1
|
Kharrat O, Yamaryo-Botté Y, Nasreddine R, Voisin S, Aumer T, Cammue BPA, Madinier JB, Knobloch T, Thevissen K, Nehmé R, Aucagne V, Botté C, Bulet P, Landon C. The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms. Proc Natl Acad Sci U S A 2025; 122:e2415524122. [PMID: 39937853 PMCID: PMC11848316 DOI: 10.1073/pnas.2415524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
Fungal infections represent a significant global health concern, with a growing prevalence of antifungal drug resistance. Targeting glucosylceramides (GlcCer), which are functionally important glycosphingolipids (GSL) present in fungal membranes, represents a promising strategy for the development of antifungal drugs. GlcCer are associated with the antifungal activity of certain plant and insect defensins. The 44-residue ETD151 peptide, optimized from butterfly defensins, is active against several fungal pathogens. ETD151 has been shown to induce a multifaceted mechanism of action (MOA) in Botrytis cinerea, a multiresistant phytopathogenic fungus. However, the target has yet to be identified. Our findings demonstrate that the presence of GlcCer in membranes determines the susceptibility of Pichia pastoris and Candida albicans toward ETD151. To ascertain whether this is due to direct molecular recognition, we demonstrate that ETD151 selectively recognizes liposomes containing GlcCer from B. cinerea, which reveals a methylated-sphingoid base structure. The dissociation constant was estimated by microscale thermophoresis to be in the µM range. Finally, fluorescence microscopy revealed that ETD151 localizes preferentially at the surface of B. cinerea. Furthermore, the majority of prokaryotic cells do not contain GSL, which explains their resistance to ETD151. We investigated the susceptibility of Novosphingobium capsulatum, one of the rare GSL-containing bacteria, to ETD151. ETD151 demonstrated transient morphological changes and inhibitory growth activity (IC50 ~75 µM) with an affinity for the cell surface, emphasizing the critical importance of GSL as target. Understanding the MOA of ETD151 could pave the way for new perspectives in human health and crop protection.
Collapse
Affiliation(s)
- Ons Kharrat
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Thomas Aumer
- Plateform BioPark Archamps, Archamps74160, France
- Bayer CropScience, Lyon69263, France
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | | | | | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Cyrille Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Philippe Bulet
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
- Plateform BioPark Archamps, Archamps74160, France
| | - Céline Landon
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| |
Collapse
|
2
|
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J Fungi (Basel) 2025; 11:77. [PMID: 39852495 PMCID: PMC11766565 DOI: 10.3390/jof11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression. Microbiome-based approaches include the design of synthetic microbial consortia and the transplant of entire or customized soil/plant microbiomes, potentially offering more resilient and adaptable biocontrol strategies. Nanotechnology has also advanced significantly, providing methods for the targeted delivery of biological control agents (BCAs) or compounds derived from them through different nanoparticles (NPs), including bacteriogenic, mycogenic, phytogenic, phycogenic, and debris-derived ones acting as carriers. The use of biodegradable polymeric and non-polymeric eco-friendly NPs, which enable the controlled release of antifungal agents while minimizing environmental impact, is also explored. Furthermore, artificial intelligence and machine learning can revolutionize crop protection through early disease detection, the prediction of disease outbreaks, and precision in BCA treatments. Other technologies such as genome editing, RNA interference (RNAi), and functional peptides can enhance BCA efficacy against pathogenic fungi. Altogether, these technologies provide a comprehensive framework for sustainable and precise management of fungal vascular diseases, redefining pathogen biocontrol in modern agriculture.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| |
Collapse
|
3
|
Muhindi S, Zellner W, Marzano SY, Boldt J, Leisner S. Transient Expression of Nicotiana tabacum Silicon-Induced Histidine-Rich Defensins in N. benthamiana Limits Necrotic Lesion Development Caused by Phytopathogenic Fungi. PHYTOPATHOLOGY 2025; 115:35-43. [PMID: 39348470 DOI: 10.1094/phyto-05-24-0162-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Silicon (Si) supplementation permits plants to better deter infection. Supplementing hydroponically propagated Nicotiana tabacum with 1 mM potassium silicate (K2SiO3) reduced necrotic lesion development on detached leaves by both Botrytis cinerea and Sclerotinia sclerotiorum. Previously, a family of Si-induced genes was identified in N. tabacum. These genes were members of the solanaceous histidine-rich defensin (HRD) superfamily and were termed NtHRD1s (the first identified family of N. tabacum HRDs). Defensins were originally identified to participate in innate immunity. Thus, the NtHRD1s were tested for antimicrobial effects on plant pathogens. Transient expression of NtHRD1 genes within N. benthamiana leaves restricted the development of necrotic lesions caused by B. cinerea and S. sclerotiorum. Thus, the NtHRD1s may be an additional Si-responsive factor conferring beneficial effects on plants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Stephen Muhindi
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| | - Wendy Zellner
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| | - Shin-Yi Marzano
- U.S. Department of Agriculture-Agricultural Research Service, Application Technology Research Unit, Toledo, OH, U.S.A
| | - Jennifer Boldt
- U.S. Department of Agriculture-Agricultural Research Service, Application Technology Research Unit, Toledo, OH, U.S.A
| | - Scott Leisner
- Biological Sciences, The University of Toledo College of Natural Science and Mathematics, Toledo, OH, U.S.A
| |
Collapse
|
4
|
de Oliveira Barbosa Bitencourt R, Azevedo Santos H, Salcedo-Porras N, Lowenberger C, Alves de Senne N, Silva Gôlo P, Rita Elias Pinheiro Bittencourt V, da Costa Angelo I. Multigenerational expression of antimicrobial peptides in Aedes aegypti exposed to Metarhizium anisopliae: Is trans-generational immune priming involved? JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104712. [PMID: 39307233 DOI: 10.1016/j.jinsphys.2024.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
We assessed, for the first time, a multigenerational expression of antimicrobial peptides (AMPs) in Aedes aegypti larvae exposed to the entomopathogenic fungus, Metarhizium anisopliae, and correlated it with a possible involvement in trans-generational immune priming (TGIP). Aedes aegypti larvae were first exposed to blastospores or conidia of M. anisopliae CG 489 for 24 and 48 h, and the relative expression of AMPs were measured using quantitative Real-Time PCR. A suspension of conidia was prepared, and two different survival tests were conducted with different larval generations (F0, F1, and F2). In the first bioassay, the survival curves of the three generations were conducted separately and compared with their respective control groups. In the other bioassay, the survival curves of the F0, F1, and F2 generations were compared simultaneously against a naïve group exposed to Tween 80. In both survival tests, the F0 generation was more susceptible to M. anisopliae than subsequent generations. For molecular analyses related to TGIP, F0, F1, and F2 larvae were exposed to conidia, and their expression of AMPs was compared with their control groups and a naïve group. There was no differential expression of cecropin, defensin A or cathepsin B between generations. Lysozyme C, however, showed an increase in expression across generations, suggesting a role in TGIP. These discoveries may help us develop biological insecticides against mosquito larvae based on entomopathogenic fungi.
Collapse
Affiliation(s)
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Nicolas Salcedo-Porras
- 350 Health Sciences Mall, Life Sciences Institute. University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Nathália Alves de Senne
- Graduate Program in Veterinary Sciences, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Patrícia Silva Gôlo
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
5
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
6
|
Tetorya M, Li H, Djami‐Tchatchou AT, Buchko GW, Czymmek KJ, Shah DM. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide. MOLECULAR PLANT PATHOLOGY 2023; 24:896-913. [PMID: 37036170 PMCID: PMC10346373 DOI: 10.1111/mpp.13336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.
Collapse
Affiliation(s)
| | - Hui Li
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
| | | | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National LaboratoryRichlandWashingtonUSA
- School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Kirk J. Czymmek
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
- Advanced Bioimaging LaboratoryDonald Danforth Plant Science CenterSt LouisMissouriUSA
| | - Dilip M. Shah
- Donald Danforth Plant Science CenterSt LouisMissouriUSA
| |
Collapse
|
7
|
Marchese A, Balan B, Trippa DA, Bonanno F, Caruso T, Imperiale V, Marra FP, Giovino A. NGS transcriptomic analysis uncovers the possible resistance mechanisms of olive to Spilocea oleagina leaf spot infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1219580. [PMID: 37528972 PMCID: PMC10388255 DOI: 10.3389/fpls.2023.1219580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found.
Collapse
Affiliation(s)
- Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Floriana Bonanno
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Valeria Imperiale
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Antonio Giovino
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| |
Collapse
|
8
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
9
|
Finkina EI, Bogdanov IV, Ignatova AA, Kanushkina MD, Egorova EA, Voropaev AD, Stukacheva EA, Ovchinnikova TV. Antifungal Activity, Structural Stability, and Immunomodulatory Effects on Human Immune Cells of Defensin from the Lentil Lens culinaris. MEMBRANES 2022; 12:membranes12090855. [PMID: 36135874 PMCID: PMC9503459 DOI: 10.3390/membranes12090855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 05/27/2023]
Abstract
An increase in the frequency of mycoses and spreading of multidrug-resistant fungal pathogens necessitates the search for new antifungal agents. Earlier, we isolated the novel defensin from lentil Lensculinaris seeds, designated as Lc-def, which inhibited the growth of phytopathogenic fungi. Here, we studied an antifungal activity of Lc-def against human pathogenic Candida species, structural stability of the defensin, and its immunomodulatory effects that may help to prevent fungal infection. We showed that Lc-def caused 50% growth inhibition of clinical isolates of Candida albicans, C. krusei, and C. glabrata at concentrations of 25-50 μM, but was not toxic to different human cells. The lentil defensin was resistant to proteolysis by C. albicans and was not cleaved during simulated gastroduodenal digestion. By using the multiplex xMAP assay, we showed for the first time for plant defensins that Lc-def increased the production of such essential for immunity to candidiasis pro-inflammatory cytokines as IL-12 and IL-17 at the concentration of 2 μM. Thus, we hypothesized that the lentil Lc-def and plant defensins in general may be effective in suppressing of mucocutaneous candidiasis due to their antifungal activity, high structural stability, and ability to activate a protective immune response.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Marina D. Kanushkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Ekaterina A. Egorova
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov St. 10, 125212 Moscow, Russia
| | - Elena A. Stukacheva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia
| |
Collapse
|