1
|
Stamation R. Endogenous Ethanol Production in the Human Alimentary Tract: A Literature Review. J Gastroenterol Hepatol 2025; 40:783-790. [PMID: 39853762 PMCID: PMC11968154 DOI: 10.1111/jgh.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Endogenous ethanol production, or auto-brewery syndrome (ABS), is a rare condition of the human alimentary canal that results in intoxication without alcohol consumption. Despite its clinical significance, ABS remains largely undiagnosed because of a lack of awareness among clinicians. Published cases have reported extensive biopsychosocial comorbidities accompanying delayed diagnosis and incomplete management; these include social rejection and family separation, court-ordered alcohol rehabilitation and psychiatric admission, legal and employment ramifications, and deteriorating mental health and suicidality. In this mini review, we aim to educate and enlighten clinicians by discussing literature findings pertaining to the pathophysiological mechanisms of gut dysbiosis due to overgrowth of Saccharomyces cerevisiae, E. coli and Klebsiella, impaired intestinal barrier function, and dysregulation of the hypothalamic-pituitary-adrenal axis. Furthermore, we discuss recently discovered associations with sleep quality and mood disorders and explore the medical sequelae of metabolic dysfunction-associated fatty liver disease and metabolic dysfunction-associated steatohepatitis. Drawing on these data, we propose protocols for initial care in the emergency room, subsequent critical care, diagnostic testing with glucose challenge testing, and definitive microbiological testing during the acute phase of illness. We also present an empirical treatment outline while awaiting confirmation of causative organisms and sensitivities.
Collapse
Affiliation(s)
- Renee Stamation
- Department of Rural HealthUniversity of Melbourne, Echuca Clinical SchoolEchucaVictoriaAustralia
| |
Collapse
|
2
|
Dinis-Oliveira RJ. "Not everything that can be counted counts" in ethanol toxicological results: an antemortem and postmortem technical interpretation focusing on driving under the influence. Forensic Sci Res 2024; 9:owae023. [PMID: 39006154 PMCID: PMC11240237 DOI: 10.1093/fsr/owae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 07/16/2024] Open
Abstract
Ethanol blood analysis is the most common request in forensic toxicology, and some studies point to positive results in approximately one-third of all unnatural deaths. However, distinguishing sober deaths from drunk deaths is not as simple as it may seem. This technical, clinical, and forensic interpretation is proposed to interpret the ethanol toxicological results, discussing several artefacts and pitfalls that must be considered, namely focusing on driving under the influence. This work is presented with a practical and objective approach, aiming to alleviate the complexities associated with clinical, physiological, pathophysiological, and toxicological aspects to enhance comprehension, practicality, and applicability of its content, especially to courts. Particularly the physical integrity of the body, the postmortem interval, putrefactive signs, anatomic place of blood collection, alternative samples such as vitreous humour and urine, the possibility of postmortem redistribution, the inclusion of preservatives in containers, and optimal temperature conditions of shipment are among some of the aspects to pay attention. Although several biomarkers related to postmortem microbial ethanol production have been proposed, their translation into forensic routine is slow to be implemented due to the uncertainties of their application and analytical difficulties. Specifically, in the interpretation of ethanol toxicological results, "not everything that can be counted counts and not everything that counts can be counted" (attributed to Albert Einstein).
Collapse
Affiliation(s)
- Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences 1H-TOXRUN, IUCS-CESPU, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- FOREN – Forensic Science Experts, Lisbon, Portugal
| |
Collapse
|
3
|
Ialongo C. Blood alcohol concentration in the clinical laboratory: a narrative review of the preanalytical phase in diagnostic and forensic testing. Biochem Med (Zagreb) 2024; 34:010501. [PMID: 38107001 PMCID: PMC10564119 DOI: 10.11613/bm.2024.010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023] Open
Abstract
The analysis of blood alcohol concentration (BAC), a pivotal toxicological test, concerns acute alcohol intoxication (AAI) and driving under the influence (DUI). As such, BAC presents an organizational challenge for clinical laboratories, with unique complexities due to the need for forensic defensibility as part of the diagnostic process. Unfortunately, a significant number of scientific investigations dealing with the subject present discrepancies that make it difficult to identify optimal practices in sample collection, transportation, handling, and preparation. This review provides a systematic analysis of the preanalytical phase of BAC that aims to identify and explain the chemical, physiological, and pharmacological mechanisms underlying controllable operational factors. Nevertheless, it seeks evidence for the necessity to separate preanalytical processes for diagnostic and forensic BAC testing. In this regard, the main finding of this review is that no literature evidence supports the necessity to differentiate preanalytical procedures for AAI and DUI, except for the traceability throughout the chain of custody. In fact, adhering to correct preanalytical procedures provided by official bodies such as European federation of clinical chemistry and laboratory medicine for routine phlebotomy ensures both diagnostic accuracy and forensic defensibility of BAC. This is shown to depend on the capability of modern pre-evacuated sterile collection tubes to control major factors influencing BAC, namely non-enzymatic oxidation and microbial contamination. While certain restrictions become obsolete with such devices, as the use of sodium fluoride (NaF) for specific preservation of forensic BAC, this review reinforces the recommendation to use non-alcoholic disinfectants as a means to achieve "error-proof" procedures in challenging operational environments like the emergency department.
Collapse
Affiliation(s)
- Cristiano Ialongo
- Department of Experimental Medicine, Policlinico Umberto I, ‘Sapienza’ University, Rome, Italy
| |
Collapse
|
4
|
Tamama K, Kruckenberg KM, DiMartini AF. Gut and bladder fermentation syndromes: a narrative review. BMC Med 2024; 22:26. [PMID: 38246992 PMCID: PMC10801939 DOI: 10.1186/s12916-023-03241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
We recently reported the first clinical case of bladder fermentation syndrome (BFS) or urinary auto-brewery syndrome, which caused the patient to fail abstinence monitoring. In BFS, ethanol is generated by Crabtree-positive fermenting yeast Candida glabrata in a patient with poorly controlled diabetes. One crucial characteristic of BFS is the absence of alcoholic intoxication, as the bladder lumen contains transitional epithelium with low ethanol permeability. In contrast, patients with gut fermentation syndrome (GFS) or auto-brewery syndrome can spontaneously develop symptoms of ethanol intoxication even without any alcohol ingestion because of alcoholic fermentation in the gut lumen. In abstinence monitoring, a constellation of laboratory findings with positive urinary glucose and ethanol, negative ethanol metabolites, and the presence of yeast in urinalysis should raise suspicion for BFS, whereas endogenous ethanol production needs to be shown by a carbohydrate challenge test for GFS diagnosis. GFS patients will also likely fail abstinence monitoring because of the positive ethanol blood testing. BFS and GFS are treated by yeast eradication of fermenting microorganisms with antifungals (or antibiotics for bacterial GFS cases) and modification of underlying conditions (diabetes for BFS and gut dysbiosis for GFS). The under-recognition of these rare medical conditions has led to not only harm but also adverse legal consequences for patients, such as driving under the influence (DUI). GFS patients may be at risk of various alcohol-related diseases.
Collapse
Affiliation(s)
- Kenichi Tamama
- Clinical Laboratories, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3477 Euler Way, UPMC Presbyterian Clinical Laboratory Building, Pittsburgh, PA, 15213, USA.
| | - Katherine M Kruckenberg
- Department of Psychiatry, University of California San Diego School of Medicine, San Diego, CA, USA
- Departments of Psychiatry and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrea F DiMartini
- Departments of Psychiatry and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Cláudia-Ferreira A, Barbosa DJ, Saegeman V, Fernández-Rodríguez A, Dinis-Oliveira RJ, Freitas AR. The Future Is Now: Unraveling the Expanding Potential of Human (Necro)Microbiome in Forensic Investigations. Microorganisms 2023; 11:2509. [PMID: 37894167 PMCID: PMC10608847 DOI: 10.3390/microorganisms11102509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The relevance of postmortem microbiological examinations has been controversial for decades, but the boom in advanced sequencing techniques over the last decade is increasingly demonstrating their usefulness, namely for the estimation of the postmortem interval. This comprehensive review aims to present the current knowledge about the human postmortem microbiome (the necrobiome), highlighting the main factors influencing this complex process and discussing the principal applications in the field of forensic sciences. Several limitations still hindering the implementation of forensic microbiology, such as small-scale studies, the lack of a universal/harmonized workflow for DNA extraction and sequencing technology, variability in the human microbiome, and limited access to human cadavers, are discussed. Future research in the field should focus on identifying stable biomarkers within the dominant Bacillota and Pseudomonadota phyla, which are prevalent during postmortem periods and for which standardization, method consolidation, and establishment of a forensic microbial bank are crucial for consistency and comparability. Given the complexity of identifying unique postmortem microbial signatures for robust databases, a promising future approach may involve deepening our understanding of specific bacterial species/strains that can serve as reliable postmortem interval indicators during the process of body decomposition. Microorganisms might have the potential to complement routine forensic tests in judicial processes, requiring robust investigations and machine-learning models to bridge knowledge gaps and adhere to Locard's principle of trace evidence.
Collapse
Affiliation(s)
- Ana Cláudia-Ferreira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
| | - Daniel José Barbosa
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Veroniek Saegeman
- Department of Infection Control and Prevention, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Amparo Fernández-Rodríguez
- Microbiology Laboratory, Biology Service, Institute of Toxicology and Forensic Sciences, 28232 Madrid, Spain;
| | - Ricardo Jorge Dinis-Oliveira
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana R. Freitas
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (A.C.-F.); (R.J.D.-O.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
6
|
de Campos EG, de Almeida OGG, De Martinis ECP. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: a critical interdisciplinary review. Forensic Sci Res 2023; 8:173-184. [PMID: 38221972 PMCID: PMC10785599 DOI: 10.1093/fsr/owad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 01/16/2024] Open
Abstract
Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Otávio G G de Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Paramsothy J, Gutlapalli SD, Ganipineni VDP, Okorie IJ, Ugwendum D, Piccione G, Ducey J, Kouyate G, Onana A, Emmer L, Arulthasan V, Otterbeck P, Nfonoyim J. Understanding Auto-Brewery Syndrome in 2023: A Clinical and Comprehensive Review of a Rare Medical Condition. Cureus 2023; 15:e37678. [PMID: 37206535 PMCID: PMC10189828 DOI: 10.7759/cureus.37678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
Auto-brewery syndrome (ABS) occurs when the gastrointestinal tract produces excessive endogenous ethanol. This article examines various aspects of ABS such as its epidemiology, underlying etiology, diagnostic difficulties, management strategies, and social implications. By synthesizing the existing medical literature, we hope to identify understanding gaps, pave the way for further research, and ultimately improve detection, treatment, and awareness. The databases we used are PubMed, PubMed Central, and Google Scholar. We carefully screened all published articles from inception till date and narrowed down 24 relevant articles. We at Richmond University Medical Center and Mount Sinai are one of the leading medical centers for diagnosing and treating this rare condition in the United States.
Collapse
Affiliation(s)
- Jananthan Paramsothy
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Vijay Durga Pradeep Ganipineni
- General Medicine, SRM Medical College Hospital and Research Center, Chennai, IND
- General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
- Internal Medicine, Thomas Hospital Infirmary Health, Fairhope, USA
| | - Ikpechukwu J Okorie
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Derek Ugwendum
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - GianPaolo Piccione
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - James Ducey
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Gnama Kouyate
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Arnold Onana
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Louis Emmer
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Vaithilingam Arulthasan
- Internal Medicine, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Philip Otterbeck
- Endocrinology, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| | - Jay Nfonoyim
- Pulmonary and Critical Care, Richmond University Medical Center Affiliated with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, Staten Island, USA
| |
Collapse
|
8
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Boumba VA, Exadactylou P, Velivasi G, Ziavrou KS, Fragkouli K, Kovatsi L. The frequency of ethanol, higher alcohols and other low molecular weight volatiles in postmortem blood samples from unnatural deaths. Forensic Sci Int 2022; 341:111503. [DOI: 10.1016/j.forsciint.2022.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
10
|
Boumba VA. Modeling Postmortem Ethanol Production/Insights into the Origin of Higher Alcohols. Molecules 2022; 27:molecules27030700. [PMID: 35163964 PMCID: PMC8840458 DOI: 10.3390/molecules27030700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
The forensic toxicologist is challenged to provide scientific evidence to distinguish the source of ethanol (antemortem ingestion or microbial production) determined in the postmortem blood and to properly interpret the relevant blood alcohol concentration (BAC) results, in regard to ethanol levels at death and subsequent behavioral impairment of the person at the time of death. Higher alcohols (1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol (isoamyl-alcohol), and 3-methyl-2-butanol (amyl-alcohol)) are among the volatile compounds that are often detected in postmortem specimens and have been correlated with putrefaction and microbial activity. This brief review investigates the role of the higher alcohols as biomarkers of postmortem, microbial ethanol production, notably, regarding the modeling of postmortem ethanol production. Main conclusions of this contribution are, firstly, that the higher alcohols are qualitative and quantitative indicators of microbial ethanol production, and, secondly that the respective models of microbial ethanol production are tools offering additional data to interpret properly the origin of the ethanol concentrations measured in postmortem cases. More studies are needed to clarify current uncertainties about the origin of higher alcohols in postmortem specimens.
Collapse
Affiliation(s)
- Vassiliki A Boumba
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|