1
|
Xu P, Zeng L, Wang C, Chai J, Yin J, Xu J. Metabolomic characterization of COVID-19 survivors in Jilin province. Respir Res 2024; 25:343. [PMID: 39300427 PMCID: PMC11411991 DOI: 10.1186/s12931-024-02974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has escalated into a severe global public health crisis, with persistent sequelae observed in some patients post-discharge. However, metabolomic characterization of the reconvalescent remains unclear. METHODS In this study, serum and urine samples from COVID-19 survivors (n = 16) and healthy subjects (n = 16) underwent testing via the non-targeted metabolomics approach using UPLC-MS/MS. Univariate and multivariate statistical analyses were conducted to delineate the separation between the two sample groups and identify differentially expressed metabolites. By integrating random forest and cluster analysis, potential biomarkers were screened, and the differential metabolites were subsequently subjected to KEGG pathway enrichment analysis. RESULTS Significant differences were observed in the serum and urine metabolic profiles between the two groups. In serum samples, 1187 metabolites were detected, with 874 identified as significant (457 up-regulated, 417 down-regulated); in urine samples, 960 metabolites were detected, with 39 deemed significant (12 up-regulated, 27 down-regulated). Eight potential biomarkers were identified, with KEGG analysis revealing significant enrichment in several metabolic pathways, including arginine biosynthesis. CONCLUSIONS This study offers an overview of the metabolic profiles in serum and urine of COVID-19 survivors, providing a reference for post-discharge monitoring and the prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Panyang Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Material Jilin University, Changchun, China
| | - Jiatong Chai
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junguo Yin
- Department of Clinical Laboratory, Changchun Hospital of Traditional Chinese Medicine, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Gyöngyösi M, Alcaide P, Asselbergs FW, Brundel BJJM, Camici GG, Martins PDC, Ferdinandy P, Fontana M, Girao H, Gnecchi M, Gollmann-Tepeköylü C, Kleinbongard P, Krieg T, Madonna R, Paillard M, Pantazis A, Perrino C, Pesce M, Schiattarella GG, Sluijter JPG, Steffens S, Tschöpe C, Van Linthout S, Davidson SM. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res 2023; 119:336-356. [PMID: 35875883 PMCID: PMC9384470 DOI: 10.1093/cvr/cvac115] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, 2nd Department of Internal Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital, Zurich, Switzerland
| | - Paula da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Marianna Fontana
- Division of Medicine, Royal Free Hospital London, University College London, London, UK
| | - Henrique Girao
- Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Faculty of Medicine, Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
- Unit of Translational Cardiology, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Rosalinda Madonna
- Department of Pathology, Institute of Cardiology, University of Pisa, Pisa, Italy
| | - Melanie Paillard
- Laboratoire CarMeN-équipe IRIS, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France
| | - Antonis Pantazis
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre at Royal Brompton and Harefield Hospitals, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, Utrecht, The Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- Germany and Munich Heart Alliance, DZHK Partner Site Munich, Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité, Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner site Berlin and Dept Cardiology (CVK), Charité, Berlin, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| |
Collapse
|
3
|
Durstenfeld MS, Peluso MJ, Kaveti P, Hill C, Li D, Sander E, Swaminathan S, Arechiga VM, Lu S, Goldberg SA, Hoh R, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kelly JD, Glidden DV, Henrich TJ, Martin JN, Lee YJ, Aras MA, Long CS, Grandis DJ, Deeks SG, Hsue PY. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype Long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.05.17.22275235. [PMID: 35677073 PMCID: PMC9176659 DOI: 10.1101/2022.05.17.22275235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Mechanisms underlying persistent cardiopulmonary symptoms following SARS-CoV-2 infection (post-acute sequelae of COVID-19 "PASC" or "Long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity using advanced cardiac testing. METHODS We performed cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults > 1 year after confirmed SARS-CoV-2 infection in Long-Term Impact of Infection with Novel Coronavirus cohort (LIINC; substudy of NCT04362150 ). Adults who completed a research echocardiogram (at a median 6 months after SARS-CoV-2 infection) without evidence of heart failure or pulmonary hypertension were asked to complete additional cardiopulmonary testing approximately 1 year later. Although participants were recruited as a prospective cohort, to account for selection bias, the primary analyses were as a case-control study comparing those with and without persistent cardiopulmonary symptoms. We also correlated findings with previously measured biomarkers. We used logistic regression and linear regression models to adjust for potential confounders including age, sex, body mass index, time since SARS-CoV-2 infection, and hospitalization for acute SARS-CoV-2 infection, with sensitivity analyses adjusting for medical history. RESULTS Sixty participants (unselected for symptoms, median age 53, 42% female, 87% non- hospitalized) were studied at median 17.6 months following SARS-CoV-2 infection. On maximal CPET, 18/37 (49%) with symptoms had reduced exercise capacity (peak VO 2 <85% predicted) compared to 3/19 (16%) without symptoms (p=0.02). The adjusted peak VO 2 was 5.2 ml/kg/min (95%CI 2.1-8.3; p=0.001) or 16.9% lower actual compared to predicted (95%CI 4.3- 29.6; p=0.02) among those with symptoms compared to those without symptoms. Chronotropic incompetence was present among 12/21 (57%) with reduced VO 2 including 11/37 (30%) with symptoms and 1/19 (5%) without (p=0.04). Inflammatory markers (hsCRP, IL-6, TNF-α) and SARS-CoV-2 antibody levels measured early in PASC were negatively correlated with peak VO 2 more than 1 year later. Late-gadolinium enhancement on CMR and arrhythmias on ambulatory monitoring were not present. CONCLUSIONS We found evidence of objectively reduced exercise capacity among those with cardiopulmonary symptoms more than 1 year following COVID-19, which was associated with elevated inflammatory markers early in PASC. Chronotropic incompetence may explain exercise intolerance among some with cardiopulmonary phenotype Long COVID. Key Points Long COVID symptoms were associated with reduced exercise capacity on cardiopulmonary exercise testing more than 1 year after SARS-CoV-2 infection. The most common abnormal finding was chronotropic incompetence. Reduced exercise capacity was associated with early elevations in inflammatory markers.
Collapse
|
4
|
Zulbaran‐Rojas A, Lee M, Bara RO, Flores‐Camargo A, Spitz G, Finco MG, Bagheri AB, Modi D, Shaib F, Najafi B. Electrical stimulation to regain lower extremity muscle perfusion and endurance in patients with post-acute sequelae of SARS CoV-2: A randomized controlled trial. Physiol Rep 2023; 11:e15636. [PMID: 36905161 PMCID: PMC10006649 DOI: 10.14814/phy2.15636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Muscle deconditioning and impaired vascular function in the lower extremities (LE) are among the long-term symptoms experienced by COVID-19 patients with a history of severe illness. These symptoms are part of the post-acute sequelae of Sars-CoV-2 (PASC) and currently lack evidence-based treatment. To investigate the efficacy of lower extremity electrical stimulation (E-Stim) in addressing PASC-related muscle deconditioning, we conducted a double-blinded randomized controlled trial. Eighteen (n = 18) patients with LE muscle deconditioning were randomly assigned to either the intervention (IG) or the control (CG) group, resulting in 36 LE being assessed. Both groups received daily 1 h E-Stim on both gastrocnemius muscles for 4 weeks, with the device functional in the IG and nonfunctional in the CG. Changes in plantar oxyhemoglobin (OxyHb) and gastrocnemius muscle endurance (GNMe) in response to 4 weeks of daily 1 h E-Stim were assessed. At each study visit, outcomes were measured at onset (t0 ), 60 min (t60 ), and 10 min after E-Stim therapy (t70 ) by recording ΔOxyHb with near-infrared spectroscopy. ΔGNMe was measured with surface electromyography at two time intervals: 0-5 min (Intv1 ) and: 55-60 min (Intv2 ). Baseline OxyHb decreased in both groups at t60 (IG: p = 0.046; CG: p = 0.026) and t70 (IG = p = 0.021; CG: p = 0.060) from t0 . At 4 weeks, the IG's OxyHb increased from t60 to t70 (p < 0.001), while the CG's decreased (p = 0.003). The IG had higher ΔOxyHb values than the CG at t70 (p = 0.004). Baseline GNMe did not increase in either group from Intv1 to Intv2 . At 4 weeks, the IG's GNMe increased (p = 0.031), whereas the CG did not change. There was a significant association between ΔOxyHb and ΔGNMe (r = 0.628, p = 0.003) at 4 weeks in the IG. In conclusion, E-Stim can improve muscle perfusion and muscle endurance in individuals with PASC experiencing LE muscle deconditioning.
Collapse
Affiliation(s)
- Alejandro Zulbaran‐Rojas
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Myeounggon Lee
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Rasha O. Bara
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Areli Flores‐Camargo
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Gil Spitz
- Baylor St Luke's Medical Center, Exercise PhysiologyLiver Transplant ProgramHoustonTexasUSA
| | - M. G. Finco
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Amir Behzad Bagheri
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Dipaben Modi
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Fidaa Shaib
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
5
|
Conti V, Corbi G, Sabbatino F, De Pascale D, Sellitto C, Stefanelli B, Bertini N, De Simone M, Liguori L, Di Paola I, De Bernardo M, Tesse A, Rosa N, Pagliano P, Filippelli A. Long COVID: Clinical Framing, Biomarkers, and Therapeutic Approaches. J Pers Med 2023; 13:334. [PMID: 36836568 PMCID: PMC9959656 DOI: 10.3390/jpm13020334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
More than two years after the onset of the COVID-19 pandemic, healthcare providers are facing an emergency within an emergency, the so-called long COVID or post-COVID-19 syndrome (PCS). Patients diagnosed with PCS develop an extended range of persistent symptoms and/or complications from COVID-19. The risk factors and clinical manifestations are many and various. Advanced age, sex/gender, and pre-existing conditions certainly influence the pathogenesis and course of this syndrome. However, the absence of precise diagnostic and prognostic biomarkers may further complicate the clinical management of patients. This review aimed to summarize recent evidence on the factors influencing PCS, possible biomarkers, and therapeutic approaches. Older patients recovered approximately one month earlier than younger patients, with higher rates of symptoms. Fatigue during the acute phase of COVID-19 appears to be an important risk factor for symptom persistence. Female sex, older age, and active smoking are associated with a higher risk of developing PCS. The incidence of cognitive decline and the risk of death are higher in PCS patients than in controls. Complementary and alternative medicine appears to be associated with improvement in symptoms, particularly fatigue. The heterogeneous nature of post-COVID symptoms and the complexity of patients with PCS, who are often polytreated due to concomitant clinical conditions, suggest a holistic and integrated approach to provide useful guidance for the treatment and overall management of long COVID.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Domenico De Pascale
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Nicola Bertini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| | - Matteo De Simone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy
| | - Ilenia Di Paola
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Maddalena De Bernardo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Angela Tesse
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, F-44000 Nantes, France
| | - Nicola Rosa
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy
| |
Collapse
|
6
|
Province VM, Szeghy RE, Stute NL, Augenreich MA, Behrens CE, Stickford JL, Stickford ASL, Ratchford S. Tracking peripheral vascular function for six months in young adults following SARS-CoV-2 infection. Physiol Rep 2022; 10:e15552. [PMID: 36541342 PMCID: PMC9768737 DOI: 10.14814/phy2.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023] Open
Abstract
SARS-CoV-2 infection is known to instigate a range of physiologic perturbations, including vascular dysfunction. However, little work has concluded how long these effects may last, especially among young adults with mild symptoms. To determine potential recovery from acute vascular dysfunction in young adults (8 M/8F, 21 ± 1 yr, 23.5 ± 3.1 kg⋅m-2 ), we longitudinally tracked brachial artery flow-mediated dilation (FMD) and reactive hyperemia (RH) in the arm and hyperemic response to passive limb movement (PLM) in the leg, with Doppler ultrasound, as well as circulating biomarkers of inflammation (interleukin-6, C-reactive protein), oxidative stress (thiobarbituric acid reactive substances, protein carbonyl), antioxidant capacity (superoxide dismutase), and nitric oxide bioavailability (nitrite) monthly for a 6-month period post-SARS-CoV-2 infection. FMD, as a marker of macrovascular function, improved from month 1 (3.06 ± 1.39%) to month 6 (6.60 ± 2.07%; p < 0.001). FMD/Shear improved from month one (0.10 ± 0.06 AU) to month six (0.18 ± 0.70 AU; p = 0.002). RH in the arm and PLM in the leg, as markers of microvascular function, did not change during the 6 months (p > 0.05). Circulating markers of inflammation, oxidative stress, antioxidant capacity, and nitric oxide bioavailability did not change during the 6 months (p > 0.05). Together, these results suggest some improvements in macrovascular, but not microvascular function, over 6 months following SARS-CoV-2 infection. The data also suggest persistent ramifications for cardiovascular health among those recovering from mild illness and among young, otherwise healthy adults with SARS-CoV-2.
Collapse
Affiliation(s)
- Valesha M. Province
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Rachel E. Szeghy
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Nina L. Stute
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Marc A. Augenreich
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Christian E. Behrens
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | - Jonathon L. Stickford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| | | | - Stephen M. Ratchford
- Department of Health & Exercise ScienceAppalachian State UniversityBooneNorth CarolinaUSA
| |
Collapse
|
7
|
Adeyemi DH, Odetayo AF, Hamed MA, Akhigbe RE. Impact of COVID 19 on erectile function. Aging Male 2022; 25:202-216. [PMID: 35924485 DOI: 10.1080/13685538.2022.2104833] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Purpose: COVID-19, a novel infection, presented with several complications, including socioeconomical and reproductive health challenges such as erectile dysfunction (ED). The present review summarizes the available shreds of evidence on the impact of COVID-19 on ED.Materials and methods: All published peer-reviewed articles from the onset of the COVID-19 outbreak to date, relating to ED, were reviewed. Results: Available pieces of evidence that ED is a consequence of COVID-19 are convincing. COVID-19 and ED share common risk factors such as disruption of vascular integrity, cardiovascular disease (CVD), cytokine storm, diabetes, obesity, and chronic kidney disease (CKD). COVID-19 also induces impaired pulmonary haemodynamics, increased ang II, testicular damage and low serum testosterone, and reduced arginine-dependent NO bioavailability that promotes reactive oxygen species (ROS) generation and endothelial dysfunction, resulting in ED. In addition, COVID-19 triggers psychological/mental stress and suppresses testosterone-dependent dopamine concentration, which contributes to incident ED.Conclusions: In conclusion, COVID-19 exerts a detrimental effect on male reproductive function, including erectile function. This involves a cascade of events from multiple pathways. As the pandemic dwindles, identifying the long-term effects of COVID-19-induced ED, and proffering adequate and effective measures in militating against COVID-19-induced ED remains pertinent.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Nigeria
| | - A F Odetayo
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- The Brainwill Laboratories, Osogbo, Nigeria
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
8
|
Durstenfeld MS, Peluso MJ, Kelly JD, Win S, Swaminathan S, Li D, Arechiga VM, Zepeda VA, Sun K, Shao SJ, Hill C, Arreguin MI, Lu S, Hoh R, Tai VW, Chenna A, Yee BC, Winslow JW, Petropoulos CJ, Kornak J, Henrich TJ, Martin JN, Deeks SG, Hsue PY. Role of antibodies, inflammatory markers, and echocardiographic findings in post-acute cardiopulmonary symptoms after SARS-CoV-2 infection. JCI Insight 2022; 7:157053. [PMID: 35389890 PMCID: PMC9220849 DOI: 10.1172/jci.insight.157053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Shortness of breath, chest pain, and palpitations occur as postacute sequelae of COVID-19, but whether symptoms are associated with echocardiographic abnormalities, cardiac biomarkers, or markers of systemic inflammation remains unknown. In a cross-sectional analysis, we assessed symptoms, performed echocardiograms, and measured biomarkers among adults more than 8 weeks after confirmed SARS-CoV-2 infection. We modeled associations between symptoms and baseline characteristics, echocardiographic findings, and biomarkers using logistic regression. We enrolled 102 participants at a median of 7.2 months following COVID-19 onset; 47 individuals reported dyspnea, chest pain, or palpitations. Median age was 52 years, and 41% of participants were women. Female sex, hospitalization, IgG antibody against SARS-CoV-2 receptor binding domain, and C-reactive protein were associated with symptoms. Regarding echocardiographic findings, 4 of 47 participants (9%) with symptoms had pericardial effusions compared with 0 of 55 participants without symptoms; those with effusions had a median of 4 symptoms compared with a median of 1 symptom in those without effusions. There was no strong evidence for a relationship between symptoms and echocardiographic functional parameters or other biomarkers. Among adults more than 8 weeks after SARS-CoV-2 infection, SARS-CoV-2 RBD antibodies, markers of inflammation, and, possibly, pericardial effusions are associated with cardiopulmonary symptoms. Investigation into inflammation as a mechanism underlying postacute sequelae of COVID-19 is warranted.
Collapse
Affiliation(s)
- Matthew S Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Michael J Peluso
- University of California, San Francisco, San Francisco, United States of America
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States of America
| | - Sithu Win
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Shreya Swaminathan
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Danny Li
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Victor M Arechiga
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Victor Antonio Zepeda
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| | - Kaiwen Sun
- Department of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Shirley J Shao
- School of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Christopher Hill
- School of Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Mireya I Arreguin
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Scott Lu
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Viva W Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Ahmed Chenna
- Oncology Group, Monogram Biosciences, South San Francisco, United States of America
| | - Brandon C Yee
- Monogram Biosciences, South San Francisco, United States of America
| | - John W Winslow
- Oncology Group, Monogram Biosciences, South San Francisco, United States of America
| | | | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States of America
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States of America
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, United States of America
| | - Priscilla Y Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, United States of America
| |
Collapse
|
9
|
Ambrosino P, Calcaterra IL, Mosella M, Formisano R, D’Anna SE, Bachetti T, Marcuccio G, Galloway B, Mancini FP, Papa A, Motta A, Di Minno MND, Maniscalco M. Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target. Biomedicines 2022; 10:biomedicines10040812. [PMID: 35453563 PMCID: PMC9029464 DOI: 10.3390/biomedicines10040812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Correspondence: (P.A.); (M.M.)
| | | | - Marco Mosella
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Giuseppina Marcuccio
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Brurya Galloway
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Francesco Paolo Mancini
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | | | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
- Correspondence: (P.A.); (M.M.)
| |
Collapse
|
10
|
Serviente C, Decker ST, Layec G. From heart to muscle: pathophysiological mechanisms underlying long-term physical sequelae from SARS-CoV-2 infection. J Appl Physiol (1985) 2022; 132:581-592. [PMID: 35019775 PMCID: PMC8873035 DOI: 10.1152/japplphysiol.00734.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
The long-term sequelae of the coronavirus disease 2019 (COVID-19) are multifaceted and, besides the lungs, impact other organs and tissues, even in cases of mild infection. Along with commonly reported symptoms such as fatigue and dyspnea, a significant proportion of those with prior COVID-19 infection also exhibit signs of cardiac damage, muscle weakness, and ultimately, poor exercise tolerance. This review provides an overview of evidence indicating cardiac impairments and persistent endothelial dysfunction in the peripheral vasculature of those previously infected with COVID-19, irrespective of the severity of the acute phase of illness. In addition, V̇o2peak appears to be lower in convalescent patients, which may stem, in part, from alterations in O2 transport such as impaired diffusional O2 conductance. Together, the persistent multi-organ dysfunction induced by COVID-19 may set previously healthy individuals on a trajectory towards frailty and disease. Given the large proportion of individuals recovering from COVID-19, it is critically important to better understand the physical sequelae of COVID-19, the underlying biological mechanisms contributing to these outcomes, and the long-term effects on future disease risk. This review highlights relevant literature on the pathophysiology post-COVID-19 infection, gaps in the literature, and emphasizes the need for the development of evidence-based rehabilitation guidelines.
Collapse
Affiliation(s)
- Corinna Serviente
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
11
|
Wirth KJ, Scheibenbogen C, Paul F. An attempt to explain the neurological symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med 2021; 19:471. [PMID: 34809664 PMCID: PMC8607226 DOI: 10.1186/s12967-021-03143-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023] Open
Abstract
There is accumulating evidence of endothelial dysfunction, muscle and cerebral hypoperfusion in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). In this paper we deduce the pathomechanisms resulting in central nervous pathology and the myriad of neurocognitive symptoms. We outline tentative mechanisms of impaired cerebral blood flow, increase in intracranial pressure and central adrenergic hyperactivity and how they can well explain the key symptoms of cognitive impairment, brain fog, headache, hypersensitivity, sleep disturbances and dysautonomia.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:3951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
Affiliation(s)
- Ayobami Adebayo
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University and International Translational Research and Medical Education (ITME) Consortium, 80100 Naples, Italy
| |
Collapse
|
13
|
Stute NL, Stickford ASL, Stickford JL, Province VM, Augenreich MA, Bunsawat K, Alpenglow JK, Wray DW, Ratchford SM. Altered central and peripheral haemodynamics during rhythmic handgrip exercise in young adults with SARS-CoV-2. Exp Physiol 2021; 107:708-721. [PMID: 34311498 PMCID: PMC8447425 DOI: 10.1113/ep089820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
New Findings What is the central question of this study? Are central and peripheral haemodynamics during handgrip exercise different in young adults 3–4 weeks following infection with of SARS‐CoV‐2 compared with young healthy adults. What is the main finding and its importance? Exercising heart rate was higher while brachial artery blood flow and vascular conductance were lower in the SARS‐CoV‐2 compared with the control group. These findings provide evidence for peripheral impairments to exercise among adults with SARS‐CoV‐2, which may contribute to exercise limitations.
Abstract The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) can have a profound impact on vascular function. While exercise intolerance may accompany a variety of symptoms associated with SARS‐CoV‐2 infection, the impact of SARS‐CoV‐2 on exercising blood flow (BF) remains unclear. Central (photoplethysmography) and peripheral (Doppler ultrasound) haemodynamics were determined at rest and during rhythmic handgrip (HG) exercise at 30% and 45% of maximal voluntary contraction (MVC) in young adults with mild symptoms 25 days after testing positive for SARS‐CoV‐2 (SARS‐CoV‐2: n = 8M/5F; age: 21 ± 2 years; height: 176 ± 11 cm; mass: 71 ± 11 kg) and were cross‐sectionally compared with control subjects (Control: n = 8M/5F; age: 27 ± 6 years; height: 178 ± 8 cm; mass: 80 ± 25 kg). Systolic blood pressure, end systolic arterial pressure and rate pressure product were higher in the SARS‐CoV‐2 group during exercise at 45% MVC compared with controls. Brachial artery BF was lower in the SARS‐CoV‐2 group at both 30% MVC (Control: 384.8 ± 93.3 ml min–1; SARS‐CoV‐2: 307.8 ± 105.0 ml min–1; P = 0.041) and 45% MVC (Control: 507.4 ± 109.9 ml min–1; SARS‐CoV‐2: 386.3 ± 132.5 ml min–1; P = 0.002). Brachial artery vascular conductance was lower at both 30% MVC (Control: 3.93 ± 1.07 ml min–1 mmHg–1; SARS‐CoV‐2: 3.11 ± 0.98 ml min–1 mmHg–1; P = 0.022) and 45% MVC (Control: 4.74 ± 1.02 ml min–1 mmHg–1; SARS‐CoV‐2: 3.46 ± 1.10 ml min–1 mmHg–1; P < 0.001) in the SARS‐CoV‐2 group compared to control group. The shear‐induced dilatation of the brachial artery increased similarly across exercise intensities in the two groups, suggesting the decrease in exercising BF may be due to microvascular impairments. Brachial artery BF is attenuated during HG exercise in young adults recently diagnosed with mild SARS‐CoV‐2, which may contribute to diminished exercise capacity among those recovering from SARS‐CoV‐2 like that seen in severe cases.
Collapse
Affiliation(s)
- Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - D Walter Wray
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| |
Collapse
|