1
|
Bastos AR, Maia FR, Oliveira JM, Reis RL, Correlo VM. In vitro Bone Tissue Engineering Strategies: The Relevance of Cells and Culturing Methods in Bone Formation and Remodeling. Macromol Biosci 2025; 25:e2400453. [PMID: 39932135 DOI: 10.1002/mabi.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Indexed: 04/15/2025]
Abstract
The most recent advances in bone tissue engineering (BTE) approaches step forward in the field of three-dimensional (3D) tissue models, enabling the development of more realistic tools to study bone disorders, such as osteoporosis. BTE field aims to mimic native bone tissue more truthfully, providing an appropriate environment for tissue regeneration and repair through the combination of 3D porous scaffolds, specific growth factors, and cells. Currently, the scientific community is focused on developing and improving new biomaterials that in combination with growth factors and specific cell types, that can accurately emulate the native bone microenvironment. However, most of the reported studies in the BTE field are focused on bone formation, disregarding the entire bone remodeling steps, which also involve bone resorption. In this review, the currently available mono and co-culturing methods, types of biomaterials used in several strategies that combine scaffolds and relevant cells (e.g., osteoblasts (OBs), osteoclasts (OCs), and osteocytes (OCys)), envisioning a healthy bone formation and remodeling process, the gold-standard drug delivery systems, and bioengineered-based systems to tackle bone diseases are described.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Vítor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Sudha S, Upmanyu A, Saraswat D, Singh M. Pharmacological impacts of tanshinone on osteogenesis and osteoclastogenesis: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:135-146. [PMID: 39136739 DOI: 10.1007/s00210-024-03351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 02/02/2025]
Abstract
Tanshinone, a lipophilic component of Salvia miltiorrhiza, is used to treat diseases like atherosclerosis, hypertension, Alzheimer's disease, and diabetes mellitus through its pharmacological activities like anti-inflammatory, anti-oxidant, and anti-tumor. Excessive inflammation is the primary cause of bone diseases such as osteoporosis and rheumatoid arthritis, affecting more than millions of people across the globe. Recently, tanshinone has shown potential benefits against bone diseases by modulating signaling pathways accountable for the proliferation and differentiation of bone cells. In vitro and in vivo studies reported that tanshinone promotes osteoblast formation and mineralization and suppresses excessive bone resorption during disease conditions. In this review, we have summarized the beneficial effects of tanshinone and other extracts of Salvia miltiorrhiza for bone health and their potential molecular targets in signaling.
Collapse
Affiliation(s)
- Smriti Sudha
- Defence Institute of Physiology and Allied Sciences, Lucknow Road Timarpur, Delhi, 110054, India
| | - Adya Upmanyu
- Banasthali Vidyapith, Radha Kishanpura, 304022, Rajasthan, India
| | - Deepika Saraswat
- Defence Institute of Physiology and Allied Sciences, Lucknow Road Timarpur, Delhi, 110054, India
| | - Mrinalini Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road Timarpur, Delhi, 110054, India.
| |
Collapse
|
3
|
Gao Y, Lai Y, Wang H, Su J, Chen Y, Mao S, Guan X, Cai Y, Chen J. Antimicrobial peptide GL13K-Modified titanium in the epigenetic regulation of osteoclast differentiation via H3K27me3. Front Bioeng Biotechnol 2024; 12:1497265. [PMID: 39512654 PMCID: PMC11540686 DOI: 10.3389/fbioe.2024.1497265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Implant surface designs have advanced to address challenges in oral rehabilitation for healthy and compromised bone. Several studies have analyzed the effects of altering material surfaces on osteogenic differentiation. However, the crucial role of osteoclasts in osseointegration has often been overlooked. Overactive osteoclasts can compromise implant stability. In this study, we employed a silanization method to alter pure titanium to produce a surface loaded with the antimicrobial peptide GL13K that enhanced biocompatibility. Pure titanium (Ti), silanization-modified titanium, and GL13K-modified titanium (GL13K-Ti) were co-cultured with macrophages. Our findings indicated that GL13K-Ti partially inhibited osteoclastogenesis and expression of osteoclast-related genes and proteins by limiting the formation of the actin ring, an important structure for osteoclast bone resorption. Our subsequent experiments confirmed the epigenetic role in regulating this process. GL13K-Ti was found to impact the degree of methylation modifications of H3K27 in the NFATc1 promoter region following RANKL-induced osteoclastic differentiation. In conclusion, our study unveils the potential mechanism of methylation modifications, a type of epigenetic regulatory modality, on osteoclastogenesis and activity on the surface of a material. This presents novel concepts and ideas for further broadening the clinical indications of oral implants and targeting the design of implant surfaces.
Collapse
Affiliation(s)
- Yuerong Gao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yingzhen Lai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Hong Wang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingjing Su
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Chen
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - ShunJie Mao
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Xin Guan
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yihuang Cai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
5
|
Haghpanah Z, Mondal D, Momenbeitollahi N, Mohsenkhani S, Zarshenas K, Jin Y, Watson M, Willett T, Gorbet M. In vitro evaluation of bone cell response to novel 3D-printable nanocomposite biomaterials for bone reconstruction. J Biomed Mater Res A 2024; 112:1725-1739. [PMID: 38619300 DOI: 10.1002/jbm.a.37719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Critically-sized segmental bone defects represent significant challenges requiring grafts for reconstruction. 3D-printed synthetic bone grafts are viable alternatives to structural allografts if engineered to provide appropriate mechanical performance and osteoblast/osteoclast cell responses. Novel 3D-printable nanocomposites containing acrylated epoxidized soybean oil (AESO) or methacrylated AESO (mAESO), polyethylene glycol diacrylate, and nanohydroxyapatite (nHA) were produced using masked stereolithography. The effects of volume fraction of nHA and methacrylation of AESO on interactions of differentiated MC3T3-E1 osteoblast (dMC3T3-OB) and differentiated RAW264.7 osteoclast cells with 3D-printed nanocomposites were evaluated in vitro and compared with a control biomaterial, hydroxyapatite (HA). Higher nHA content and methacrylation significantly improved the mechanical properties. All nanocomposites supported dMC3T3-OB cells' adhesion and proliferation. Higher amounts of nHA enhanced cell adhesion and proliferation. mAESO in the nanocomposites resulted in greater adhesion, proliferation, and activity at day 7 compared with AESO nanocomposites. Excellent osteoclast-like cells survival, defined actin rings, and large multinucleated cells were only observed on the high nHA fraction (30%) mAESO nanocomposite and the HA control. Thus, mAESO-based nanocomposites containing higher amounts of nHA have better interactions with osteoblast-like and osteoclast-like cells, comparable with HA controls, making them a potential future alternative graft material for bone defect repair.
Collapse
Affiliation(s)
- Zahra Haghpanah
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Dibakar Mondal
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Nikan Momenbeitollahi
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sadaf Mohsenkhani
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Kiyoumars Zarshenas
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Yutong Jin
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael Watson
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Thomas Willett
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Abdelmoneim D, Coates DE, Schmidlin P, Botter S, Li KC, Porter GC, Seo B, Duncan WJ. In vivo healing of low temperature deproteinized bovine bone xenograft in a rabbit cranial model. J Biomed Mater Res A 2024; 112:1436-1450. [PMID: 38466022 DOI: 10.1002/jbm.a.37693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/10/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
The physicochemical properties of grafting materials affect the quality of the osteointegration, resorption rate, and the new bone (NB) formation. This study assessed the physicochemical properties and integration of a low temperature deproteinized bovine bone xenograft (BBX), referred to as optimized MoaBone® (OMB). This novel BBX was physiochemically characterized both pre and post chemical bleaching and sterilization by gamma irradiation. OMB was compared to two commercial BBX; Bio-Oss® (BO) and MoaBone® (MB) using a rabbit cranial model. Residual graft and NB were quantified using histology and micro-computed tomography. Results showed that chemical treatment and gamma irradiation had limited effect on the surface texture. A significant decrease in the collagen content was detected post chemical treatment and in the carbonate content post gamma irradiation. There was no evidence of inflammatory infiltrate, necrosis, or connective tissue encapsulation, and a significant increase of NB in all grafted sites as compared to untreated defects could be observed. However, there was no statistically significant difference between the grafted sites. We conclude that chemical treatment and terminal sterilization strongly impact the final graft's properties. OMB graft showed equivalence with BO for in vivo bone formation and potentially results in lower levels of graft retention.
Collapse
Affiliation(s)
- Dina Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Patrick Schmidlin
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Sander Botter
- Swiss Center for Musculoskeletal Biobanking, Balgrist Campus AG, Zürich, Switzerland
| | - Kai Chun Li
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Gemma Claire Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Benedict Seo
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick John Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Cui B, Bai T, Wu Q, Hu Y, Liu Y. Pre-implantation teriparatide administration improves initial implant stability and accelerates the osseointegration process in osteoporotic rats. Int J Implant Dent 2024; 10:18. [PMID: 38625587 PMCID: PMC11021383 DOI: 10.1186/s40729-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Osteoporotic individuals who have dental implants usually require a prolonged healing time for osseointegration due to the shortage of bone mass and the lack of initial stability. Although studies have shown that intermittent teriparatide administration can promote osseointegration, there is little data to support the idea that pre-implantation administration is necessary and beneficial. METHODS Sixty-four titanium implants were placed in the bilateral proximal tibial metaphysis in 32 female SD rats. Bilateral ovariectomy (OVX) was used to induce osteoporosis. Four major groups (n = 8) were created: PRE (OVX + pre-implantation teriparatide administration), POST (OVX + post-implantation administration), OP (OVX + normal saline (NS)) and SHAM (sham rats + NS). Half of rats (n = 4) in each group were euthanized respectively at 4 weeks or 8 weeks after implantation surgery, and four major groups were divided into eight subgroups (PRE4 to SHAM8). Tibiae were collected for micro-CT morphometry, biomechanical test and undecalcified sections analysis. RESULTS Compared to OP group, rats in PRE and SHAM groups had a higher value of insertion torque (p < 0.05). The micro-CT analysis, biomechanical test, and histological data showed that peri-implant trabecular growth, implants fixation and bone-implant contact (BIC) were increased after 4 or 8 weeks of teriparatide treatment (p < 0.05). There was no statistically difference in those parameters between PRE4 and POST8 subgroups (p > 0.05). CONCLUSIONS In osteoporotic rats, post-implantation administration of teriparatide enhanced peri-implant bone formation and this effect was stronger as the medicine was taken longer. Pre-implantation teriparatide treatment improved primary implant stability and accelerated the osseointegration process.
Collapse
Affiliation(s)
- Boyu Cui
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Tianyi Bai
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Qiyou Wu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yibo Hu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yihong Liu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
8
|
Fernandes GVO, Castro F, Pereira RM, Teixeira W, Gehrke S, Joly JC, Blanco Carrion J, Fernandes JCH. Critical-size defects reconstruction with four different bone grafts associated with e-PTFE membrane: A histomorphometric experimental in vivo study. Clin Oral Implants Res 2024; 35:167-178. [PMID: 37987205 DOI: 10.1111/clr.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES The goal of this study was to assess the newly formed bone and the remnant biomaterial by comparing four different bone grafts used to treat critical-size defects, associated or not with the non-resorbable membrane. MATERIALS AND METHODS Two calvaria critical-size bone defects were created in 50 male Wistar rats. They were divided into blood (G1), autogenous (G2), bioglass (G3), hydroxyapatite (G4), and xenograft (G5) groups, associated or not with e-PTFE. The experimental periods were 15 and 45 days. Sections were prepared for histomorphometric assessment. All data were analyzed by the mixed-effects model with multiple comparisons (significance level, p < .05). RESULTS A similar level of new bone was observed for all groups, associated with a high level of vascularization. G1 and G2 ensured sovereignty over the greater quantity of new bone. A non-significant result was reported comparing groups with and without membranes. No significant result was found between the experimental synthetic biomaterials (G3 and G4). G5L achieved 22.0% of new bone after 45 days (p > .05). All groups had a stable volume of biomaterial kept in the short term (p > .05). G2 was the best material for new bone formation and final volume of biomaterial, followed by G4 < G5 < G3. Thus, it is possible that G4 had a better degradation profile among the experimental groups. CONCLUSIONS The best results were found in the autogenous group, with higher resorption and integration; non-significative new bone was found among the experimental groups; and the regeneration of critical bone defects using an e-PTFE barrier did not present significant results on new bone formation.
Collapse
Affiliation(s)
- Gustavo Vicentis Oliveira Fernandes
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- A. T. Still University, St. Louis, Missouri, USA
| | - Filipe Castro
- FP-I3ID, FCS, Universidade Fernando Pessoa, Porto, Portugal
| | - Rafael Martins Pereira
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Wendel Teixeira
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Sérgio Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | | | | | | |
Collapse
|
9
|
Shams R, Behmanesh A, Mazhar FN, Vaghari AA, Hossein-Khannazer N, Agarwal T, Vosough M, Padrón JM. Developed Bone Biomaterials Incorporated with MicroRNAs to Promote Bone Regeneration: A Systematic Review, Bioinformatics, and Meta-analysis Study. ACS Biomater Sci Eng 2023; 9:5186-5204. [PMID: 37585807 DOI: 10.1021/acsbiomaterials.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
This systematic review and meta-analysis focused on the effectiveness of biomaterials integrated with specific microRNAs (miRNAs) for bone fracture repair treatment. We conducted a comprehensive search of the PubMed, Web of Science, and Scopus databases, identifying 42 relevant papers up to March 2022. Hydrogel-based scaffolds were the most commonly used, incorporating miRNAs like miR-26a, miR-21, and miR-222, with miR-26a being the most prevalent. The meta-analysis revealed significant benefits of incorporating miRNAs into scaffolds for bone repair, particularly in hydrogel scaffolds. However, some controversies were observed among studies, presenting challenges in selecting appropriate miRNAs for this purpose. The study concludes that incorporating specific miRNAs into bone biomaterials enhances bone regeneration, but further trials comparing different biomaterials and miRNAs are necessary to validate their potential applications for bone tissue regeneration.
Collapse
Affiliation(s)
- Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Behmanesh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Farid Najd Mazhar
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Amir Ali Vaghari
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Spain
| |
Collapse
|
10
|
Bighetti-Trevisan RL, Ferraz EP, Silva MBF, Zatta GC, de Almeida MB, Rosa AL, Beloti MM. Effect of osteoblasts on osteoclast differentiation and activity induced by titanium with nanotopography. Colloids Surf B Biointerfaces 2023; 229:113448. [PMID: 37451224 DOI: 10.1016/j.colsurfb.2023.113448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Titanium with nanotopography (Ti Nano) favors osteoblast differentiation and attenuates the osteoclast inhibitory effects on osteoblasts. Because the interactions between nanotopography and osteoclasts are underexplored, the aims of this study were to evaluate the effects of Ti Nano on osteoclast differentiation and activity, and the influence of osteoblasts on osteoclast-Ti Nano interaction. The discs were conditioned with a mixture of 10 N H2SO4 and 30% aqueous H2O2 to create Ti Nano and non-conditioned Ti discs were used as control (Ti Control). Osteoclasts were cultured on Ti Control and Ti Nano in the presence of osteoblasts in an indirect co-culture system. Also, osteoclasts were cultured on polystyrene and calcium phosphate plates in conditioned media by osteoblasts grown on Ti Control and Ti Nano. While Ti Control exhibited an irregular and smooth surface, Ti Nano presented nanopores distributed throughout the whole surface. Additionally, anisotropy was higher on Ti Nano than Ti Control. Nanotopography favored the gene expression of osteoclast markers but inhibited osteoclast differentiation and activity, and the presence of osteoblasts enhanced the effects of Ti Nano on osteoclasts. Such findings were mimicked by conditioned medium of osteoblasts cultured on Ti Nano, which reduced the osteoclast differentiation and activity. In conclusion, our results indicated that nanotopography regulates osteoblast-osteoclast crosstalk and further investigations should focus the impact of these bone cell interactions on Ti osseointegration.
Collapse
Affiliation(s)
| | - Emanuela Prado Ferraz
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | | | - Guilherme Crepi Zatta
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcelo Barros de Almeida
- School of Electrical Engineering, Federal University of Uberlândia, Uberlândia, 38408-100 MG, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil.
| |
Collapse
|
11
|
The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Polymers (Basel) 2022; 14:polym14163305. [PMID: 36015563 PMCID: PMC9416491 DOI: 10.3390/polym14163305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The still-growing field of additive manufacturing (AM), which includes 3D printing, has enabled manufacturing of patient-specific medical devices with high geometrical accuracy in a relatively quick manner. However, the development of materials with specific properties is still ongoing, including those for enhanced bone-repair applications. Such applications seek materials with tailored mechanical properties close to bone tissue and, importantly, that can serve as temporary supports, allowing for new bone ingrowth while the material is resorbed. Thus, controlling the resorption rate of materials for bone applications can support bone healing by balancing new tissue formation and implant resorption. In this regard, this work aimed to study the combination of polylactic acid (PLA), polycaprolactone (PCL) and hydroxyapatite (HA) to develop customized biocompatible and bioresorbable polymer-based composite filaments, through extrusion, for fused filament fabrication (FFF) printing. PLA and PCL were used as supporting polymer matrices while HA was added to enhance the biological activity. The materials were characterized in terms of mechanical properties, thermal stability, chemical composition and morphology. An accelerated degradation study was executed to investigate the impact of degradation on the above-mentioned properties. The results showed that the materials' chemical compositions were not affected by the extrusion nor the printing process. All materials exhibited higher mechanical properties than human trabecular bone, even after degradation with a mass loss of around 30% for the polymer blends and 60% for the composites. It was also apparent that the mineral accelerated the polymer degradation significantly, which can be advantageous for a faster healing time, where support is required only for a shorter time period.
Collapse
|
12
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Bighetti-Trevisan RL, Souza ATP, Tosin IW, Bueno NP, Crovace MC, Beloti MM, Rosa AL, Ferraz EP. Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Braz Oral Res 2022; 36:e022. [PMID: 35293496 DOI: 10.1590/1807-3107bor-2022.vol36.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Despite the crucial role of osteoclasts in the physiological process of bone repair, most bone tissue engineering strategies have focused on osteoblast-biomaterial interactions. Although Biosilicate® with two crystalline phases (BioS-2P) exhibits osteogenic properties and significant bone formation, its effects on osteoclasts are unknown. This study aimed to investigate the in vitro and in vivo effects of BioS-2P on osteoclast differentiation and activity. RAW 264.7 cells were cultured in osteoclastogenic medium (OCM) or OCM conditioned with BioS-2P (OCM-BioS-2P), and the cell morphology, viability, and osteoclast differentiation were evaluated. BioS-2P scaffolds were implanted into rat calvarial defects, and the bone tissue was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and RT-polymerase chain reaction (PCR) after 2 and 4 weeks to determine the gene expressions of osteoclast markers and compare them with those of the bone grown in empty defects (Control). OCM-BioS-2P favored osteoclast viability and activity, as evidenced by an increase in the TRAP-positive cells and matrix resorption. The bone tissue grown on BioS-2P scaffolds exhibited higher expression of the osteoclast marker genes (Ctsk, Mmp 9, Rank) after 2 and 4 weeks and the RankL/Opg ratio after 2 weeks. Trap gene expression was lower at 2 weeks, and a higher number of TRAP-stained areas were observed in the newly formed bone on BioS-2P scaffolds at both 2 and 4 weeks compared to the Controls. These results enhanced our understanding of the role of bioactive glass-ceramics in bone repair, and highlighted their role in the modulation of osteoclastic activities and promotion of interactions between bone tissues and biomaterials.
Collapse
Affiliation(s)
| | | | - Ingrid Wezel Tosin
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Natália Pieretti Bueno
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| | - Murilo Camuri Crovace
- Universidade Federal de São Carlos - UFScar, Vitreous Materials Laboratory, São Carlos, SP, Brazil
| | - Marcio Mateus Beloti
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Emanuela Prado Ferraz
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
15
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
16
|
Toughening of Bioceramic Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioceramics are widely considered as elective materials for the regeneration of bone tissue, due to their compositional mimicry with bone inorganic components. However, they are intrinsically brittle, which limits their capability to sustain multiple biomechanical loads, especially in the case of load-bearing bone districts. In the last decades, intense research has been dedicated to combining processes to enhance both the strength and toughness of bioceramics, leading to bioceramic composite scaffolds. This review summarizes the recent approaches to this purpose, particularly those addressed to limiting the propagation of cracks to prevent the sudden mechanical failure of bioceramic composites.
Collapse
|
17
|
Dedukh N, Makarov V, Pavlov A. Біоматеріал на основі полілактиду та його використання як кісткових імплантатів (аналітичний огляд літератури). PAIN, JOINTS, SPINE 2021. [DOI: 10.22141/2224-1507.9.1.2019.163056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
У багатьох галузях медицини широке застосування отримали імплантати з різних синтетичних та природних біоматеріалів. Серед матеріалів, що частіше використовують для створення імплантатів, полілактид (PLA), особливістю якого є біодеградація в ділянках імплантації, остеоінтеграція, здатність індукувати процеси утворення кісткової тканини та висока біосумісність з організмом. Мета огляду: проаналізувати та узагальнити дані щодо перебудови в кістці біорезорбуючих біоматеріалів на основі полілактиду та визначити тенденції розвитку проблеми. В огляді літератури подано загальну характеристику та визначено історичні віхи розвитку проблеми та використання деградуючих полімерів у кістковій хірургії. Надані дані щодо факторів, що впливають на біодеградацію в кістках цього біоматеріалу, та визначено особливості його остеоінтеграції залежно від складу. Наведено дані щодо використання PLA та співполімерів у кістковій хірургії та регенераторній медицині. Важливим напрямком майбутніх досліджень буде розробка композитних біоматеріалів на основі PLA з бажаними якостями остеоінтеграції та керованою біодеградацією. Подано нові тенденції розвитку напрямку використання в кістковій хірургії імплантатів на основі композитних матеріалів, виготовлених на основі PLA, та новітні способи створення імплантатів та композитів із використанням 3D-принтера.
Collapse
|
18
|
Review on material parameters to enhance bone cell function in vitro and in vivo. Biochem Soc Trans 2021; 48:2039-2050. [PMID: 32940685 DOI: 10.1042/bst20200210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Bone plays critical roles in support, protection, movement, and metabolism. Although bone has an innate capacity for regeneration, this capacity is limited, and many bone injuries and diseases require intervention. Biomaterials are a critical component of many treatments to restore bone function and include non-resorbable implants to augment bone and resorbable materials to guide regeneration. Biomaterials can vary considerably in their biocompatibility and bioactivity, which are functions of specific material parameters. The success of biomaterials in bone augmentation and regeneration is based on their effects on the function of bone cells. Such functions include adhesion, migration, inflammation, proliferation, communication, differentiation, resorption, and vascularization. This review will focus on how different material parameters can enhance bone cell function both in vitro and in vivo.
Collapse
|
19
|
Negrescu AM, Cimpean A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1357. [PMID: 33799681 PMCID: PMC7999637 DOI: 10.3390/ma14061357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.
Collapse
Affiliation(s)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
20
|
Ramírez A CE, Hurtado-Macías A, Talamantes R, Flores E, Ladrón de Guevara HP, Delgado JI, Estrella RA, Riestra JM, Montes JM, Esmonde-White K, Vardaki M, González-Hernández J, Viveros JM. Assessing mechanical behavior of ostrich and equine trabecular and cortical bone based on depth sensing indentation measurements. J Mech Behav Biomed Mater 2021; 117:104404. [PMID: 33667799 DOI: 10.1016/j.jmbbm.2021.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Guided bone regeneration surgeries are based on grafting a scaffold in the site to be repaired. The main focus of the scaffold is to provide mechanical support to newly formed blood vessels and cells that will colonize the grafted site, achiving bone regenertation. In this regards, the aim of this study was to characterize the anatomy, structular, surface morphologycal, chemical composition, and nanomechanical properties of ostrich and equine trabecular bone. Ostrich and equine specimens were obtained from a local abattoir and bone was obtained by blunt dissection, n = 5. Tissue bone anatomy and trabecular structure were measured using Computerized Axial Tomography (CAT). Atomic Force Microscopy (AFM) and Energy dispersion spectrometry of X-ray (EDS) were used to examine surface morphology and chemical composition of the trabecular ostrich and equine bone. Mechanical behavior was analysted by nanoindentation. Equine specimens were examined as control. CAT results suggest that in terms of anthropometry, ostrich tarsometatarsus bone is more suitable due to its length is 432.56 ± 3.12 mm vs. the highest human bone structures reported, which femur length is 533.66 ± 18.81 mm. Besides, the low radiodensity in the Hounsfield scale exhibits equine trabecular bone more brittle (Av = 1538.4 ± 0.9) than ostrich trabecular bone (Av = 462.1 ± 1.5). EDS showed a slight variation of the element Calcium (Ca2+) ranging from 20% to 25.5% wt in equine bone; the Ca2+ content variation is consistent with the ring-shaped morphology, while in ostrich bone the chemical composition is homogeneous. The elastic modulus, nanohardness (E = 5.3 ± 0.7 GPa, H = 220 ± 10 MPa) and average roughness (Ra = 207 nm) are similar to the human trabecular bone which could reduce the stress shielding, all of these findings suggest that ostrich bone can be promising for native tissue scaffolds for mechanically demanding applications. This research makes innovative contributions to science and provides a framework, which will allow us to address future biomedical tests, and rapidly identify promising organic and sustainable waste for tissue scaffold.
Collapse
Affiliation(s)
- Cecilia E Ramírez A
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| | - Abel Hurtado-Macías
- Departamento de Metalugría e Integridad Estructural, Centro de Investigación de Materiales Avanzados-CIMAV, Chihuahua, Mexico.
| | - Roberto Talamantes
- Departamento de Metalugría e Integridad Estructural, Centro de Investigación de Materiales Avanzados-CIMAV, Chihuahua, Mexico
| | - Edgardo Flores
- Departamento de Biología Celular y Molecular, División de Ciencias Biológica y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico
| | - Héctor Pérez Ladrón de Guevara
- Departamento de Ciencias Exactas e Ingeniería, Centro Universitario de Lagos, Universidad de Guadalajara, Jalisco, Mexico
| | - J Iván Delgado
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| | - Rubén Anguiano Estrella
- Departamento de Cultivo Celular y Biología Molecular, División de Ciencias Veterinarias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico
| | - Juan Manuel Riestra
- Departamento de Neurocirugía y Columna Vertebral, Instituto Mexicano del Seguro Social-IMSS, Jalisco, Mexico
| | - Jesús Máximo Montes
- Smart Cities Innovation Center, Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Jalisco, Mexico
| | | | - Martha Vardaki
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - J González-Hernández
- Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 76130, Qro, Mexico
| | - Juan M Viveros
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| |
Collapse
|
21
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
22
|
Lee S, Chang YY, Lee J, Madhurakkat Perikamana SK, Kim EM, Jung YH, Yun JH, Shin H. Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration. Biomater Sci 2020; 8:3404-3417. [DOI: 10.1039/d0bm00566e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although titanium-based implants are widely used in orthopedic and dental clinics, improved osseointegration at the bone–implant interface is still required.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Yun-Young Chang
- Department of Dentistry
- Inha International Medical Center
- Incheon
- Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | | | - Eun Mi Kim
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Yang-Hun Jung
- Department of Periodontology
- College of Dentistry and Institute of Oral Bioscience
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology
- College of Dentistry and Institute of Oral Bioscience
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| |
Collapse
|
23
|
Almeida AR, Bessa-Gonçalves M, Vasconcelos DM, Barbosa MA, Santos SG. Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. J Biomed Mater Res A 2019; 108:851-862. [PMID: 31845492 DOI: 10.1002/jbm.a.36863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-β1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-β1 that promote MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Ana R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mafalda Bessa-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel M Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| |
Collapse
|
24
|
Biomaterial based treatment of osteoclastic/osteoblastic cell imbalance - Gelatin-modified calcium/strontium phosphates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109933. [PMID: 31499966 DOI: 10.1016/j.msec.2019.109933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Osteoporotic bone represents - particularly in case of fractures - difficult conditions for its regeneration. In the present study, the focus was put on a degradable bone substitute material of gelatin-modified calcium and strontium phosphates facing the special demands of osteoporotic bone. The release of strontium ions from the material ought to stimulate osteoblastogenesis either direct by ion release or indirect after material resorption by increased presence and activity of osteoclasts, which subsequently stimulate osteoblasts. A new porous material was produced from calcium phosphate, strontium phosphate and a mixed phase of calcium/strontium phosphate precipitated in presence of gelatin. Initially, ion release was analyzed in standard‑calcium containing (2.0 mM) and low-calcium (0.4 mM) minimum essential medium. The cultivation of human peripheral blood mononuclear cells next to the material led to formation of osteoclast-like cells, able to migrate, fuse, and differentiate. Especially, the mixed gelatin-modified calcium/strontium phosphate allowed osteoclastogenesis as proven morphologically and by real-time quantitative polymerase chain reaction (RT-qPCR). It was precisely this material that led to the best osteoblastic reaction of human bone marrow stromal cells cultured on the material. The investigations of the bone substitute material indicate active involvement in the balance of cells of the bone morphogenetic unit.
Collapse
|
25
|
Granel H, Bossard C, Nucke L, Wauquier F, Rochefort GY, Guicheux J, Jallot E, Lao J, Wittrant Y. Optimized Bioactive Glass: the Quest for the Bony Graft. Adv Healthc Mater 2019; 8:e1801542. [PMID: 30941912 DOI: 10.1002/adhm.201801542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Technological advances have provided surgeons with a wide range of biomaterials. Yet improvements are still to be made, especially for large bone defect treatment. Biomaterial scaffolds represent a promising alternative to autologous bone grafts but in spite of the numerous studies carried out on this subject, no biomaterial scaffold is yet completely satisfying. Bioactive glass (BAG) presents many qualifying characteristics but they are brittle and their combination with a plastic polymer appears essential to overcome this drawback. Recent advances have allowed the synthesis of organic-inorganic hybrid scaffolds combining the osteogenic properties of BAG and the plastic characteristics of polymers. Such biomaterials can now be obtained at room temperature allowing organic doping of the glass/polymer network for a homogeneous delivery of the doping agent. Despite these new avenues, further studies are required to highlight the biological properties of these materials and particularly their behavior once implanted in vivo. This review focuses on BAG with a particular interest in their combination with polymers to form organic-inorganic hybrids for the design of innovative graft strategies.
Collapse
Affiliation(s)
- Henri Granel
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Cédric Bossard
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Lisa Nucke
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Ressource Ecology‐Bautzner Landstraße 400 01328 Dresden Germany
| | - Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Gael Y. Rochefort
- Faculté de Chirurgie Dentaire, Paris Descartes, EA2496, Laboratoires PathologiesImagerie et Biothérapies orofaciales 1 rue Maurice Arnoux 92120 Montrouge France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeSRegenerative Medicine and SkeletonUniversité de Nantes, Oniris Nantes, F‐44042 France
- UFR OdontologieUniversité de Nantes Nantes, F‐44042, France
- CHU Nantes, PHU4 OTONNNantes, F‐44093, France
| | - Edouard Jallot
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Jonathan Lao
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| |
Collapse
|
26
|
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater 2019; 8:e1801106. [PMID: 30328293 DOI: 10.1002/adhm.201801106] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | | | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|