasubramaniam
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Saumya Yashmohini Sahai
- Department of Neurobiology and Behavior, Cornell University, W153 Mudd Hall, Ithaca, NY, 14853, USA
| | - Daniel Münch
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Kathrin Steck
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - G Larisa Neagu-Maier
- Department of Biology, Institute of Zoology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Carlos Ribeiro
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, W153 Mudd Hall, Ithaca, NY, 14853, USA
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
39
|
|
40
|
Xue HJ, Segraves KA, Wei J, Zhang B, Nie RE, Li WZ, Yang XK. Chemically mediated sexual signals restrict hybrid speciation in a flea beetle. Behav Ecol 2018. [DOI: 10.1093/beheco/ary105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Huai-Jun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, Syracuse, NY, USA
- Archbold Biological Station, Venus, FL, USA
| | - Jing Wei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui-E Nie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Zhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xing-Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Rojas B, Burdfield-Steel E, De Pasqual C, Gordon S, Hernández L, Mappes J, Nokelainen O, Rönkä K, Lindstedt C. Multimodal Aposematic Signals and Their Emerging Role in Mate Attraction. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
High fat diet alters Drosophila melanogaster sexual behavior and traits: decreased attractiveness and changes in pheromone profiles. Sci Rep 2018; 8:5387. [PMID: 29599496 PMCID: PMC5876352 DOI: 10.1038/s41598-018-23662-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Sexual traits convey information about individual quality to potential mates. Environmental and genetic factors affect sexual trait expression and perception via effects on animal condition and health. High fat diet (HFD) is one environmental factor that adversely affects Drosophila melanogaster health, and its effects on animal health are mediated through conserved metabolic signaling pathways. HFD decreases female attractiveness, resulting in reduced male mating behaviors toward HFD females. HFD also affects the ability of males to judge mate attractiveness and likely alters fly condition and sexual traits to impact mating behavior. Here we show that HFD affects both visual (body size) and non-visual (pheromone profiles) sexual traits, which likely contribute to decreased fly attractiveness. We also demonstrate that adult-specific HFD effects on male mate preference can be rescued by changing metabolic signaling. These results demonstrate that HFD alters Drosophila sexual cues to reflect concurrent effects on condition and that less severe behavioral defects can be reversed by genetic manipulations that rescue fly health. This work expands on current knowledge of the role that metabolic signaling pathways play in linking animal health, sexual traits, and mating behavior, and provides a robust assay in a genetically tractable system to continue examining these processes.
Collapse
|
43
|
Butterworth NJ, Byrne PG, Keller PA, Wallman JF. Body Odor and Sex: Do Cuticular Hydrocarbons Facilitate Sexual Attraction in the Small Hairy Maggot Blowfly? J Chem Ecol 2018. [DOI: 10.1007/s10886-018-0943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Otte T, Hilker M, Geiselhardt S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J Chem Ecol 2018; 44:235-247. [PMID: 29468480 DOI: 10.1007/s10886-018-0934-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
45
|
Lin W, Yeh S, Fan S, Chen L, Yen J, Fu T, Wu M, Wang P. Insulin signaling in female
Drosophila
links diet and sexual attractiveness. FASEB J 2018. [DOI: 10.1096/fsb2fj201800067r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei‐Sheng Lin
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Department of PediatricsNational Taiwan University Hospital YunlinYunlinTaiwan
| | - Sheng‐Rong Yeh
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Shou‐Zen Fan
- Department of AnesthesiologyDepartment of Internal MedicineNational Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Liang‐Yu Chen
- Department of BiotechnologyMingchuan UniversityTaoyuanTaiwan
| | - Jui‐Hung Yen
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIndianaUSA
| | - Tsai‐Feng Fu
- Department of Applied ChemistryNational Chinan UniversityNantouTaiwan
| | - Ming‐Shiang Wu
- Department of Internal MedicineNational Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Pei‐Yu Wang
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Neurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Center for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
46
|
Lin WS, Yeh SR, Fan SZ, Chen LY, Yen JH, Fu TF, Wu MS, Wang PY. Insulin signaling in female Drosophila links diet and sexual attractiveness. FASEB J 2018; 32:3870-3877. [PMID: 29475396 DOI: 10.1096/fj.201800067r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Appropriate sexual selection or individual sexual attractiveness is closely associated with the reproductive success of a species. Here, we report that young male flies exhibit innate courtship preference for female flies that are raised on higher-yeast diets and that have greater body weight and fecundity, but reduced locomotor activity and shortened lifespan. Male flies discriminate among females that have been fed diets that contain 3 different yeast concentrations-1, 5, and 20% yeast- via gustatory, but not visual or olfactory, perception. Female flies that are raised on higher-yeast diets exhibit elevated expression levels of Drosophila insulin-like peptides (di lps), and we demonstrate that hypomorphic mutations of di lp2, 3, 5 or foxo, as well as oenocyte-specific gene disruption of the insulin receptor, all abolish this male courtship preference for high yeast-fed females. Moreover, our data demonstrate that disrupted di lp signaling can alter the expression profile of some cuticular hydrocarbons (CHCs) in female flies, and that genetic inhibition of an enzyme involved in the biosynthesis of CHCs in oenocytes, elongase F, also eliminates the male courtship preference. Together, our findings provide mechanistic insights that link female reproductive potential to sexual attractiveness, thereby encouraging adaptive mating and optimal reproductive success.-Lin, W.-S., Yeh, S.-R., Fan, S.-Z., Chen, L.-Y., Yen, J.-H., Fu, T.-F., Wu, M.-S., Wang, P.-Y. Insulin signaling in female Drosophila links diet and sexual attractiveness.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital Yunlin, Yunlin, Taiwan
| | - Sheng-Rong Yeh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Zen Fan
- Department of Anesthesiology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Liang-Yu Chen
- Department of Biotechnology, Mingchuan University, Taoyuan, Taiwan
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, Indiana, USA
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chinan University, Nantou, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Yew JY, Chung H. Drosophila as a holistic model for insect pheromone signaling and processing. CURRENT OPINION IN INSECT SCIENCE 2017; 24:15-20. [PMID: 29208218 DOI: 10.1016/j.cois.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/13/2017] [Accepted: 09/06/2017] [Indexed: 05/10/2023]
Abstract
In recent years, research into the chemical ecology of the vinegar fly, Drosophila melanogaster, has yielded a wealth of information on the neural substrates that detect and process pheromones and control behavior. The studies reveal at the cellular and molecular level how behavioral responses to pheromones are initiated and modulated by social, environmental, and physiological factors. By taking into account both the complexity of the chemical world and the intricacies of the animal's physiological state, the emerging holistic perspective provides insight not only into chemical communication but more generally, how organisms balance internal and external signals when making behavioral decisions.
Collapse
Affiliation(s)
- Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, HI 96822, USA.
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
48
|
Stökl J, Steiger S. Evolutionary origin of insect pheromones. CURRENT OPINION IN INSECT SCIENCE 2017; 24:36-42. [PMID: 29208221 DOI: 10.1016/j.cois.2017.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Communication via chemical signals, that is, pheromones, is of pivotal importance for most insects. According to current evolutionary theory, insect pheromones originated either from extant precursor compounds being selected for information transfer or by the pheromone components exploiting a pre-existing sensory bias in the receiver. Here, we review the available experimental evidence for both hypotheses. Existing data indicate that most insect pheromones evolved from precursor compounds that were emitted as metabolic by-products or that previously had other non-communicative functions. Many studies have investigated cuticular hydrocarbons that have evolved a communicative function, although examples of pheromones exist that have arisen from defensive secretions, hormones or dietary compounds. We summarize and discuss the selective pressures shaping the pheromone during signal evolution.
Collapse
Affiliation(s)
- Johannes Stökl
- Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| | - Sandra Steiger
- Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
49
|
Jensen K, Shearman M, Rapkin J, Carey MR, House CM, Hunt J. Change in sex pheromone expression by nutritional shift in male cockroaches. Behav Ecol 2017. [DOI: 10.1093/beheco/arx120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
50
|
Chen N, Bai Y, Fan YL, Liu TX. Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One 2017; 12:e0184243. [PMID: 28859151 PMCID: PMC5578635 DOI: 10.1371/journal.pone.0184243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
Insect cuticular hydrocarbons (CHCs) play critical roles in reducing water loss and chemical communication. Species-specific CHC profiles have been used increasingly as an excellent character for species classification. However, considerably less is known about their potential for population delimitation within species. The aims of this study were to develop a solid-phase microextraction (SPME)-based CHC collection method and to investigate whether CHC profiles could serve as potential chemotaxonomic tools for intraspecific delimitation in Acyrthosiphon pisum. Optimization of fibers for SPME sampling revealed that 7 μm polydimethylsiloxane (PDMS) demonstrated the most efficient adsorption of CHCs among five different tested fibers. SPME sampling showed good reproducibility with repeated collections of CHCs from a single aphid. Validation of SPME was performed by comparing CHC profiles with those from conventional hexane extractions. The two methods showed no qualitative differences in CHCs, although SPME appeared to extract relatively fewer short-chained CHCs. While CHC profiles of a given population differed among developmental stages, wing dimorphism types, and host plants, wingless adult aphids showed very low variance in relative proportions of individual CHC components. Reproducibility of CHC profiles was explored further to classify wingless adult morphs of A. pisum from five different geographic regions that showed no variation in mitochondrial COI gene sequences. Our results demonstrate that CHC profiles are useful in intraspecific delimitation in the field of insect chemotaxonomy.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| |
Collapse
|