1
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
3
|
Zhu H, Leng J, Ju R, Qu S, Tian J, Leng H, Tao S, Liu C, Wu Z, Ren F, Lyu Y, Zhang N. Advantages of pulsed electric field ablation for COPD: Excellent killing effect on goblet cells. Bioelectrochemistry 2024; 158:108726. [PMID: 38733722 DOI: 10.1016/j.bioelechem.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Mucus hypersecretion resulting from excessive proliferation and metaplasia of goblet cells in the airways is the pathological foundation for Chronic obstructive pulmonary disease (COPD). Clinical trials have confirmed the clinical efficacy of pulsed electric field ablation (PFA) for COPD, but its underlying mechanisms is poorly understood. Cellular and animal models of COPD (rich in goblet cells) were established in this study to detect goblet cells' sensitivity to PFA. Schwan's equation was adopted to calculate the cells' transmembrane potential and the electroporation areas in the cell membrane. We found that goblet cells are more sensitive to low-intensity PFA (250 V/cm-500 V/cm) than BEAS-2B cells. It is attributed to the larger size of goblet cells, which allows a stronger transmembrane potential formation under the same electric field strength. Additionally, the transmembrane potential of larger-sized cells can reach the cell membrane electroporation threshold in more areas. Trypan blue staining confirmed that the cells underwent IRE rate was higher in goblet cells than in BEAS-2B cells. Animal experiments also confirmed that the airway epithelium of COPD is more sensitive to PFA. We conclude that lower-intensity PFA can selectively kill goblet cells in the COPD airway epithelium, ultimately achieving the therapeutic effect of treating COPD.
Collapse
Affiliation(s)
- Haoyang Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shenao Qu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiawei Tian
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoze Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiran Tao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Pierucci N, Mariani MV, Laviola D, Silvetti G, Cipollone P, Vernile A, Trivigno S, La Fazia VM, Piro A, Miraldi F, Vizza CD, Lavalle C. Pulsed Field Energy in Atrial Fibrillation Ablation: From Physical Principles to Clinical Applications. J Clin Med 2024; 13:2980. [PMID: 38792520 PMCID: PMC11121906 DOI: 10.3390/jcm13102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Atrial fibrillation, representing the most prevalent sustained cardiac arrhythmia, significantly impacts stroke risk and cardiovascular mortality. Historically managed with antiarrhythmic drugs with limited efficacy, and more recently, catheter ablation, the interventional approach field is still evolving with technological advances. This review highlights pulsed field ablation (PFA), a revolutionary technique gaining prominence in interventional electrophysiology because of its efficacy and safety. PFA employs non-thermal electric fields to create irreversible electroporation, disrupting cell membranes selectively within myocardial tissue, thus preventing the non-selective damage associated with traditional thermal ablation methods like radiofrequency or cryoablation. Clinical studies have consistently shown PFA's ability to achieve pulmonary vein isolation-a cornerstone of AF treatment-rapidly and with minimal complications. Notably, PFA reduces procedure times and has shown a lower incidence of esophageal and phrenic nerve damage, two common concerns with thermal techniques. Emerging from oncological applications, the principles of electroporation provide a unique tissue-selective ablation method that minimizes collateral damage. This review synthesizes findings from foundational animal studies through to recent clinical trials, such as the MANIFEST-PF and ADVENT trials, demonstrating PFA's effectiveness and safety. Future perspectives point towards expanding indications and refinement of techniques that promise to improve AF management outcomes further. PFA represents a paradigm shift in AF ablation, offering a safer, faster, and equally effective alternative to conventional methods. This synthesis of its development and clinical application outlines its potential to become the new standard in AF treatment protocols.
Collapse
Affiliation(s)
- Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Pietro Cipollone
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Antonio Vernile
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Sara Trivigno
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | | | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| |
Collapse
|
5
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
7
|
Monleón E, Lucía Ó, Güemes A, López-Alonso B, Arribas D, Sarnago H, Hernaez A, Burdío JM, Junquera C. Liver tissue remodeling following ablation with irreversible electroporation in a porcine model. Front Vet Sci 2022; 9:1014648. [DOI: 10.3389/fvets.2022.1014648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Irreversible electroporation (IRE) is a method of non-thermal focal tissue ablation characterized by irreversibly permeabilizing the cell membranes while preserving the extracellular matrix. This study aimed to investigate tissue remodeling after IRE in a porcine model, especially focusing on the extracellular matrix and hepatic stellate cells. IRE ablation was performed on 11 female pigs at 2,000 V/cm electric field strength using a versatile high-voltage generator and 3 cm diameter parallel-plate electrodes. The treated lobes were removed during surgery at 1, 3, 7, 14, and 21 days after IRE. Tissue remodeling and regeneration were assessed by histopathology and immunohistochemistry. Throughout the treated area, IRE led to extensive necrosis with intact collagenous structures evident until day 1. From then on, the necrosis progressively diminished while reparative tissue gradually increased. During this process, the reticulin framework and the septal fibrillar collagen remained in the necrotic foci until they were invaded by the reparative tissue. The reparative tissue was characterized by a massive proliferation of myofibroblast-like cells accompanied by a complete disorganization of the extracellular matrix with the disappearance of hepatic architecture. Hepatic stellate cell markers were associated with the proliferation of myofibroblast-like cells and the reorganization of the extracellular matrix. Between 2 and 3 weeks after IRE, the lobular architecture was almost completely regenerated. The events described in the present study show that IRE may be a valid model to study the mechanisms underlying liver regeneration after extensive acute injury.
Collapse
|
8
|
Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10:15-31. [PMID: 34901526 PMCID: PMC8637010 DOI: 10.1016/j.bioactmat.2021.09.014] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
The application of scaffolding materials is believed to hold enormous potential for tissue regeneration. Despite the widespread application and rapid advance of several tissue-engineered scaffolds such as natural and synthetic polymer-based scaffolds, they have limited repair capacity due to the difficulties in overcoming the immunogenicity, simulating in-vivo microenvironment, and performing mechanical or biochemical properties similar to native organs/tissues. Fortunately, the emergence of decellularized extracellular matrix (dECM) scaffolds provides an attractive way to overcome these hurdles, which mimic an optimal non-immune environment with native three-dimensional structures and various bioactive components. The consequent cell-seeded construct based on dECM scaffolds, especially stem cell-recellularized construct, is considered an ideal choice for regenerating functional organs/tissues. Herein, we review recent developments in dECM scaffolds and put forward perspectives accordingly, with particular focus on the concept and fabrication of decellularized scaffolds, as well as the application of decellularized scaffolds and their combinations with stem cells (recellularized scaffolds) in tissue engineering, including skin, bone, nerve, heart, along with lung, liver and kidney.
Collapse
Affiliation(s)
| | | | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rubei Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
9
|
Kotsifa E, Vergadis C, Vailas M, Machairas N, Kykalos S, Damaskos C, Garmpis N, Lianos GD, Schizas D. Transarterial Chemoembolization for Hepatocellular Carcinoma: Why, When, How? J Pers Med 2022; 12:436. [PMID: 35330436 PMCID: PMC8955120 DOI: 10.3390/jpm12030436] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. It is principally associated with liver cirrhosis and chronic liver disease. The major risk factors for the development of HCC include viral infections (HBV, HCV), alcoholic liver disease (ALD,) and non-alcoholic fatty liver disease (NAFLD). The optimal treatment choice is dictated by multiple variables such as tumor burden, liver function, and patient's health status. Surgical resection, transplantation, ablation, transarterial chemoembolization (TACE), and systemic therapy are potentially useful treatment strategies. TACE is considered the first-line treatment for patients with intermediate stage HCC. The purpose of this review was to assess the indications, the optimal treatment schedule, the technical factors associated with TACE, and the overall application of TACE as a personalized treatment for HCC.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (N.M.); (S.K.); (C.D.); (N.G.)
| | - Chrysovalantis Vergadis
- Department of Radiology, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece;
| | - Michael Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (M.V.); (D.S.)
| | - Nikolaos Machairas
- Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (N.M.); (S.K.); (C.D.); (N.G.)
| | - Stylianos Kykalos
- Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (N.M.); (S.K.); (C.D.); (N.G.)
| | - Christos Damaskos
- Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (N.M.); (S.K.); (C.D.); (N.G.)
| | - Nikolaos Garmpis
- Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (N.M.); (S.K.); (C.D.); (N.G.)
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, 45110 Ioannina, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, AgiouThoma 17, 11527 Athens, Greece; (M.V.); (D.S.)
| |
Collapse
|
10
|
Wang K, Wang C, Jiang H, Zhang Y, Lin W, Mo J, Jin C. Combination of Ablation and Immunotherapy for Hepatocellular Carcinoma: Where We Are and Where to Go. Front Immunol 2022; 12:792781. [PMID: 34975896 PMCID: PMC8714655 DOI: 10.3389/fimmu.2021.792781] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is increasing in incidence. Local ablative therapy plays a leading role in HCC treatment. Radiofrequency (RFA) is one of the first-line therapies for early local ablation. Other local ablation techniques (e.g., microwave ablation, cryoablation, irreversible electroporation, phototherapy.) have been extensively explored in clinical trials or cell/animal studies but have not yet been established as a standard treatment or applied clinically. On the one hand, single treatment may not meet the needs. On the other hand, ablative therapy can stimulate local and systemic immune effects. The combination strategy of immunotherapy and ablation is reasonable. In this review, we briefly summarized the current status and progress of ablation and immunotherapy for HCC. The immune effects of local ablation and the strategies of combination therapy, especially synergistic strategies based on biomedical materials, were discussed. This review is hoped to provide references for future researches on ablative immunotherapy to arrive to a promising new era of HCC treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weidong Lin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
11
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
12
|
Bäumler W, Wiggermann P, Lürken L, Dollinger M, Stroszczynski C, Beyer LP, Schicho A. Early Detection of Local Tumor Progression after Irreversible Electroporation (IRE) of a Hepatocellular Carcinoma Using Gd-EOB-DTPA-Based MR Imaging at 3T. Cancers (Basel) 2021; 13:cancers13071595. [PMID: 33808336 PMCID: PMC8037433 DOI: 10.3390/cancers13071595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Liver tumors like hepatocellular carcinoma (HCC) can be treated minimally invasive, e.g., by Irreversible Electroporation (IRE), which destroys the cancer. As it is possible that the tumor re-grows due to single tumor cells inadvertently not covered by the treatment, follow-up imaging of the liver is important for early detection of local tumor progression. As ablation leaves scarred tissue, recurrent tumor after IRE can appear vastly different than before treatment and thus can be hard to detect on MRI via classical imaging features. We here examined cases of local tumor progression after IRE of HCC and found distinct MR-imaging features helpful for the identification of re-grown viable tumor, namely T2 BLADE and diffusion weighted images (DWI) at the ablation zone border and T1 portal-venous and delayed phase post-contrast images in the center of the ablation zone. This knowledge will help in early detection and re-treatment of HCC for a prolonged survival. Abstract This single-center retrospective study was conducted to improve the early detection of local tumor progression (LTP) after irreversible electroporation (IRE) of a hepatocellular carcinoma (HCC) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-based 3T MR imaging and to identify helpful signal characteristics by comparing 23 patients with and 60 patients without LTP. To identify the differences in the sensitivity of MRI sequences, the specificity, positive prediction value, negative prediction value (NPV) and diagnostic odds ratio were calculated. A chi-squared test, two-tailed student’s t-test and binary logistic regression model were used to detect distinct patient characteristics and variables for the prediction of LTP. LTP was mostly detected in the peripheral ablation zone (82.6%) within the first six months (87.0%). The central LTP ablation area presented more hypointensities in T1 p.v. (sensitivity: 95.0%; NPV: 90.0%) and in T1 d.p. (sensitivity: 100.0%; NPV: 100.0) while its peripheral part showed more hyperintensities in T2 BLADE (sensitivity: 95.5%; NPV: 80.0%) and in diffusion sequences (sensitivity: 90.0%). Liver cirrhosis seems to be an unfavorable prognosticator for LTP (p = 0.039). In conclusion, LTP mostly occurs in the peripheral ablation zone within six months after IRE. Despite often exhibiting atypical Gd-EOB-DTPA MR signal characteristics, T2 BLADE and diffusion sequences were helpful for their detection in the peripheral zone while T1 p.v. and T1 d.p. had the highest sensitivity in the central zone.
Collapse
Affiliation(s)
- Wolf Bäumler
- Department of Radiology, University Hospital Regensburg, 93042 Regensburg, Germany; (W.B.); (L.L.); (M.D.); (C.S.)
| | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Städtisches Klinikum Braunschweig, 38114 Braunschweig, Germany;
| | - Lukas Lürken
- Department of Radiology, University Hospital Regensburg, 93042 Regensburg, Germany; (W.B.); (L.L.); (M.D.); (C.S.)
| | - Marco Dollinger
- Department of Radiology, University Hospital Regensburg, 93042 Regensburg, Germany; (W.B.); (L.L.); (M.D.); (C.S.)
| | - Christian Stroszczynski
- Department of Radiology, University Hospital Regensburg, 93042 Regensburg, Germany; (W.B.); (L.L.); (M.D.); (C.S.)
| | - Lukas P. Beyer
- Department of Radiology, Klinikum Ernst von Bergmann, 14467 Potsdam, Germany;
| | - Andreas Schicho
- Department of Radiology, University Hospital Regensburg, 93042 Regensburg, Germany; (W.B.); (L.L.); (M.D.); (C.S.)
- Correspondence:
| |
Collapse
|
13
|
Mulier S, Possebon R, Jiang Y, Jamart J, Wang C, Miao Y, Yu T, Jiang K, Feng Y, Marchal G, Michel L, Ni Y. Radiofrequency ablation with four electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling. Influence of electric and activation mode on coagulation size and geometry. Surg Oncol 2020; 33:145-157. [PMID: 32561081 DOI: 10.1016/j.suronc.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Radiofrequency ablation (RFA) is increasingly being used to treat unresectable liver tumors. Complete ablation of the tumor and a safety margin is necessary to prevent local recurrence. With current electrodes, size and shape of the ablation zone are highly variable leading to unsatisfactory local recurrence rates, especially for tumors >3 cm. In order to improve predictability, we recently developed a system with four simple electrodes with complete ablation in between the electrodes. This rather small but reliable ablation zone is considered as a building block for matrix radiofrequency ablation (MRFA). In the current study we explored the influence of the electric mode (monopolar or bipolar) and the activation mode (consecutive, simultaneous or switching) on the size and geometry of the ablation zone. MATERIALS AND METHODS The four electrode system was applied in ex vivo bovine liver. The electric and the activation mode were changed one by one, using constant power of 50 W in all experiments. Size and geometry of the ablation zone were measured. Finite element method (FEM) modelling of the experiment was performed. RESULTS In ex vivo liver, a complete and predictable coagulation zone of a 3 × 2 × 2 cm block was obtained most efficiently in the bipolar simultaneous mode due to the combination of the higher heating efficacy of the bipolar mode and the lower impedance by the simultaneous activation of four electrodes, as supported by the FEM simulation. CONCLUSIONS In ex vivo liver, the four electrode system used in a bipolar simultaneous mode offers the best perspectives as building block for MRFA. These results should be confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Stefaan Mulier
- Department of Surgery, Delta Hospital, CHIREC Cancer Institute, Triomflaan 201, 1160, Brussels, Belgium; Department of Radiology, Gasthuisberg University Hospital, Herestraat 49, 3000, Leuven, Belgium
| | - Ricardo Possebon
- Alegrete Technology Center, Federal University of Pampa, Av. Tiarajú 810, Ipirabuitã, CEP 97546-550, Alegrete, Rio Grande do Sul, Brazil
| | - Yansheng Jiang
- Department of Radiology, Gasthuisberg University Hospital, Herestraat 49, 3000, Leuven, Belgium
| | - Jacques Jamart
- Department of Biostatistics, Mont-Godinne University Hospital, Avenue du Dr. Thérasse 1, 5530, Yvoir, Belgium
| | - Chong Wang
- Alegrete Technology Center, Federal University of Pampa, Av. Tiarajú 810, Ipirabuitã, CEP 97546-550, Alegrete, Rio Grande do Sul, Brazil
| | - Yi Miao
- Department of Surgery and Radiology, First Hospital of Nanjing Medical University, Guangzhou Road No 300, 210029, Nanjing, China
| | - Tongfu Yu
- Department of Surgery and Radiology, First Hospital of Nanjing Medical University, Guangzhou Road No 300, 210029, Nanjing, China
| | - Kuirong Jiang
- Department of Surgery and Radiology, First Hospital of Nanjing Medical University, Guangzhou Road No 300, 210029, Nanjing, China
| | - Yuanbo Feng
- Department of Radiology, Gasthuisberg University Hospital, Herestraat 49, 3000, Leuven, Belgium
| | - Guy Marchal
- Department of Radiology, Gasthuisberg University Hospital, Herestraat 49, 3000, Leuven, Belgium
| | - Luc Michel
- Department of Surgery, Mont-Godinne University Hospital, Avenue du Dr. Thérasse 1, 5530, Yvoir, Belgium
| | - Yicheng Ni
- Department of Radiology, Gasthuisberg University Hospital, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Percutaneous Image-Guided Electrochemotherapy of Spine Metastases: Initial Experience. Cardiovasc Intervent Radiol 2019; 42:1806-1809. [DOI: 10.1007/s00270-019-02316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
|