1
|
Akinosoglou K, Papageorgiou D, Gogos C, Dimopoulos G. An update on newer antifungals. Expert Rev Anti Infect Ther 2025; 23:149-158. [PMID: 39881622 DOI: 10.1080/14787210.2025.2461566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Fungal infections constitute a significant global health threat, with an estimated incidence of 6.5 million invasive fungal infections and 2.5 million associated deaths each year. New antifungal agents are being developed to address the challenges of fungal infections management, driven by the evolving fungal epidemiology, the emergence of antifungal resistance, and the limitations of existing treatments. AREA COVERED This review provides a thorough overview of the latest developments in novel antifungal agents, highlighting pivotal evidence obtained from clinical trials. EXPERT OPINION New antifungal agents hold promising future for difficult-to-treat fungal infections, providing for improved bioavailability, pharmacokinetic properties, adverse events and drug interactions, as well as, spectrum of activity. However, further data is needed before incorporating these agents in everyday clinical practice for the management of invasive fungal infections.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, Rio, Greece
- Department of Medicine, University of Patras, Rio, Greece
| | | | | | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Wolfgruber S, Salmanton-García J, Kuate MPN, Hoenigl M, Brunelli JGP. Antifungal pipeline: New tools for the treatment of mycoses. Rev Iberoam Micol 2024; 41:68-78. [PMID: 40023755 DOI: 10.1016/j.riam.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 03/04/2025] Open
Abstract
Fungal infections are becoming an escalating public health challenge, particularly among immunocompromised individuals. The partially limited efficacy of current antifungal treatments, their potential adverse effects, and the increasing problem of resistance emphasize the need for new treatment options. Existing antifungal classes-allylamines, azoles, echinocandins, polyenes, and pyrimidine analogs-face challenges due to their similarity with human cells and rising resistance. New antifungal agents, such as ibrexafungerp, rezafungin, oteseconazole, and miltefosine, offer novel mechanisms of action along with reduced toxicity. While antifungal resistance is a growing global concern, fungal infections in low- and middle-income countries (LMICs) present specific challenges with high rates of opportunistic infections like cryptococcosis and endemic mycoses such as histoplasmosis. The World Health Organization's fungal priority pathogens list highlights the prevalence of these infections in LMICs, where limited access to antifungal drugs and misuse are common. This review provides a comprehensive overview of these new agents and their mechanisms, and explores the challenges and roles of antifungal drugs in LMICs, where the burden of fungal infections is high. Continued research and development are essential to address the rising incidence and resistance of fungal infections globally.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria.
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | | |
Collapse
|
4
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
5
|
Wang S, Pan J, Gu L, Wang W, Wei B, Zhang H, Chen J, Wang H. Review of treatment options for a multidrug-resistant fungus: Candida auris. Med Mycol 2024; 62:myad127. [PMID: 38066698 DOI: 10.1093/mmy/myad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Candida auris is a widely distributed, highly lethal, multidrug-resistant fungal pathogen. It was first identified in 2009 when it was isolated from fluid drained from the external ear canal of a patient in Japan. Since then, it has caused infectious outbreaks in over 45 countries, with mortality rates approaching 60%. Drug resistance is common in this species, with a large proportion of isolates displaying fluconazole resistance and nearly half are resistant to two or more antifungal drugs. In this review, we describe the drug resistance mechanism of C. auris and potential small-molecule drugs for treating C. auris infection. Among these antifungal agents, rezafungin was approved by the US Food and Drug Administration (FDA) for the treatment of candidemia and invasive candidiasis on March 22, 2023. Ibrexafungerp and fosmanogepix have entered phase III clinical trials.
Collapse
Affiliation(s)
- Siqi Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Jiangwei Pan
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Liting Gu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Wei Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Jianwei Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, and Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Antifungal resistance, combinations and pipeline: oh my! Drugs Context 2023; 12:2023-7-1. [PMID: 38021410 PMCID: PMC10653594 DOI: 10.7573/dic.2023-7-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Invasive fungal infections are a strong contributor to healthcare costs, morbidity and mortality, especially amongst hospitalized patients. Historically, Candida was responsible for approximately 15% of all nosocomial bloodstream infections. In the past 10 years, the epidemiology of Candida species has altered, with increasing prevalence of resistant species. With rising fungal resistance, especially in Candida spp., the demand for novel antifungal therapies has exponentially increased over the last decade. Newer antifungal agents have become an attractive option for patients needing long-term therapy for infections or those requiring antifungal prophylaxis. Despite advances in coverage of non-Candida pathogens with newer agents, clinical scenarios involving multidrug-resistant fungal pathogens continue to arise in practice. Combination antifungal therapy can lead to a host of side-effects, some of which can be drug limiting. Additional antifungal therapies with enhanced fungal spectrum of activity and decreased rates of adverse effects are warranted. Fosmanogepix, ibrexafungerp, olorofim and rezafungin may help fill some of these gaps in the antifungal armamentarium. This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Brandon K Hawkins
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Knoxville, TN, USA
| | - J Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - David A Cretella
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Guinea J. New trends in antifungal treatment: What is coming up? REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36 Suppl 1:59-63. [PMID: 37997874 PMCID: PMC10793560 DOI: 10.37201/req/s01.14.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
New antifungal agents are needed to overcome limitations of available ones such as poor pharmacokinetic traits, toxicity, drug-drug interactions, limited clinical efficacy, and emerging antifungal resistance. New antifungal drugs belong to well-known families (azoles, polyenes, or beta-d-glucan synthase inhibitors) or to drug families showing completely new mechanisms of action. Some drugs have a head start in terms of potential to reach the clinical setting and are here reviewed.
Collapse
Affiliation(s)
- J Guinea
- Jesús Guinea, Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
8
|
Munzen ME, Goncalves Garcia AD, Martinez LR. An update on the global treatment of invasive fungal infections. Future Microbiol 2023; 18:1095-1117. [PMID: 37750748 PMCID: PMC10718168 DOI: 10.2217/fmb-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 09/27/2023] Open
Abstract
Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
10
|
de Oliveira H, Bezerra BT, Rodrigues ML. Antifungal Development and the Urgency of Minimizing the Impact of Fungal Diseases on Public Health. ACS BIO & MED CHEM AU 2023; 3:137-146. [PMID: 37101810 PMCID: PMC10125384 DOI: 10.1021/acsbiomedchemau.2c00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2023]
Abstract
Fungal infections are a major public health problem resulting from the lack of public policies addressing these diseases, toxic and/or expensive therapeutic tools, scarce diagnostic tests, and unavailable vaccines. In this Perspective, we discuss the need for novel antifungal alternatives, highlighting new initiatives based on drug repurposing and the development of novel antifungals.
Collapse
Affiliation(s)
| | - Bárbara T. Bezerra
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
| | - Marcio L. Rodrigues
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
- Instituto
de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| |
Collapse
|
11
|
Vuong NN, Hammond D, Kontoyiannis DP. Clinical Uses of Inhaled Antifungals for Invasive Pulmonary Fungal Disease: Promises and Challenges. J Fungi (Basel) 2023; 9:jof9040464. [PMID: 37108918 PMCID: PMC10146217 DOI: 10.3390/jof9040464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The role of inhaled antifungals for prophylaxis and treatment of invasive fungal pneumonias remains undefined. Herein we summarize recent clinically relevant literature in high-risk groups such as neutropenic hematology patients, including those undergoing stem cell transplant, lung and other solid transplant recipients, and those with sequential mold lung infections secondary to viral pneumonias. Although there are several limitations of the available data, inhaled liposomal amphotericin B administered 12.5 mg twice weekly could be an alternative method of prophylaxis in neutropenic populations at high risk for invasive fungal pneumonia where systemic triazoles are not tolerated. In addition, inhaled amphotericin B has been commonly used as prophylaxis, pre-emptive, or targeted therapy for lung transplant recipients but is considered as a secondary alternative for other solid organ transplant recipients. Inhaled amphotericin B seems promising as prophylaxis in fungal pneumonias secondary to viral pneumonias, influenza, and SARS CoV-2. Data remain limited for inhaled amphotericin for adjunct treatment, but the utility is feasible.
Collapse
Affiliation(s)
- Nancy N Vuong
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Disease, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Armstrong‐James D. Antifungal chemotherapies and immunotherapies for the future. Parasite Immunol 2023; 45:e12960. [PMID: 36403106 PMCID: PMC10078527 DOI: 10.1111/pim.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Human fungal pathogens cause a broad plethora of infections, spanning cutaneous dermatophytoses to invasive infections in immunocompromised hosts. As eukaryotic pathogens are capable of morphotype switching, they present unique challenges both for drug development and the immunological response. Whilst current antifungal therapies are limited to the orally available triazoles, intravenous echonocandins and polyenes, and flucytosine and terbinafine, there has been recent significant progress in the antifungal armamentorium with ibrexafungerp, a novel orally available terpanoid that inhibits 1,3-beta-D-glucan-approved by Food and Drug Administration in 2021, and fosmanogepix, an orally available pro-drug of manogepix, which targets glycosylphosphatidylinositol-anchored protein maturation entering Phase 3 studies for candidaemia. A number of further candidates are in development. There has been significant use of existing immunotherapies such as recombinant interferon-γ and G-CSF for fungal disease in immunocompromised patients, and there are emerging opportunities for monoclonal antibodies targeting TH2 inflammation. Omalizumab, an anti-IgE monoclonal antibody in asthma, is now used routinely for the treatment of allergic bronchopulmonary aspergillosis, and further agents targeting IL-4 and IL-5 are being evaluated. In addition, T-cell CAR therapy is showing early promise for fungal disease. Thus, we are likely to see rapid advances to our approach to the management of fungal disease in the near future.
Collapse
Affiliation(s)
- Darius Armstrong‐James
- Department of Infectious DiseasesMedical Research Council Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| |
Collapse
|
13
|
Moss RB. Severe Fungal Asthma: A Role for Biologics and Inhaled Antifungals. J Fungi (Basel) 2023; 9:jof9010085. [PMID: 36675906 PMCID: PMC9861760 DOI: 10.3390/jof9010085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Allergic asthma has traditionally been treated with inhaled and systemic glucocorticosteroids. A continuum of allergic fungal airways disease associated with Aspergillus fumigatus colonization and/or atopic immune responses that encompasses fungal asthma, severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis is now recognized along a phenotypic severity spectrum of T2-high immune deviation lung disease. Oral triazoles have shown clinical, anti-inflammatory and microbiologic efficacy in this setting; in the future inhaled antifungals may improve the therapeutic index. Humanized monoclonal antibody biologic agents targeting T2-high disease also show efficacy and promise of improved control in difficult cases. Developments in these areas are highlighted in this overview.
Collapse
Affiliation(s)
- Richard B Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road, Suite 350, Palo Alto, CA 94304, USA
| |
Collapse
|
14
|
Singh S, Moore LSP, Mughal N, Ho M, Armstrong-James D, Singh S. Novel inhaled antifungal for pseudomembranous Aspergillus tracheobronchitis complicating connective tissue disease. Thorax 2023; 78:110-111. [PMID: 36180064 PMCID: PMC9763170 DOI: 10.1136/thorax-2021-218375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Affiliation(s)
| | - Luke S P Moore
- Imperial College London, London, UK,NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK,Clinical Infection Department, Chelsea and Westminster Healthcare NHS Trust, London, UK
| | - Nabeela Mughal
- Imperial College London, London, UK,Clinical Infection Department, Chelsea and Westminster Healthcare NHS Trust, London, UK
| | - Matthew Ho
- Imperial College London, London, UK,Department of Rheumatology, Chelsea and Westminster Healthcare NHS Trust, London, UK
| | - Darius Armstrong-James
- Imperial College London, London, UK,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Suveer Singh
- Imperial College London, London, UK,Respiratory and Intensive Care Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Lewington-Gower E, Chan L, Shah A. Review of current and future therapeutics in ABPA. Ther Adv Chronic Dis 2021; 12:20406223211047003. [PMID: 34729149 PMCID: PMC8543630 DOI: 10.1177/20406223211047003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis is an allergic pulmonary condition caused by hypersensitivity to antigens of Aspergillus sp. found most commonly in patients with underlying asthma or cystic fibrosis. Host factors which alter the innate and adaptive immune responses to this abundant airborne fungus contribute to the development of chronic airway inflammation, bronchiectasis, and fibrosis. Traditionally, treatment has focussed on reducing fungal burden and immune response to fungal antigens. However, a significant proportion of patients continue to suffer recurrent exacerbations with progressive lung damage, and the side effect burden of existing treatments is high. New treatments including novel antifungal agents, monoclonal antibodies against aspects of the adaptive immune response as well as targeted immunotherapies may be better tolerated and achieve improved outcomes but have not yet been studied in large-scale randomised control trials.
Collapse
Affiliation(s)
- Elisa Lewington-Gower
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ley Chan
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
16
|
Future Directions for Clinical Respiratory Fungal Research. Mycopathologia 2021; 186:685-696. [PMID: 34590208 PMCID: PMC8536595 DOI: 10.1007/s11046-021-00579-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
There has been a growing appreciation of the importance of respiratory fungal diseases in recent years, with better understanding of their prevalence as well as their global distribution. In step with the greater awareness of these complex infections, we are currently poised to make major advances in the characterization and treatment of these fungal diseases, which in itself is largely a consequence of post-genomic technologies which have enabled rational drug development and a path towards personalized medicines. These advances are set against a backdrop of globalization and anthropogenic change, which have impacted the world-wide distribution of fungi and antifungal resistance, as well as our built environment. The current revolution in immunomodulatory therapies has led to a rapidly evolving population at-risk for respiratory fungal disease. Whilst challenges are considerable, perhaps the tools we now have to manage these infections are up to this challenge. There has been a welcome acceleration of the antifungal pipeline in recent years, with a number of new drug classes in clinical or pre-clinical development, as well as new focus on inhaled antifungal drug delivery. The "post-genomic" revolution has opened up metagenomic diagnostic approaches spanning host immunogenetics to the fungal mycobiome that have allowed better characterization of respiratory fungal disease endotypes. When these advances are considered together the key challenge is clear: to develop a personalized medicine framework to enable a rational therapeutic approach.
Collapse
|
17
|
Abstract
Anti-fungal therapies remain sub-optimal, and resistant pathogens are increasing. New therapies are desperately needed, especially options that are less toxic than most of the currently available selection. In this review, I will discuss anti-fungal therapies that are in at least phase I human trials. These include VT-1161 and VT-1598, modified azoles with a tetrazole metal-binding group; the echinocandin rezafugin; the novel β-1,3-d-glucan synthase inhibitor ibrexafungerp; fosmanogepix, a novel anti-fungal targeting Gwt1; the arylamidine T-2307; the dihydroorotate inhibitor olorofim; and the cyclic hexapeptide ASP2397. The available data including spectrum of activity, toxicity and stage of clinical development will be discussed for each of these so clinicians are aware of promising anti-fungal agents with a strong likelihood of clinical availability in the next 5–7 years.
Collapse
Affiliation(s)
- Grant Waterer
- University of Western Australia, Royal Perth Hospital, Level 3 Executive Corridor, Wellington St, Perth, 6000, Australia.
| |
Collapse
|
18
|
Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J Asthma Allergy 2021; 14:557-573. [PMID: 34079294 PMCID: PMC8164695 DOI: 10.2147/jaa.s251709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Allergy to airway-colonising, thermotolerant, filamentous fungi represents a distinct eosinophilic endotype of often severe lung disease. This endotype, which particularly affects adult asthma, but also complicates other airway diseases and sometimes occurs de novo, has a heterogeneous presentation ranging from severe eosinophilic asthma to lobar collapse. Its hallmark is lung damage, characterised by fixed airflow obstruction (FAO), bronchiectasis and lung fibrosis. It has a number of monikers including severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis/mycosis (ABPA/M), but these exclusive terms constitute only sub-sets of the condition. In order to capture the full extent of the syndrome we prefer the inclusive term allergic fungal airway disease (AFAD), the criteria for which are IgE sensitisation to relevant fungi in association with airway disease. The primary fungus involved is Aspergillus fumigatus, but a number of other thermotolerant species from several genera have been implicated. The unifying mechanism involves germination of inhaled fungal spores in the lung in the context of IgE sensitisation, leading to a persistent and vigorous eosinophilic inflammatory response in association with release of fungal proteases. Most allergenic fungi, including Alternaria and Cladosporium species, are not thermotolerant and cannot germinate in the airways so only act as aeroallergens and do not cause AFAD. Studies of the airway mycobiome have shown that A. fumigatus colonises the normal as much as the asthmatic airway, suggesting it is the tendency to become IgE-sensitised that is the critical triggering factor for AFAD rather than colonisation per se. Treatment is aimed at preventing exacerbations with glucocorticoids and increasingly by the use of anti-T2 biological therapies. Anti-fungal therapy has a limited place in management, but is an effective treatment for fungal bronchitis which complicates AFAD in about 10% of cases.
Collapse
Affiliation(s)
- Andrew J Wardlaw
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Leyla Pur Ozyigit
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Alys Scadding
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, Department of Paediatrics, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Catherine H Pashley
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
19
|
Espinel-Ingroff A, Dannaoui E. Special Issue: Antifungal Agents Recently Approved or under Development. J Fungi (Basel) 2021; 7:jof7030239. [PMID: 33806755 PMCID: PMC8004745 DOI: 10.3390/jof7030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ana Espinel-Ingroff
- Virginia Commonwealth University Medical Center, Richmond, VA 23219, USA
- Correspondence: (A.E.-I.); (E.D.); Fax: +33-1-56-09-24-46 (E.D.)
| | - Eric Dannaoui
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Faculté de Médecine, Université de Paris, F-75006 Paris, France
- Correspondence: (A.E.-I.); (E.D.); Fax: +33-1-56-09-24-46 (E.D.)
| |
Collapse
|