1
|
Massah S, Pinette N, Foo J, Datta S, Guo M, Bell R, Haegert A, Tekoglu TE, Terrado M, Volik S, Bihan SL, Bui JM, Lack NA, Gleave ME, Rhie SK, Collins CC, Gsponer J, Lallous N. AR-V7 condensates drive androgen-independent transcription in castration resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631986. [PMID: 39868336 PMCID: PMC11760419 DOI: 10.1101/2025.01.08.631986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Biomolecular condensates organize cellular environments and regulate key processes such as transcription. We previously showed that full-length androgen receptor (AR-FL), a major oncogenic driver in prostate cancer (PCa), forms nuclear condensates upon androgen stimulation in androgen-sensitive PCa cells. Disrupting these condensates impairs AR-FL transcriptional activity, highlighting their functional importance. However, resistance to androgen deprivation therapy often leads to castration-resistant prostate cancer (CRPC), driven by constitutively active splice variants like AR variant 7 (AR-V7). The mechanisms underlying AR-V7's role in CRPC remain unclear. In this study, we characterized the condensate-forming ability of AR-V7 and compared its phase behavior with AR-FL across a spectrum of PCa models and in vitro conditions. Our findings indicate that cellular context can influence AR-V7's condensate-forming capacity. Unlike AR-FL, AR-V7 spontaneously forms condensates in the absence of androgen stimulation and functions independently of AR-FL in CRPC models. However, AR-V7 requires a higher concentration to form condensates, both in cellular contexts and in vitro . We further reveal that AR-V7 drives transcription via both condensate-dependent and condensate-independent mechanisms. Using an AR-V7 mutant incapable of forming condensates, while retaining nuclear localization and DNA-binding ability, we reveal that the condensate-dependent regime activates part of the oncogenic KRAS pathway in CRPC models. Genes under this condensate-dependent regime were found to harbor significantly higher numbers of AR-binding sites and exhibited boosted expression in response to AR-V7. These findings uncover a previously unrecognized role of AR-V7 condensate formation in driving oncogenic transcriptional programs and shed light on its unique contribution to CRPC progression. Highlights AR-V7 condensates form independently of both androgens and AR-FL in CRPC models.AR-V7 mediates condensate-dependent and independent transcriptionCondensate-dependent transcription enables boosted expression of oncogenic KRAS genesCondensate-dependent genes exhibit an exponential increase in expression, with a higher number of AR binding sites potentially playing a key role in their reliance on condensate formation.
Collapse
|
2
|
Ning S, Armstrong CM, Xing E, Leslie AR, Gao RY, Sharifi M, Schaaf ZA, Lou W, Han X, Xu DH, Yang R, Cheng J, Mohammed S, Mitsiades N, Liu C, Lombard AP, Wu CY, Cheng X, Li PK, Gao AC. LX1 Dual Targets AR Variants and AKR1C3 in Advanced Prostate Cancer Therapy. Cancer Res 2024; 84:3617-3628. [PMID: 39088701 PMCID: PMC11534543 DOI: 10.1158/0008-5472.can-24-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
The development of resistance to current standard-of-care treatments, such as androgen receptor (AR) targeting therapies, remains a major challenge in the management of advanced prostate cancer. There is an urgent need for new therapeutic strategies targeting key resistant drivers, such as AR variants like AR-V7, and steroidogenic enzymes, such as aldo-keto reductase 1C3 (AKR1C3), to overcome drug resistance and improve outcomes for patients with advanced prostate cancer. Here, we have designed, synthesized, and characterized a novel class of LX compounds targeting both the AR/AR variants and AKR1C3 pathways. Molecular docking and in vitro studies demonstrated that LX compounds bind to the AKR1C3 active sites and inhibit AKR1C3 enzymatic activity. LX compounds were also shown to reduce AR/AR-V7 expression and to inhibit their target gene signaling. LX1 inhibited the conversion of androstenedione into testosterone in tumor-based ex vivo enzyme assays. In addition, LX1 inhibited the growth of cells resistant to antiandrogens including enzalutamide (Enza), abiraterone, apalutamide, and darolutamide in vitro. A synergistic effect was observed when LX1 was combined with antiandrogens and taxanes, indicating the potential for this combination in treating resistant prostate cancer. Treatment with LX1 significantly decreased tumor volume, serum PSA levels, as well as reduced intratumoral testosterone levels, without affecting mouse body weight. Furthermore, LX1 was found to overcome resistance to Enza treatment, and its combination with Enza further suppressed tumor growth in both the CWR22Rv1 xenograft and LuCaP35CR patient-derived xenograft models. Collectively, the dual effect of LX1 in reducing AR signaling and intratumoral testosterone, along with its synergy with standard therapies in resistant models, underscores its potential as a valuable treatment option for advanced prostate cancer. Significance: LX1 simultaneously targets androgen receptor variants and the steroidogenic enzyme AKR1C3, offering a promising approach to combat drug resistance and enhancing therapeutic efficacy in conjunction with standard treatments for advanced prostate cancer.
Collapse
Affiliation(s)
- Shu Ning
- Department of Urologic Surgery, University of California Davis, CA, USA
| | | | - Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Amy R Leslie
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Richard Y Gao
- Division of Hematology and Oncology, University of California Davis, CA, USA
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Zachary A. Schaaf
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Xiangrui Han
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Desiree H Xu
- Department of Urologic Surgery, University of California Davis, CA, USA
| | - Rui Yang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jeffrey Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Shabber Mohammed
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Nicholas Mitsiades
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- Division of Hematology and Oncology, University of California Davis, CA, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Alan P. Lombard
- Department of Urologic Surgery, University of California Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Chun-Yi Wu
- Department of Biochemistry and Molecular Medicine, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA
- VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
3
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
4
|
Linke D, Donix L, Peitzsch C, Erb HHH, Dubrovska A, Pfeifer M, Thomas C, Fuessel S, Erdmann K. Comprehensive Evaluation of Multiple Approaches Targeting ABCB1 to Resensitize Docetaxel-Resistant Prostate Cancer Cell Lines. Int J Mol Sci 2022; 24:ijms24010666. [PMID: 36614114 PMCID: PMC9820728 DOI: 10.3390/ijms24010666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Docetaxel (DTX) is a mainstay in the treatment of metastatic prostate cancer. Failure of DTX therapy is often associated with multidrug resistance caused by overexpression of efflux membrane transporters of the ABC family such as the glycoprotein ABCB1. This study investigated multiple approaches targeting ABCB1 to resensitize DTX-resistant (DTXR) prostate cancer cell lines. In DU145 DTXR and PC-3 DTXR cells as well as age-matched parental controls, the expression of selected ABC transporters was analyzed by quantitative PCR, Western blot, flow cytometry and immunofluorescence. ABCB1 effluxing activity was studied using the fluorescent ABCB1 substrate rhodamine 123. The influence of ABCB1 inhibitors (elacridar, tariquidar), ABCB1-specific siRNA and inhibition of post-translational glycosylation on DTX tolerance was assessed by cell viability and colony formation assays. In DTXR cells, only ABCB1 was highly upregulated, which was accompanied by a strong effluxing activity and additional post-translational glycosylation of ABCB1. Pharmacological inhibition and siRNA-mediated knockdown of ABCB1 completely resensitized DTXR cells to DTX. Inhibition of glycosylation with tunicamycin affected DTX resistance partially in DU145 DTXR cells, which was accompanied by a slight intracellular accumulation and decreased effluxing activity of ABCB1. In conclusion, DTX resistance can be reversed by various strategies with small molecule inhibitors representing the most promising and feasible approach.
Collapse
Affiliation(s)
- Dinah Linke
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lukas Donix
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), 01307 Dresden, Germany
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Manuel Pfeifer
- Institute of Legal Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-14544
| | - Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Cavalca AMB, Brandi A, Fonseca-Alves RH, Laufer-Amorim R, Fonseca-Alves CE. P-Glycoprotein and Androgen Receptor Expression Reveals Independence of Canine Prostate Cancer from Androgen Hormone Stimulation. Int J Mol Sci 2022; 23:1163. [PMID: 35163087 PMCID: PMC8835304 DOI: 10.3390/ijms23031163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Canine prostate cancer (PC) is an aggressive disease, and dogs can be considered comparative models for human PC. In recent years, canine PC has been shown to resemble human castrate-resistant prostate cancer. The influx and efflux of testosterone in prostatic luminal cells are regulated by P-glycoprotein (P-gp). Therefore, human PC generally lacks P-gp expression and maintains the expression of androgen receptors (ARs). However, this co-expression has not previously been investigated in dogs. Therefore, this study aimed to evaluate AR and P-gp co-expression to elucidate these protein patterns in canine prostate samples. We identified AR/P-gp double immunofluorescence co-expression of both proteins in normal luminal cells. However, in canine PC, cells lack AR expression and exhibit increased P-gp expression. These results were confirmed by gene expression analyses. Overall, our results strongly suggest that normal canine prostate testosterone influx may be regulated by P-gp expression, and that during progression to PC, prostatic cells lack AR expression and P-gp overexpress. P-gp expression in canine PC may be related to a phenotype of multiple drug resistance.
Collapse
Affiliation(s)
- Alexandre Matheus Baesso Cavalca
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-687, Brazil; (A.M.B.C.); (A.B.)
| | - Andressa Brandi
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-687, Brazil; (A.M.B.C.); (A.B.)
| | - Ricardo Henrique Fonseca-Alves
- Department of Electrical Engineering, School of Electrical, Mechanical and Computer Engineering, Federal University of Goias—UFG, Goiania 74690-900, Brazil;
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-687, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-687, Brazil; (A.M.B.C.); (A.B.)
- Institute of Health Sciences, Paulista University—UNIP, Bauru 17048-290, Brazil
| |
Collapse
|
6
|
Cole RN, Chen W, Pascal LE, Nelson JB, Wipf P, Wang Z. (+)-JJ-74-138 is a novel non-competitive androgen receptor antagonist. Mol Cancer Ther 2022; 21:483-492. [DOI: 10.1158/1535-7163.mct-21-0432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
|
7
|
Dai L, Song ZX, Wei DP, Zhang JD, Liang JQ, Wang BB, Ma WT, Li LY, Dang YL, Zhao L, Zhang LM, Zhao YM. CDC20 and PTTG1 are Important Biomarkers and Potential Therapeutic Targets for Metastatic Prostate Cancer. Adv Ther 2021; 38:2973-2989. [PMID: 33881746 DOI: 10.1007/s12325-021-01729-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Metastatic prostate cancer (mPCa) is responsible for most prostate cancer (PCa) deaths worldwide. The present study aims to explore the molecular differences between mPCa and PCa. METHODS The authors downloaded GSE6752, GSE6919, and GSE32269 from the Gene Expression Omnibus and employed integrated analysis to identify differentially expressed genes (DEGs) between mPCa and PCa. Functional and pathway-enrichment analyses were performed, and a protein-protein interaction (PPI) network and modules were constructed. Clinical mPCa specimens were collected to verify the results by performing RT-qPCR. The Cancer Genome Atlas database was used to conduct a survival analysis, and an immunohistochemical assay was performed. The invasion ability of PCa cells was verified by Transwell assay. RESULTS One-hundred six consistently DEGs were found in mPCa compared with PCa. DEGs significantly enriched the positive regulation of cell proliferation, cell division, and cell adhesion in small cell lung cancer and PCa. Cell division, nucleoplasm, and cell cycle were selected from the PPI network, and the top 10 hub genes were selected. CDC20 and PTTG1 with genetic alterations were significantly associated with poorer disease-free survival. Immunohistochemical assay results showed that the expression levels of CDC20 and PTTG1 in mPCa were higher than those in PCa. The results of the migration assay indicated that CDC20 and PTTG1 could enhance the migration ability of PCa cells. CONCLUSION The present study revealed that CDC20 and PTTG1 contribute more to migration, progression, and poorer prognoses in mPCa compared with PCa. CDC20 and PTTG1 could represent therapeutic targets in mPCa medical research and clinical studies.
Collapse
Affiliation(s)
- Liang Dai
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China.
| | - Zi-Xuan Song
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Da-Peng Wei
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Ji-Dong Zhang
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Jun-Qiang Liang
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Bai-Bing Wang
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Wang-Teng Ma
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Li-Ying Li
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Yin-Lu Dang
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Liang Zhao
- Operating Department, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Li-Min Zhang
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China
| | - Yu-Ming Zhao
- Department of Urology, The First Hospital of Qinhuangdao, No. 258 of Cultural North Road, Haigang District, Qinhuangdao, 066000, China.
| |
Collapse
|
8
|
Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers (Basel) 2021; 13:cancers13030509. [PMID: 33572755 PMCID: PMC7865914 DOI: 10.3390/cancers13030509] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer in men world-wide, with nearly 1.3 million new cases each year, and over the next twenty years the incidence and death rate are predicted to nearly double. For decades, this lethal disease has been more or less successfully treated using hormonal therapy, which has the ultimate aim of inhibiting androgen signalling. However, prostate tumours can evade such hormonal therapies in a number of different ways and therapy resistant disease, so-called castration-resistant prostate cancer (CRPC) is the major clinical problem. Somewhat counterintuitively, the androgen receptor remains a key therapy target in CRPC. Here, we explain why this is the case and summarise both new hormone therapy strategies and the recent advances in knowledge of androgen receptor structure and function that underpin them. Abstract Prostate cancer (PCa) is the most common cancer in men in the West, other than skin cancer, accounting for over a quarter of cancer diagnoses in US men. In a seminal paper from 1941, Huggins and Hodges demonstrated that prostate tumours and metastatic disease were sensitive to the presence or absence of androgenic hormones. The first hormonal therapy for PCa was thus castration. In the subsequent eighty years, targeting the androgen signalling axis, where possible using drugs rather than surgery, has been a mainstay in the treatment of advanced and metastatic disease. Androgens signal via the androgen receptor, a ligand-activated transcription factor, which is the direct target of many such drugs. In this review we discuss the role of the androgen receptor in PCa and how the combination of structural information and functional screenings is continuing to be used for the discovery of new drug to switch off the receptor or modify its function in cancer cells.
Collapse
|
9
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
10
|
Begemann D, Wang Y, Yang W, Kyprianou N. Androgens modify therapeutic response to cabazitaxel in models of advanced prostate cancer. Prostate 2020; 80:926-937. [PMID: 32542812 PMCID: PMC7880610 DOI: 10.1002/pros.24015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Disruption of the phenotypic landscape via epithelial-mesenchymal transition (EMT) enables prostate cancer cells to metastasize and acquire therapeutic resistance. Our previous studies demonstrated that cabazitaxel (CBZ) (second-generation Food and Drug Administration-approved taxane chemotherapy), used for the treatment of castration-resistant prostate cancer (CRPC), causes reversal of EMT to mesenchymal-epithelial transition (MET) and reduces expression of kinesin motor protein KIFC1 (HSET). The present study examined the effect of sequencing CBZ chemotherapy mediated MET on prostate tumor redifferentiation overcoming therapeutic resistance in models of advanced prostate cancer. METHODS To examine the impact of androgens on the antitumor effect of CBZ, we used human prostate cancer cell lines with different sensitivity to androgens and CBZ, in vitro, and two human prostate cancer xenograft models in vivo. Tumor-bearing male mice (with either the androgen-sensitive LNCaP or the CRPC 22Rv1 xenografts) were treated with CBZ (3 mg/kg) alone, or in combination with castration-induced androgen-deprivation therapy (ADT) for 14 days. RESULTS Cell viability assays indicate that the presence of 5α-dihydrotestosterone (1 nM) confers resistance to CBZ in vitro. CBZ treatment in vivo induced MET in LNCaP-derived tumors as shown by increased E-cadherin and decreased N-cadherin levels. Sequencing CBZ after ADT improves tumor response in androgen-sensitive LNCaP, but not in CRPC 22Rv1 xenografts. Mechanistic dissection revealed a novel association between the androgen receptor and HSET in prostate cancer cells that is inhibited by CBZ in an androgen-dependent manner. CONCLUSIONS Our findings provide new insights into the phenotypic reprogramming of prostate cancer cells to resensitize tumors to CBZ action. This evidence is of translational significance in treatment sequencing (CBZ and ADT) towards improved therapeutic benefit in patients with lethal CRPC.
Collapse
Affiliation(s)
- Diane Begemann
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Yang Wang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Wei Yang
- Department of Surgery and Biomedical Sciences, Cedars Sinai Cancer Institute, Los Angeles, California
| | - Natasha Kyprianou
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
11
|
Sekino Y, Teishima J. Molecular mechanisms of docetaxel resistance in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:676-685. [PMID: 35582222 PMCID: PMC8992564 DOI: 10.20517/cdr.2020.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023]
Abstract
Docetaxel (DTX) chemotherapy offers excellent initial response and confers significant survival benefit in patients with castration-resistant prostate cancer (CRPC). However, the clinical utility of DTX is compromised when primary and acquired resistance are encountered. Therefore, a more thorough understanding of DTX resistance mechanisms may potentially improve survival in patients with CRPC. This review focuses on DTX and discusses its mechanisms of resistance. We outline the involvement of tubulin alterations, androgen receptor (AR) signaling/AR variants, ERG rearrangements, drug efflux/influx, cancer stem cells, centrosome clustering, and phosphoinositide 3-kinase/AKT signaling in mediating DTX resistance. Furthermore, potential biomarkers for DTX treatment and therapeutic strategies to circumvent DTX resistance are reviewed.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
12
|
Wang N, Jiang Y, Lv S, Wen H, Wu D, Wei Q, Dang Q. HOTAIR expands the population of prostatic cancer stem-like cells and causes Docetaxel resistance via activating STAT3 signaling. Aging (Albany NY) 2020; 12:12771-12782. [PMID: 32657763 PMCID: PMC7377851 DOI: 10.18632/aging.103188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
Prostatic cancer stem-like cells (PCSLCs) play an essential role in PCa development. Accumulating evidence suggests that androgen deprivation therapy (ADT) or chemotherapy using docetaxel could expand the population of PCSLCs. Therefore, understanding the underlying mechanisms responsible for PCSLCs expansion has broadly scientific interest. Here, our results revealed that lncRNA HOTAIR could increase PCSLCs population via activating STAT3 signaling. Mechanistically, HOTAIR functioned as miR-590-5p sponge and prevented it from targeting the 3'UTR of IL-10, one upstream molecule of STAT3 signaling, leading to IL-10 upregulation and STAT3 activation. We also found that HOTAIR was required and sufficient to cause Docetaxel resistance (DocR) in C4-2 PCa cells. Moreover, our in vivo animal study also confirmed that Du145-HOTAIR mice had a faster tumor growth rate and a poorer survival rate compared to control cohorts. Our data build compelling rationale to target HOTAIR for the depletion of PCSLCs and alleviation of Docetaxel resistance.
Collapse
Affiliation(s)
- Ning Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Oncology, Dongguan Kanghua Hospital, Dongguan 523000, Guangdong, China
| | - Yaodong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haoran Wen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiang Dang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
13
|
Lu C, Brown LC, Antonarakis ES, Armstrong AJ, Luo J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis 2020; 23:381-397. [PMID: 32139878 PMCID: PMC7725416 DOI: 10.1038/s41391-020-0217-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: The androgen receptor (AR) is a key prostate cancer drug target.
Suppression of AR signaling mediated by the full-length AR (AR-FL) is the
therapeutic goal of all existing AR-directed therapies. AR-targeting agents
impart therapeutic benefit, but lead to AR aberrations that underlie disease
progression and therapeutic resistance. Among the AR aberrations specific to
castration-resistant prostate cancer (CRPC), AR variants (AR-Vs) have
emerged as important indicators of disease progression and therapeutic
resistance. Methods: We conducted a systemic review of the literature focusing on recent
laboratory studies on AR-Vs following our last review article published in
2016. Topics ranged from measurement and detection, molecular origin,
regulation, genomic function, and preclinical therapeutic targeting of
AR-Vs. We provide expert opinions and perspectives on these topics. Results: Transcript sequences for 22 AR-Vs have been reported in the
literature. Different AR-Vs may arise through different mechanisms, and can
be regulated by splicing factors and dictated by genomic rearrangements, but
a low-androgen environment is a prerequisite for generation of AR-Vs. The
unique transcript structures allowed development of in-situ and in-solution
measurement and detection methods, including mRNA and protein detection, in
both tissue and blood specimens. AR variant-7 (AR-V7) remains the main
measurement target and the most extensively characterized AR-V. Although
AR-V7 co-exists with AR-FL, genomic functions mediated by AR-V7 do not
require the presence of AR-FL. The distinct cistromes and transcriptional
programs directed by AR-V7 and their co-regulators are consistent with
genomic features of progressive disease in a low-androgen environment.
Preclinical development of AR-V-directed agents currently focuses on
suppression of mRNA expression and protein degradation as well as targeting
of the amino-terminal domain. Conclusions: Current literature continues to support AR-Vs as biomarkers and
therapeutic targets in prostate cancer. Laboratory investigations reveal
both challenges and opportunities in targeting AR-Vs to overcome resistance
to current AR-directed therapies.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Landon C Brown
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Emmanuel S Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Carbonetti G, Converso C, Clement T, Wang C, Trotman L, Ojima I, Kaczocha M. Docetaxel/cabazitaxel and fatty acid binding protein 5 inhibitors produce synergistic inhibition of prostate cancer growth. Prostate 2020; 80:88-98. [PMID: 31661167 PMCID: PMC7063589 DOI: 10.1002/pros.23921] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) remains the second leading cause of cancer-related death among men. Taxanes, such as docetaxel and cabazitaxel are utilized in standard treatment regimens for chemotherapy naïve castration-resistant PCa. However, tumors often develop resistance to taxane chemotherapeutics, highlighting a need to identify additional therapeutic targets. Fatty acid-binding protein 5 (FABP5) is an intracellular lipid carrier whose expression is upregulated in metastatic PCa and increases cell growth, invasion, and tumor formation. Here, we assessed whether FABP5 inhibitors synergize with semi-synthetic taxanes to induce cytotoxicity in vitro and attenuate tumor growth in vivo. METHODS PC3, DU-145, and 22Rv1 PCa cells were incubated with FABP5 inhibitors Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or SBFI-103 in the presence or absence of docetaxel or cabazitaxel, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. Cytotoxicity of SBFI-102 and SBFI-103 was also evaluated in noncancerous cells. For the in vivo studies, PC3 cells were subcutaneously implanted into BALB/c nude mice, which were subsequently treated with FABP5 inhibitors, docetaxel, or a combination of both. RESULTS SBFI-102 and SBFI-103 produced cytotoxicity in the PCa cells. Coincubation of the PCa cells with FABP5 inhibitors and docetaxel or cabazitaxel produced synergistic cytotoxic effects in vitro. Treatment of mice with FABP5 inhibitors reduced tumor growth and a combination of FABP5 inhibitors with a submaximal dose of docetaxel reduced tumor growth to a larger extent than treatment with each drug alone. CONCLUSIONS FABP5 inhibitors increase the cytotoxic and tumor-suppressive effects of taxanes in PCa cells. The ability of these drugs to synergize could permit more efficacious antitumor activity while allowing for dosages of docetaxel or cabazitaxel to be lowered, potentially decreasing taxane-resistance.
Collapse
Affiliation(s)
- Gregory Carbonetti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York
| | - Cynthia Converso
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Changwei Wang
- Department of Chemistry, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Lloyd Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Martin Kaczocha
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York
| |
Collapse
|
16
|
Taxane-based Chemotherapy Induced Androgen Receptor Splice Variant 7 in Patients with Castration-Resistant Prostate Cancer: A Tissue-based Analysis. Sci Rep 2019; 9:16794. [PMID: 31727962 PMCID: PMC6856155 DOI: 10.1038/s41598-019-53280-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023] Open
Abstract
In total, 95 prostate cancer (Pca) patients who underwent transurethral resection of the prostate from 2000 to 2013 were assigned to four groups: Group 1, hormone-naïve and T1a or T1b Pca (n = 17); Group 2, hormone-sensitive and metastatic Pca (n = 33); Group 3, chemo-naïve castration-resistant Pca (CRPC), (n = 18); and Group 4, CRPC with chemotherapy (n = 27). Full-length androgen receptor (ARfl) transcript levels significantly increased from Group 1 through to Group 3 (p = 0.045), but decreased from Group 3 through to Group 4. AR splice variant 7 (ARV7) and glucocorticoid receptor (GR) transcript levels significantly increased from Group 1 through to Group 4 (p = 0.002 and 0.049, respectively). Kaplan-Meier curve revealed that the high transcript level of these three receptors resulted in significantly poorer cancer-specific survival (CSS) than that by low transcript level, although Cox regression analysis revealed that the ARV7 level alone was an independent prognostic factor for CSS in CRPC patients (high vs. low: hazard ratio, 1.897; 95% confidence interval, 1.102-3.625; p = 0.042). In conclusion, ARV7 and GR transcript levels significantly increase as Pca progresses to CRPC.
Collapse
|
17
|
Iguchi T, Tamada S, Kato M, Yasuda S, Machida Y, Ohmachi T, Ishii K, Iwata H, Yamamoto S, Kanamaru T, Morimoto K, Hase T, Tashiro K, Harimoto K, Deguchi T, Adachi T, Iwamoto K, Takegaki Y, Nakatani T. Enzalutamide versus flutamide for castration-resistant prostate cancer after combined androgen blockade therapy with bicalutamide: the OCUU-CRPC study. Int J Clin Oncol 2019; 25:486-494. [PMID: 31564004 DOI: 10.1007/s10147-019-01554-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Before the androgen target therapy era, flutamide was widely used for castration-resistant prostate cancer in Japan. Enzalutamide is currently the recommended treatment; however, the efficacy and safety of enzalutamide and flutamide after combined androgen blockade therapy with bicalutamide, has not been compared. METHODS Patients with castration-resistant prostate cancer who received combined androgen blockade therapy with bicalutamide were randomly assigned to receive either enzalutamide or flutamide. The primary endpoint for efficacy was the 3-month prostate-specific antigen response rate. This trial is registered with ClinicalTrials.gov (NCT02346578) and the University hospital Medical Information Network (UMIN000016301). RESULTS Overall, 103 patients were enrolled. The 3- (80.8% vs. 35.3%; p < 0.001) and 6-month (73.1% vs. 31.4%; p < 0.001) prostate-specific antigen response rates were higher in the enzalutamide than in the flutamide group. The 3-month disease progression rates (radiographic or prostate-specific antigen progression) were 6.4% and 38.8% in the enzalutamide and flutamide groups, respectively [hazard ratio (HR): 0.16; 95% confidence interval (CI): 0.05-0.47; p < 0.001]; the 6-month rates were 11.4% and 51.1%, respectively (HR 0.22; 95% CI 0.09-0.50; p < 0.001). Enzalutamide provided superior prostate-specific antigen progression-free survival compared with flutamide (HR 0.29; 95% CI 0.15-0.54; p < 0.001). Median time to prostate-specific antigen progression-free survival was not reached and was 6.6 months in the enzalutamide and flutamide groups, respectively. CONCLUSIONS As an alternative anti-androgen therapy in patients with castration-resistant prostate cancer who fail bicalutamide-combined androgen blockade therapy, enzalutamide provides superior clinical outcomes compared with flutamide. Enzalutamide should be preferred over flutamide in these patients.
Collapse
Affiliation(s)
- Taro Iguchi
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Sayaka Yasuda
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuichi Machida
- Department of Urology, Yao Municipal Hospital, Yao, Japan
| | - Tetsuji Ohmachi
- Department of Urology, Bell-land General Hospital, Sakai, Japan
| | - Keiichi Ishii
- Department of Urology, Osaka City General Hospital, Osaka, Japan
| | - Hiroyuki Iwata
- Department of Urology, Itami City Hospital, Itami, Japan
| | - Shinji Yamamoto
- Department of Urology, Ikuwakai Memorial Hospital, Osaka, Japan
| | | | - Kazuya Morimoto
- Department of Urology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Taro Hase
- Department of Urology, Suita Municipal Hospital, Suita, Japan
| | | | | | | | - Takahisa Adachi
- Department of Urology, Osaka City Juso Hospital, Osaka, Japan
| | - Katsuki Iwamoto
- Department of Urology, Ishikiriseiki Hospital, Higashiosaka, Japan
| | | | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
18
|
Ishii K, Matsuoka I, Sasaki T, Nishikawa K, Kanda H, Imai H, Hirokawa Y, Iguchi K, Arima K, Sugimura Y. Loss of Fibroblast-Dependent Androgen Receptor Activation in Prostate Cancer Cells is Involved in the Mechanism of Acquired Resistance to Castration. J Clin Med 2019; 8:jcm8091379. [PMID: 31484364 PMCID: PMC6780155 DOI: 10.3390/jcm8091379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Loss of androgen receptor (AR) dependency in prostate cancer (PCa) cells is associated with progression to castration-resistant prostate cancer (CRPC). The tumor stroma is enriched in fibroblasts that secrete AR-activating factors. To investigate the roles of fibroblasts in AR activation under androgen deprivation, we used three sublines of androgen-sensitive LNCaP cells (E9 and F10 cells: low androgen sensitivity; and AIDL cells: androgen insensitivity) and original fibroblasts derived from patients with PCa. We performed in vivo experiments using three sublines of LNCaP cells and original fibroblasts to form homotypic tumors. The volume of tumors derived from E9 cells plus fibroblasts was reduced following androgen deprivation therapy (ADT), whereas that of F10 or AIDL cells plus fibroblasts was increased even after ADT. In tumors derived from E9 cells plus fibroblasts, serum prostate-specific antigen (PSA) decreased rapidly after ADT, but was still detectable. In contrast, serum PSA was increased even in F10 cells inoculated alone. In indirect cocultures with fibroblasts, PSA production was increased in E9 cells. Epidermal growth factor treatment stimulated Akt and p44/42 mitogen-activated protein kinase phosphorylation in E9 cells. Notably, AR splice variant 7 was detected in F10 cells. Overall, we found that fibroblast-secreted AR-activating factors modulated AR signaling in E9 cells after ADT and loss of fibroblast-dependent AR activation in F10 cells may be responsible for CRPC progression.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Izumi Matsuoka
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kohei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan.
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan.
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|