1
|
Zhang Z, Chen C, Zhou J, Li C, Du X, Hou H, Cao M, Yu D, Zhang J, Gu J, He L. Carboxymethyl Poria cocos polysaccharides protect against septic kidney injury by regulating the Nrf2-NF-κB signaling pathway. Int J Biol Macromol 2025:143030. [PMID: 40216133 DOI: 10.1016/j.ijbiomac.2025.143030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Sepsis is one of the most common causes of acute kidney injury (AKI). Oxidative stress and inflammation within renal tissues are critical pathogenic mechanisms of septic AKI (S-AKI). Carboxymethylated Poria cocos polysaccharides (CMP) exhibit significant anti-inflammatory and antioxidant properties. This study aims to examine the effects of CMP on S-AKI model in vivo and in vitro. Oral administration of CMP significantly reduced renal injury induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP). CMP not only effectively reduced the levels of inflammatory factors in both peripheral and renal tissues, including TNF-α, IL-6, IL-1β, and MCP-1, but also enhanced the expression of antioxidant genes in renal tissues, such as NQO1, HO-1, SLC7A11, and GPX4. Additionally, in vitro studies confirmed that CMP protects HK-2 cells from LPS-induced injury. Mechanistically, Nrf2 was identified as the primary regulator of CMP in exerting its protective effects on renal function. CMP activates the expression of antioxidant genes by stimulating Nrf2, while simultaneously inhibiting the activation of NF-κB signaling by blocking the phosphorylation of IκBα. In conclusion, CMP has potential applications in the prevention and mitigation of S-AKI in clinical practice.
Collapse
Affiliation(s)
- Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cai Chen
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Juan Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Hefei 230001, PR China
| | - Conghan Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Xianfan Du
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Hui Hou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ming Cao
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Daolun Yu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, PR China
| | - Jingjing Zhang
- Cardiovascular Department for Gerontism, the second Affiliated Hospital of Anhui Medical University, Hefei 230011, PR China.
| | - Jiong Gu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang He
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zheng Q, Xing J, Li X, Tang X, Zhang D. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis. Redox Biol 2024; 78:103417. [PMID: 39549609 PMCID: PMC11612791 DOI: 10.1016/j.redox.2024.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a significant public health issue. Sepsis accounts for over 50 % of AKI cases in the ICU. Recent findings from our research indicated that the PRD1-BF1-RIZ1 homeodomain protein 16 (PRDM16) inhibited the progression of diabetic kidney disease (DKD). However, its precise role and regulatory mechanism in sepsis-induced AKI remain obscure. This study reveals that lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) instigated PRDM16 expression in Boston University mouse proximal tubule (BUMPT) cells and mouse kidneys, respectively. Functionally, PRDM16 curtailed LPS-induced ferroptosis. Mechanistically, PRDM16 associates with the promoter regions of nuclear factor-erythroid 2-related factor-2 (NRF2) and augments its expression, subsequently enhancing glutathione peroxidase 4 (GPX4) expression. Additionally, PRDM16 directly engages with the promoter regions of GPX4, stimulating its expression. Notably, these observations were corroborated in human renal tubular epithelial (HK-2) cells. Furthermore, the ablation of PRDM16 from kidney proximal tubules in mice inhibited NRF2 and GPX4 expression, leading to decreased glutathione (GSH)/oxidized glutathione (GSSG) ratio, increased Fe2+ and reactive oxygen species (ROS) production, exacerbated ferroptosis, and AKI progression. Conversely, PRDM16 knock-in exhibited the opposite effects. Ultimately, adenovirus (ADV)-PRDM16 plasmid or poly (lactide-glycolide acid) (PLGA)-encapsulated formononetin not only mitigated sepsis-induced AKI but also alleviated liver, cardiac, and lung injury. In summary, PRDM16 inhibits ferroptosis via the NRF2/GPX4 axis or GPX4 to prevent sepsis-induced multi-organ injury, including AKI. PLGA-encapsulated formononetin presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
4
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Shi Q, Xiao Z, Cai W, Chen Y, Liang H, Ye Z, Li Z, Liang X. Quantitative proteomics analysis reveals the protective role of S14G-humanin in septic acute kidney injury using 4D-label-free and PRM Approaches. Biochem Biophys Res Commun 2024; 733:150630. [PMID: 39332154 DOI: 10.1016/j.bbrc.2024.150630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024]
Abstract
Mitochondrial dysfunction contributes to septic acute kidney injury (S-AKI), making mitochondrial protection a potential therapeutic strategy. This study investigates the effects of S14G-humanin (HNG) in S-AKI, utilizing 4D-label-free and parallel reaction monitoring (PRM) techniques for proteomic analysis. An S-AKI model was created in male C57BL/6 mice using lipopolysaccharide (LPS) injection, followed by HNG administration. After 24 h, kidney tissues were analyzed for histology, biochemistry, mitochondrial function, and proteomics. HNG treatment improved renal function, reduced tubular injury, and decreased pro-inflammatory cytokines and oxidative stress markers. Proteomic analysis identified 5900 proteins, with 5111 quantifiable. HNG altered the expression of 132 proteins, with 18 selected for PRM validation. Ten of these proteins were linked to key pathways, including fatty acid degradation and PPAR signaling. This study is the first to show HNG's protective effects in S-AKI, providing insights into its mechanisms through advanced proteomic techniques.
Collapse
Affiliation(s)
- Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhenmeng Xiao
- Blood Purification Center, the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Wenjing Cai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Huaban Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China
| | - Zhilian Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106th, Zhongshan Road II, Guangzhou, 510080, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, 106th, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Shehata AM, Fares NH, Amin BH, Mahmoud AA, Mahmoud YI. Morin attenuates sepsis-induced acute kidney injury by regulating inflammatory responses, oxidative stress and tubular regeneration (morin and sepsis-induced acute kidney injury). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104543. [PMID: 39179193 DOI: 10.1016/j.etap.2024.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Sepsis-associated acute kidney injury (AKI) is a health complication, encompassing excessive inflammatory response, oxidative stress, and tubular necrosis; leading to kidney failure and death. Sepsis treatments are nonspecific and palliative. In this study, we evaluated the effect of morin, a flavonoid with known nephroprotective capabilities, on sepsis-induced AKI by dividing eighty male mice into: normal, morin-treated, septic, and septic mice treated with morin. Half of the groups were sacrified 3 days post sepsis induction, while the rest was sacrified on the 7th day. Treating septic mice with morin resulted in the amelioration of sepsis-associated pathophysiological renal alterations and the increase of the survival and recovery rates compared with those of septic control group. These findings indicate that morin has a therapeutic effect against sepsis-associated AKI via its anti-inflammatory, antioxidant and regenerative effects. Thus, it could be used as potential pharmacological intervention for preventing renal complications of sepsis.
Collapse
Affiliation(s)
- Aya M Shehata
- Zoology Department, Faculty of Science, Ain Shams University, Egypt.
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| | - Basma H Amin
- The Regional Centre for Mycology and Biotechnology, Al, Azhar University, Egypt
| | - Asmaa A Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
7
|
Zhao Q, Zhang R, Wang Y, Li T, Xue J, Chen Z. FOXQ1, deubiquitinated by USP10, alleviates sepsis-induced acute kidney injury by targeting the CREB5/NF-κB signaling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167331. [PMID: 38960057 DOI: 10.1016/j.bbadis.2024.167331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a severe and frequent complication that occurs during sepsis. This study aimed to understand the role of FOXQ1 in S-AKI and its potential upstream and downstream regulatory mechanisms. A cecal ligation and puncture induced S-AKI mouse model in vivo and an LPS-induced HK-2 cell model in vitro were used. FOXQ1 was significantly upregulated in CLP mice and downregulated in the LPS-induced HK-2 cells. Upregulation of FOXQ1 improved kidney injury and dysfunction in CLP mice. Overexpression of FOXQ1 remarkably suppressed the apoptosis and inflammatory response via down-regulating oxidative stress indicators and pro-inflammatory factors (IL-1β, IL-6, and TNF-α), both in vivo and in vitro. From online analysis, the CREB5/NF-κB axis was identified as the downstream target of FOXQ1. FOXQ1 transcriptionally activated CREB5, upregulating its expression. Overexpression of FOXQ1 suppressed the phosphorylation level and nucleus transport of p65. Rescue experiments showed that CREB5 mediates the protective role of FOXQ1 on S-AKI. Furthermore, FOXQ1 was identified as a substrate of USP10, a deubiquitinating enzyme. Ectopic expression of USP10 reduced the ubiquitination of FOXQ1, promoting its protein stability. USP10 upregulation alleviated LPS-induced cell apoptosis and inflammatory response, while suppression of FOXQ1 augmented these trends. Collectively, our results suggest that FOXQ1, deubiquitinated by USP10, plays a protective role in S-AKI induced inflammation and apoptosis by targeting CREB5/NF-κB axis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Li X, Zhou W, Chen J, Zhou L, Li Y, Wu X, Peng X. Circ_001653 alleviates sepsis associated-acute kidney injury by recruiting BUD13 to regulate KEAP1/NRF2/HO-1 signaling pathway. J Inflamm (Lond) 2024; 21:37. [PMID: 39289683 PMCID: PMC11406777 DOI: 10.1186/s12950-024-00409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The kidney is exceptionally vulnerable during sepsis, often resulting in sepsis-associated acute kidney injury (SA-AKI), a condition that not only escalates morbidity but also significantly raises sepsis-related mortality rates. Circular RNA circ_001653 has been previously reported to be upregulated in the serum of SA-AKI patients, while the role and underlying mechanism of circ_001653 in SA-AKI remains unknown. In this study, we aimed to explore the functional role and the molecular mechanism of circ_001653 in the pathogenesis of SA-AKI. METHODS LPS-stimulated HK-2 cells and ligation and perforation of cecum (CLP)-induced rats were used as in vitro and in vivo models of SA-AKI. The target gene expression levels were measured using qRT-PCR and western blot. Renal function (BUN, sCr, uNGAL, and uKIM-1), and renal pathological changes were detected in septic mice. TUNEL and EdU assays were conducted to measure apoptosis and proliferation rates in vitro. DCFH-DA staining was used to detect ROS levels in vitro and in vivo. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), and inflammation markers (IL-1β, IL-6, and TNF-α) were determined using commercial kits both in vitro and in vivo. Additionally, gain-and-loss-of-function assays and mechanistic experiments were conducted to explore the regulatory role of circ_001653 in SA-AKI pathogenesis. RESULTS Data showed that circ_001653 expression was high in LPS-stimulated HK-2 cells and CLP-induced rat renal tissue and was mainly localized in the cytoplasm. Notably, circ_001653 silencing alleviated SA-AKI by reducing apoptosis and alleviating oxidative stress and inflammation in HK-2 cells and renal tissue of rats. Mechanistically, it was found that circ_001653 alleviated SA-AKI by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. CONCLUSIONS To summarize, our study is the first to reveal elevated expression of circ_001653 in sepsis-associated AKI, and its downregulation effectively attenuates AKI by reducing apoptosis, inflammation, and oxidative stress. Mechanistically, circ_001653 exerts its effects by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. These findings suggest circ_001653 as a potential therapeutic target for the drug development of sepsis-associated AKI.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Wei Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Jianjun Chen
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Liangliang Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Yingbing Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xufeng Wu
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xia Peng
- Department of Respiratory and Critical Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
9
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
10
|
Sabra RT, Bekhit AA, Sabra NT, Abd El-Moeze NA, Fathy M. Nebivolol ameliorates sepsis-evoked kidney dysfunction by targeting oxidative stress and TGF-β/Smad/p53 pathway. Sci Rep 2024; 14:14735. [PMID: 38926458 PMCID: PMC11208533 DOI: 10.1038/s41598-024-64577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis is a potential fetal organ destruction brought on through an overzealous immunologic reaction to infection, causing severe inflammation, septic shock, and damage to different organs. Although there has been progress in the identification and controlling of clinical sepsis, the fatality rates are still significant. This study, for the first time, intended to examine the possible ameliorative impact of Nebivolol, a β1-adrenergic antagonist antihypertensive drug, against nephrotoxicity resulted from cecal ligation and puncture (CLP)-induced sepsis in rats, on molecular basis. Sixty male Wistar albino rats were chosen. Oxidative stress indicators and biochemical markers of kidney activity were evaluated. Inflammatory mediators, fibrosis- and apoptosis-related proteins and gene expressions were investigated. Moreover, renal histopathological investigation was performed. CLP-induced nephrotoxicity characterized by markedly elevated serum levels of creatinine, blood urea nitrogen, uric acid, and renal malondialdhyde. On the other hand, it decreased serum total protein level, renal superoxide dismutase activity and reduced glutathione level. Additionally, it significantly elevated the renal inflammatory mediators (tumor necrosis factor-alpha, ilnerlukin (IL)-6, and IL-1β) and Caspase-3 protein, reduced IL-10 level, amplified the expression of transforming growth factor-beta 1 (TGF-β1), p-Smad2/3 and alpha-smooth-muscle actin proteins, downregulated the B cell lymphoma-2 (Bcl-2) gene and elevated the transcription of Bcl-2-associated X-protein (Bax), p53 and Nuclear factor-kappa B (NF-κB) genes. Furtheremor, kidney tissues exhibited significant histopathological changes with CLP. On the contrary, Nebivolol significantly improved all these biochemical changes and enhanced the histopathological alterations obtained by CLP. This research showed, for the first time, that Nebivolol effectively mitigated the CLP-induced kidney dysfunction via its antioxidant, antifibrotic and anti-apoptotic activity through modulation of oxidative stress, TGF-β/NF-κB and TGF-β/Smad/p53 signaling pathways.
Collapse
Affiliation(s)
- Rahma Tharwat Sabra
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | | | - Nourhan Tharwat Sabra
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
11
|
Zheng Q, Li X, Xu X, Tang X, Hammad B, Xing J, Zhang D. The mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H axis mediates apoptosis in renal tubular cells in association with endoplasmic reticulum stress following ischemic acute kidney injury. Int Immunopharmacol 2024; 132:111956. [PMID: 38554447 DOI: 10.1016/j.intimp.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND While recent studies have suggested a potential involvement of circRNAs in acute kidney injury (AKI) after ischemia, mmu_circ_003062 role is undetermined. METHODS The levels of mmu_circ_003062, miR-490-3p, CACNA1H, GRP78, CHOP and hsa_circ_0075663 were detected by Relative qPCR in Boston University mouse proximal tubule (BUMPT) cells, mouse kidneys, and human renal tubular epithelial (HK-2) cells. Moreover, the levels of hsa_circ_0075663 in serum and urine of patients with AKI following cardiopulmonary resuscitation (CPR) were detected by absolute quantitative PCR. Western blot was used to detect the relative expression of the protein. The function and regulatory mechanism of mmu_circ_003062 and hsa_circ_0075663 were investigated through a series of in vitro and in vivo experiments, including bioinformatic prediction, luciferase reporter assays, FISH, FCM, TUNEL staining, and H&E staining. RESULTS It was found that mmu_circ_003062, hsa_circ_0075663 mediated apoptosis after ischemia/reperfusion (I/R) by interaction with miR-490-3p to enhance CACNA1H expression, thereby leading to the upregulation of endoplasmic reticulum stress (ERS)-relevant proteins GRP78 and CHOP. Ultimately, mmu_circ_003062 downregulation significantly ameliorated ischemic AKI by modulating the miR-490-3p/CACNA1H/GRP78 and CHOP pathway. Furthermore, the plasma and urinary levels of hsa_circ_0075663 in patients with AKI following CPR were significantly higher than non-AKI patients, exhibited a strongly correlation with serum creatinine. CONCLUSION The involvement of mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H/GRP78 and CHOP axis is significant in the development of ischemic AKI. Moreover, hsa_circ_0075663 has potential as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Xu
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bacha Hammad
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Luo X, Zhao Y, Luo Y, Lai J, Ji J, Huang J, Chen Y, Liu Z, Liu J. Cytosolic mtDNA-cGAS-STING axis contributes to sepsis-induced acute kidney injury via activating the NLRP3 inflammasome. Clin Exp Nephrol 2024; 28:375-390. [PMID: 38238499 DOI: 10.1007/s10157-023-02448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/10/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND NLRP3 inflammasome activation is significantly associated with sepsis-induced acute kidney injury (S-AKI). Cytosolic DNA derived from damaged mitochondria has been reported to activate NLRP3 inflammasome via upregulating the cyclic GMP-AMP synthase (cGAS)-the stimulator of interferon genes (STING) axis in nucleus pulposus cell and cardiomyocytes. However, the regulatory effect of mitochondria DNA (mtDNA)-cGAS-STING axis on the NLRP3 inflammasome in S-AKI remains unclear. METHODS In the current study, we established an in vivo model of S-AKI by intraperitoneally injecting male C57BL/6 J mice with lipopolysaccharide (LPS). Next, selective cGAS inhibitor RU.521, and STING agonist DMXAA were intraperitoneally injected in the mice; then, blood urea nitrogen (BUN), serum creatinine (CRE), urinary kidney injury molecular-1 (KIM-1), pathological changes, and infiltrated neutrophils were detected to assess kidney injury. We also performed western blot and immunofluorescence assays to evaluate STING, cGAS, TBK-1, p-TBK-1, IRF3, p-IRF3, NF-kB, p-NF-kB, NLRP3, cleaved caspase-1, caspase-1, GSDMD-N, and GSDMD expression levels in kidney tissues. IL-18 and IL-1β in renal tissue were identified by ELISA. In vitro, we treated HK-2 cells with LPS to establish a cell model of S-AKI. Furthermore, ethidium bromide (EtBr) was administered to deplete mitochondria DNA (mtDNA). LPS-induced cytotoxicity was evaluated by LDH release assay. Protein expression of cGAS, STING, and NLRP3 in was quantified by western blot. Cytosolic mtDNA was detected by immunofluorescence and q-PCR. Released IL-1β and IL-18 in HK-2 supernatants were detected by ELISA. RESULTS LPS injection induced S-AKI in mice, as evidenced by neutrophil infiltration, tubular vacuolation, and increased levels of serum creatinine (CRE), blood urea nitrogen (BUN), and urinary KIM-1. In addition, LPS activated the cGAS-STING axis and NLRP3 inflammasome in vivo, illustrated by increased phosphorylation levels of TBK-1, IRF3, and NF-kB protein, increased ratio of cleaved caspase-1 to caspase-1 and GSDMD-N to GSDMD, and increased IL-1β and IL-18 levels. Moreover, the cGAS inhibitor RU.521 effectively attenuated NLRP3 inflammasome and S-AKI; however, these effects were abolished by treatment with the STING agonist DMXAA. Furthermore, cytosolic release of mtDNA and activation of the cGAS-STING-NLRP3 axis were observed in LPS-treated HK-2 cells. Inhibiting mtDNA replication by Ethidium Bromide (EtBr) treatment reduced cytosolic mtDNA accumulation and downregulated the cGAS-STING-NLRP3 axis, ameliorating the cytotoxicity induced by LPS. CONCLUSION This study demonstrated that the cGAS-STING axis was triggered by cytosolic mtDNA and participated in the development of S-AKI by activating NLRP3 inflammasome. Reducing cytosolic mtDNA accumulation or inhibiting the cGAS-STING axis may be potential therapeutic targets for S-AKI.
Collapse
Affiliation(s)
- Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, No.1 Maoyuan South Road, Nanchong, 637000, Sichuan, China
| | - Yunpeng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiemei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiao Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ziru Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Zhu W, Ou Y, Wang C, An R, Lai J, Shen Y, Ye X, Wang H. A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 2024; 10:e29366. [PMID: 38638960 PMCID: PMC11024609 DOI: 10.1016/j.heliyon.2024.e29366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Background Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.
Collapse
Affiliation(s)
- Wei Zhu
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chunnian Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, Zhejiang, China
| | - Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Junmei Lai
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ye Shen
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiangming Ye
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
14
|
Li R, Li W, Zhou Y, Liao G, Peng G, Zhou Y, Gou L, Zhu X, Hu L, Zheng X, Wang C, Tong N. A DNA-based and bifunctional nanomedicine for alleviating multi-organ injury in sepsis under diabetic conditions. Acta Biomater 2024; 177:377-387. [PMID: 38307477 DOI: 10.1016/j.actbio.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Sepsis, defined as a life-threatening organ dysfunction, is associated with increased mortality in individuals with diabetes mellitus. In sepsis under diabetic conditions (SUDC), the superimposed inflammatory response and excessive production of reactive oxygen species (ROS) can cause severe damage to the kidney and liver, making it challenging to effectively repair multi-organ injury. In this study, we report the development of a DNA-based bifunctional nanomedicine, termed IL10-rDON, generated by assembling interleukin 10 (IL10) with rectangular DNA origami nanostructures (rDON) to address multi-organ dysfunction in SUDC. IL10-rDON was shown to predominantly accumulate in the kidney and liver of diabetic mice in vivo and effectively alleviate inflammatory responses through its anti-inflammatory IL10 component. In addition, the consumption of rDON itself significantly reduced excessive ROS in the liver and kidney. Serum and histological examinations further confirmed that IL10-rDON treatment could effectively improve liver and kidney function, as well as the survival of mice with SUDC. This study demonstrates an attractive antioxidant and anti-inflammatory nanomedicine for addressing acute liver and renal failure. The integration of rDON with therapeutic agents using DNA nanotechnology is a promising strategy for generating multifunctional nanomedicine to treat multi-organ dysfunction and other complicated diseases. STATEMENT OF SIGNIFICANCE: Sepsis under diabetic conditions (SUDC) leads to high mortality due to multiple organ failure such as acute liver and kidney injury. The anti-inflammatory cytokine interleukin 10 (IL10) holds great potential to treat SUDC, while disadvantages of IL-10 such as short half-life, non-specific distribution and lack of antioxidant activities limit its wide clinical applications. In this study, we developed a DNA-based, bifunctional nanomedicine (IL10-rDON) by assembling IL10 with rectangular DNA origami nanostructures (rDON). We found that IL10-rDON preferentially accumulated and sufficiently attenuated the increased levels of ROS and inflammation in the kidney and liver injury sites, and eventually improved the survival rate of mice with SUDC. Our finding provides new insights into the application of DNA-based nanomedicine in treating multi-organ failure.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China; Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yaojia Zhou
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Yin T, Wei W, Huang X, Liu C, Li J, Yi C, Yang L, Ma L, Zhang L, Zhao Y, Fu P. Serum total protein-to-albumin ratio predicts risk of death in septic acute kidney injury patients: A cohort study. Int Immunopharmacol 2024; 127:111358. [PMID: 38118313 DOI: 10.1016/j.intimp.2023.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Sepsis is the leading cause of acute kidney injury (AKI). Increasing evidence shows that serum total protein-to-albumin ratio (TAR) could serve as an inflammation- and nutrition-based prognostic marker in various diseases. The purpose of this study was to assess the prognostic value of TAR in predicting the clinical outcomes of septic AKI patients. METHODS We retrospectively enrolled septic AKI patients between August 2015 and August 2022 at West China Hospital of Sichuan University. Patients admitted between August 2015 and August 2021 were defined as the original cohort. The primary outcomes were 30-day and 90-day all-cause mortality of septic AKI patients. The secondary outcomes were septic shock, transfer to the intensive care unit, mechanical ventilation, requirement for renal replacement therapy, and stage 3 AKI. The utility of TAR was further verified in a validation cohort of septic AKI patients admitted between September 2021 and August 2022. RESULTS In the original cohort, a total of 309 eligible patients with a median age of 58 years were enrolled, of which 70.2 % were males. In multivariate Cox analysis, after adjustments for age, sex, and other confounding factors, higher TAR at admission was associated with an increased risk of 30-day and 90-day all-cause mortality in septic AKI patients (HR 1.91, 95 % CI 1.18-3.09, P = 0.008; HR 1.54, 95 % CI 1.01-2.34, P = 0.043, respectively). Subgroup analysis revealed no significant interactions in most strata. TAR at AKI diagnosis or discharge was not significantly related to 30-day (P = 0.120 and 0.153, respectively) or 90-day mortality (P = 0.147 and 0.124, respectively). We found no relationship between baseline TAR and septic shock, transfer to the intensive care unit, mechanical ventilation, requirement for renal replacement therapy, or stage 3 AKI (all P > 0.05). In the validation cohort of 81 septic AKI patients, TAR at admission remained a significant prognosticator for 30-day and 90-day mortality (HR 4.367, 95 % CI 1.20-15.87, P = 0.025; HR 4.237, 95 % CI 1.59-11.27, P = 0.004). CONCLUSIONS TAR at admission is an independent risk factor for 30-day and 90-day mortality in septic AKI patients and could be used as a convenient and economic septic AKI prognostic indicator.
Collapse
Affiliation(s)
- Ting Yin
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Huang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Caihong Liu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Liu M, Guo P, Zeng M, Zhang Y, Jia J, Liu Y, Chen X, Kuang H, Feng W, Zheng X. Effects and mechanisms of frehmaglutin D and rehmaionoside C improve LPS-induced acute kidney injury through the estrogen receptor-mediated TLR4 pathway in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155218. [PMID: 37980806 DOI: 10.1016/j.phymed.2023.155218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (S-AKI) is an inflammatory disease with sex differences and there has no effective drugs to cure it. Frehmaglutin D (Fre D) and rehmaionoside C (Reh C) are two violetone compounds with estrogenic activity isolated from Rehmannia glutinosa. However, whether these two drugs exert protective effects on S-AKI through their estrogen-like activity are unclear. PURPOSE This study aimed to explore the effects and mechanisms of Fre D and Reh C on lipopolysaccharide (LPS)-induced S-AKI through the estrogen receptor pathway in vivo and in vitro and to explore the interaction between ER and TLR4 for the first time. METHODS The LPS-induced female BALB/c mice S-AKI mouse model was established by adding the estrogen receptor antagonist ICI182,780. Renal function, inflammation, oxidative stress, apoptosis, immune cells, and expression of key proteins of the ER-TLR4-IL-1β pathway were tested. The affinity of Fre D and Reh C for the ER was investigated by molecular docking. Then, an in vitro S-AKI model was established, and ERα/ERβ antagonists (MPP/PHTPP) were added and combined with gene overexpression techniques. The interaction between ER and TLR4 was further explored by Co-IP, GST pull-down and SPR techniques. RESULTS Fre D and Reh C ameliorated LPS-induced renal damage, inflammation in mice, regulated the immune cells, decreased ROS levels, increased ERα and ERβ protein expression, and decreased TLR4, caspase 11 and IL-1β protein expression. These effects were blocked by ICI182,780. Molecular docking results showed that Fre D and Reh C bound ERα and ERβ with similar potency. The results of in vitro suggested that Fre D and Reh C reduced the levels of inflammation, ROS and apoptosis, TLR4, caspase 11, and IL-1β protein expression and increased ERα/ERβ protein expression in cells. All of these effects were reversed by the addition of MPP/PHTPP and further enhanced after ERα/ERβ gene overexpression with no significant difference in effects. Moreover, there was an indirect or direct interaction between ER and TLR4, and the binding of ERα and ERβ to TLR4 was concentration dependent. CONCLUSION Fre D and Reh C may improve S-AKI through the ER-TLR4-IL-1β pathway and may act on both ERα and ERβ receptors. Moreover, ERα and ERβ may interact directly or indirectly with TLR4, which was studied for the first time.
Collapse
Affiliation(s)
- Meng Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Pengli Guo
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Mengnan Zeng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yuhan Zhang
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Jufang Jia
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Yanling Liu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Xu Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150000, Heilongjiang, China
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
18
|
Xu J. A review: continuous renal replacement therapy for sepsis-associated acute kidney injury. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2163305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jundong Xu
- Intensive Care Unit, Yinzhou People’s Hospital, Ningbo City, People’s Republic of China
| |
Collapse
|
19
|
Shirzad H, Mousavinezhad SA, Panji M, Ala M. Amlodipine alleviates renal ischemia/reperfusion injury in rats through Nrf2/Sestrin2/PGC-1α/TFAM Pathway. BMC Pharmacol Toxicol 2023; 24:82. [PMID: 38129888 PMCID: PMC10740300 DOI: 10.1186/s40360-023-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Previously, observational studies showed that amlodipine can mitigate calcineurin inhibitor- and contrast-induced acute kidney injury (AKI). Herein, we aimed to measure the effect of amlodipine on renal ischemia/reperfusion (I/R) injury and find the underlying mechanisms. MATERIALS AND METHODS Bilateral renal I/R was induced by clamping the hilum of both kidneys for 30 min. The first dose of amlodipine 10 mg/kg was gavaged before anesthesia. The second dose of amlodipine was administered 24 h after the first dose. Forty-eight hours after I/R, rats were anesthetized, and their blood and tissue specimens were collected. RESULTS Amlodipine significantly decreased the elevated serum levels of creatinine and blood urea nitrogen (BUN) and mitigated tissue damage in hematoxylin & eosin (H&E) staining. Amlodipine strongly reduced the tissue levels of malondialdehyde (MDA), interleukin 1β (IL1β), and tumor necrosis factor α (TNF-α). Amlodipine enhanced antioxidant defense by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2) and Sestrin2. Furthermore, amlodipine significantly improved mitochondrial biogenesis by promoting Sestrin2/peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α)/mitochondrial transcription factor A (TFAM) pathway. It also enhanced autophagy and attenuated apoptosis, evidenced by increased LC3-II/LC3-I and bcl2/bax ratios after renal I/R. CONCLUSION These findings suggest that amlodipine protects against renal I/R through Nrf2/Sestrin2/PGC-1α/TFAM Pathway.
Collapse
Affiliation(s)
- Hadi Shirzad
- Research Center for Life, Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarters, Tehran, Iran
| | - Seyed Amin Mousavinezhad
- Research Center for Life, Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarters, Tehran, Iran
| | - Mohammad Panji
- Research Center for Life, Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarters, Tehran, Iran
| | - Moin Ala
- Research Center for Life, Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarters, Tehran, Iran.
| |
Collapse
|
20
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
21
|
Yi X, Xu C, Yang J, Zhong C, Yang H, Tang L, Song S, Yu J. Tiliroside Protects against Lipopolysaccharide-Induced Acute Kidney Injury via Intrarenal Renin-Angiotensin System in Mice. Int J Mol Sci 2023; 24:15556. [PMID: 37958538 PMCID: PMC10648967 DOI: 10.3390/ijms242115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Tiliroside, a natural flavonoid, has various biological activities and improves several inflammatory diseases in rodents. However, the effect of Tiliroside on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and the underlying mechanisms are still unclear. This study aimed to evaluate the potential renoprotective effect of Tiliroside on LPS-induced AKI in mice. Male C57BL/6 mice were intraperitoneally injected with LPS (a single dose, 3 mg/kg) with or without Tiliroside (50 or 200 mg/kg/day for 8 days). Tiliroside administration protected against LPS-induced AKI, as reflected by ameliorated renal dysfunction and histological alterations. LPS-stimulated renal expression of inflammatory cytokines, fibrosis markers, and kidney injury markers in mice was significantly abolished by Tiliroside. This flavonoid also stimulated autophagy flux but inhibited oxidative stress and tubular cell apoptosis in kidneys from LPS-injected mice. Mechanistically, our study showed the regulation of Tiliroside on the intrarenal renin-angiotensin system in LPS-induced AKI mice. Tiliroside treatment suppressed intrarenal AGT, Renin, ACE, and Ang II, but upregulated intrarenal ACE2 and Ang1-7, without affecting plasma Ang II and Ang1-7 levels. Collectively, our data highlight the renoprotective action of Tiliroside on LPS-induced AKI by suppressing inflammation, oxidative stress, and tubular cell apoptosis and activating autophagy flux via the shift towards the intrarenal ACE2/Ang1-7 axis and away from the intrarenal ACE/Ang II axis.
Collapse
Affiliation(s)
- Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Jing Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Chao Zhong
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, China; (X.Y.); (J.Y.); (C.Z.); (H.Y.); (L.T.); (S.S.)
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
22
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar Y, Deng F. CHIP protects against septic acute kidney injury by inhibiting NLRP3-mediated pyroptosis. iScience 2023; 26:107762. [PMID: 37692286 PMCID: PMC10492219 DOI: 10.1016/j.isci.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Septic acute kidney injury (S-AKI), the most common type of acute kidney injury (AKI), is intimately related to pyroptosis and oxidative stress in its pathogenesis. Carboxy-terminus of Hsc70-interacting protein (CHIP), a U-box E3 ligase, modulates oxidative stress by degrading its targeted proteins. The role of CHIP in S-AKI and its relevance with pyroptosis have not been investigated. In this study, we showed that CHIP was downregulated in renal proximal tubular cells in lipopolysaccharide (LPS)-induced S-AKI. Besides, the extent of redox injuries in S-AKI was attenuated by CHIP overexpression or activation but accentuated by CHIP gene disruption. Mechanistically, our work demonstrated that CHIP interacted with and ubiquitinated NLRP3 to promote its proteasomal degradation, leading to the inhibition of NLRP3/ACS inflammasome-mediated pyroptosis. In summary, this study revealed that CHIP ubiquitinated NLRP3 to alleviate pyroptosis in septic renal injuries, suggesting that CHIP might be a potential therapeutic target for S-AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal.S. Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Betrie AH, Ma S, Ow CPC, Peiris RM, Evans RG, Ayton S, Lane DJR, Southon A, Bailey SR, Bellomo R, May CN, Lankadeva YR. Renal arterial infusion of tempol prevents medullary hypoperfusion, hypoxia, and acute kidney injury in ovine Gram-negative sepsis. Acta Physiol (Oxf) 2023; 239:e14025. [PMID: 37548350 PMCID: PMC10909540 DOI: 10.1111/apha.14025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
AIM Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.
Collapse
Affiliation(s)
- Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Shuai Ma
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Division of Nephrology, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Rachel M. Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVictoriaAustralia
| | - Scott Ayton
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darius J. R. Lane
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Adam Southon
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Simon R. Bailey
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
- Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia
- Department of Intensive CareAustin HospitalMelbourneVictoriaAustralia
- Department of Intensive CareRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
24
|
Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch Immunol Ther Exp (Warsz) 2023; 71:16. [PMID: 37378741 DOI: 10.1007/s00005-023-00682-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Beata Skibska
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Cardoso RDR, Chambo SD, Zaninelli TH, Bianchini BHS, da Silva MDV, Bertozzi MM, Saraiva-Santos T, Franciosi A, Martelossi-Cebinelli G, Garcia-Miguel PE, Borghi SM, Casagrande R, Verri WA. Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010121. [PMID: 36615318 PMCID: PMC9821966 DOI: 10.3390/molecules28010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.
Collapse
Affiliation(s)
- Renato D. R. Cardoso
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sandmary D. Chambo
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Beatriz H. S. Bianchini
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Pamela E. Garcia-Miguel
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
26
|
Hu RT, Lankadeva YR, Yanase F, Osawa EA, Evans RG, Bellomo R. Continuous bladder urinary oxygen tension as a new tool to monitor medullary oxygenation in the critically ill. Crit Care 2022; 26:389. [PMID: 36527088 PMCID: PMC9758873 DOI: 10.1186/s13054-022-04230-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) is common in the critically ill. Inadequate renal medullary tissue oxygenation has been linked to its pathogenesis. Moreover, renal medullary tissue hypoxia can be detected before biochemical evidence of AKI in large mammalian models of critical illness. This justifies medullary hypoxia as a pathophysiological biomarker for early detection of impending AKI, thereby providing an opportunity to avert its evolution. Evidence from both animal and human studies supports the view that non-invasively measured bladder urinary oxygen tension (PuO2) can provide a reliable estimate of renal medullary tissue oxygen tension (tPO2), which can only be measured invasively. Furthermore, therapies that modify medullary tPO2 produce corresponding changes in bladder PuO2. Clinical studies have shown that bladder PuO2 correlates with cardiac output, and that it increases in response to elevated cardiopulmonary bypass (CPB) flow and mean arterial pressure. Clinical observational studies in patients undergoing cardiac surgery involving CPB have shown that bladder PuO2 has prognostic value for subsequent AKI. Thus, continuous bladder PuO2 holds promise as a new clinical tool for monitoring the adequacy of renal medullary oxygenation, with its implications for the recognition and prevention of medullary hypoxia and thus AKI.
Collapse
Affiliation(s)
- Raymond T. Hu
- grid.410678.c0000 0000 9374 3516Department of Anaesthesia, Austin Health, Heidelberg, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia
| | - Yugeesh R. Lankadeva
- grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XPre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC Australia
| | - Fumitake Yanase
- grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Heidelberg, Australia
| | - Eduardo A. Osawa
- Cardiology Intensive Care Unit, DF Star Hospital, Brasília, Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), DF Star Hospital, Brasília, Brazil
| | - Roger G. Evans
- grid.1008.90000 0001 2179 088XPre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC Australia ,grid.1002.30000 0004 1936 7857Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC Australia
| | - Rinaldo Bellomo
- grid.1008.90000 0001 2179 088XDepartment of Critical Care, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.414094.c0000 0001 0162 7225Department of Intensive Care, Austin Hospital, Heidelberg, Australia ,grid.1002.30000 0004 1936 7857Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia ,grid.416153.40000 0004 0624 1200Department of Intensive Care, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
27
|
Ng ML, Kuan WS, Pakkiri LS, Goh ECH, Wu LH, Drum CL. Deep phenotyping of oxidative stress in emergency room patients reveals homoarginine as a novel predictor of sepsis severity, length of hospital stay, and length of intensive care unit stay. Front Med (Lausanne) 2022; 9:1033083. [PMID: 36507541 PMCID: PMC9733670 DOI: 10.3389/fmed.2022.1033083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background We aimed to determine primary markers of oxidative stress (OS) in ED patients which predict hospital length of stay (LoS), intensive care unit (ICU) LoS, and sepsis severity. Materials and methods This prospective, single center observational study was conducted in adult patients recruited from the ED who were diagnosed with either sepsis, infection without sepsis, or non-infectious, age-matched controls. 290 patients were admitted to the hospital and 24 patients had direct admission to the ICU. A panel of 269 OS and related metabolic markers were profiled for each cohort. Clinical outcomes were direct ICU admission, hospital LoS, ICU LoS, and post-hoc, adjudicated sepsis severity scoring. Bonferroni correction was used for pairwise comparisons. Principal component regression was used for dimensionality reduction and selection of plasma metabolites associated with sepsis. Multivariable negative binomial regression was applied to predict admission, hospital, and ICU LoS. Results Homoarginine (hArg) was the top discriminator of sepsis severity [sepsis vs. control: ROC-AUC = 0.86 (95% CI 0.81-0.91)], [sepsis vs. infection: ROC-AUC = 0.73 (95% CI 0.68-0.78)]. The 25th percentile of hArg [odds ratio (OR) = 8.57 (95% CI 1.05-70.06)] was associated with hospital LoS [IRR = 2.54 (95% CI 1.83-3.52)] and ICU LOS [IRR = 18.73 (95% CI 4.32-81.27)]. In prediction of outcomes, hArg had superior performance compared to arginine (Arg) [hArg ROC-AUC = 0.77 (95% CI 0.67-0.88) vs. Arg ROC-AUC = 0.66 (95% CI 0.55-0.78)], and dimethylarginines [SDMA ROC-AUC 0.68 (95% CI 0.55-0.79) and ADMA ROC-AUC = 0.68 (95% CI 0.56-0.79)]. Ratio of hArg and Arg/NO metabolic markers and creatinine clearance provided modest improvements in clinical prediction. Conclusion Homoarginine is associated with sepsis severity and predicts hospital and ICU LoS, making it a useful biomarker in guiding treatment decisions for ED patients.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Win Sen Kuan
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
| | | | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lik Hang Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Cardiovascular Research Institute, National University Health System, Singapore, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Chester Lee Drum,
| |
Collapse
|
28
|
Bektaş Uysal H, Yılmaz M, Kurt Ömurlu İ, Demirci B. Protective Efficacy of Thiamine (Vitamin B<sub>1</sub>) Alone on LPS-induced Acute Kidney Injury. MEANDROS MEDICAL AND DENTAL JOURNAL 2022. [DOI: 10.4274/meandros.galenos.2022.70456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Inhibition of Xanthine Oxidase Protects against Sepsis-Induced Acute Kidney Injury by Ameliorating Renal Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4326695. [PMID: 35873795 PMCID: PMC9307393 DOI: 10.1155/2022/4326695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1β in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.
Collapse
|
30
|
|
31
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
32
|
Feng Q, Yu X, Qiao Y, Pan S, Wang R, Zheng B, Wang H, Ren KD, Liu H, Yang Y. Ferroptosis and Acute Kidney Injury (AKI): Molecular Mechanisms and Therapeutic Potentials. Front Pharmacol 2022; 13:858676. [PMID: 35517803 PMCID: PMC9061968 DOI: 10.3389/fphar.2022.858676] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Hispidulin Ameliorates Endotoxin-Induced Acute Kidney Injury in Mice. Molecules 2022; 27:molecules27062019. [PMID: 35335387 PMCID: PMC8948942 DOI: 10.3390/molecules27062019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death.
Collapse
|
34
|
Li LF, Yu CC, Wu HP, Chu CM, Huang CY, Liu PC, Liu YY. Reduction in Ventilation-Induced Diaphragmatic Mitochondrial Injury through Hypoxia-Inducible Factor 1α in a Murine Endotoxemia Model. Int J Mol Sci 2022; 23:ijms23031083. [PMID: 35163007 PMCID: PMC8835058 DOI: 10.3390/ijms23031083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanical ventilation (MV) is essential for patients with sepsis-related respiratory failure but can cause ventilator-induced diaphragm dysfunction (VIDD), which involves diaphragmatic myofiber atrophy and contractile inactivity. Mitochondrial DNA, oxidative stress, mitochondrial dynamics, and biogenesis are associated with VIDD. Hypoxia-inducible factor 1α (HIF-1α) is crucial in the modulation of diaphragm immune responses. The mechanism through which HIF-1α and mitochondria affect sepsis-related diaphragm injury is unknown. We hypothesized that MV with or without endotoxin administration would aggravate diaphragmatic and mitochondrial injuries through HIF-1α. C57BL/6 mice, either wild-type or HIF-1α-deficient, were exposed to MV with or without endotoxemia for 8 h. MV with endotoxemia augmented VIDD and mitochondrial damage, which presented as increased oxidative loads, dynamin-related protein 1 level, mitochondrial DNA level, and the expressions of HIF-1α and light chain 3-II. Furthermore, disarrayed myofibrils; disorganized mitochondria; increased autophagosome numbers; and substantially decreased diaphragm contractility, electron transport chain activities, mitofusin 2, mitochondrial transcription factor A, peroxisome proliferator activated receptor-g coactivator-1α, and prolyl hydroxylase domain 2 were observed (p < 0.05). Endotoxin-stimulated VIDD and mitochondrial injuries were alleviated in HIF-1α-deficient mice (p < 0.05). Our data revealed that endotoxin aggravated MV-induced diaphragmatic dysfunction and mitochondrial damages, partially through the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Chi Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan; (L.-F.L.); (C.-C.Y.); (H.-P.W.); (C.-M.C.); (C.-Y.H.); (P.-C.L.)
- Department of Internal Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: ; Tel.: 886-2-28712121 (ext. 3071); Fax: 886-2-28757858
| |
Collapse
|
35
|
Kim JY, Hong HL, Kim GM, Leem J, Kwon HH. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Molecules 2021; 26:molecules26247589. [PMID: 34946671 PMCID: PMC8705858 DOI: 10.3390/molecules26247589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Hyo-Lim Hong
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Gyun Moo Kim
- Department of Emergency Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
| | - Jaechan Leem
- Department of Immunology, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu 42472, Korea;
- Correspondence: (J.L.); (H.H.K.)
| |
Collapse
|
36
|
Oxidative Stress in ICU Patients: ROS as Mortality Long-Term Predictor. Antioxidants (Basel) 2021; 10:antiox10121912. [PMID: 34943015 PMCID: PMC8750443 DOI: 10.3390/antiox10121912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid peroxidation, protein oxidation, and mutations in mitochondrial DNA generate reactive oxygen species (ROS) that are involved in cell death and inflammatory response syndrome. ROS can also act as a signal in the intracellular pathways involved in normal cell growth and homeostasis, as well as in response to metabolic adaptations, autophagy, immunity, differentiation and cell aging, the latter of which is an important characteristic in acute and chronic pathologies. Thus, the measurement of ROS levels of critically ill patients, upon admission, enables a prediction not only of the severity of the inflammatory response, but also of its subsequent potential outcome. The aim of this study was to measure the levels of mitochondrial ROS (superoxide anion) in the peripheral blood lymphocytes within 24 h of admission and correlate them with survival at one year after ICU and hospital discharge. We designed an observational prospective study in 51 critical care patients, in which clinical variables and ROS production were identified and correlated with mortality at 12 months post-ICU hospitalization. Oxidative stress levels, measured as DHE fluorescence, show a positive correlation with increased long-term mortality. In ICU patients the major determinant of survival is oxidative stress, which determines inflammation and outlines the cellular response to inflammatory stimuli.
Collapse
|