1
|
Azria D, Haviland JS, Brengues M, Griffin C, Moquet J, Barnard S, Dearnaley DP, Gao A, Gothard L, Rothkamm K, Yarnold JR. Radiation-induced lymphocyte apoptosis and chromosomic aberrations for prediction of toxicities in patients undergoing radical radiotherapy for breast or prostate cancers. Br J Radiol 2025; 98:929-937. [PMID: 40080701 DOI: 10.1093/bjr/tqaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVES Radiation-induced lymphocyte apoptosis (RILA) and chromosomal damage assays (CDA) are proposed predictors of radiotherapy (RT) adverse events (RTAE). This study evaluated RILA and CDA in patients undergoing different RT dose regimens for early breast (FAST trial) or prostate (CHHiP trial) cancer. METHODS Consecutive patients were recruited from each trial. Fresh heparinized blood samples were analysed for RILA and CDA. The primary endpoint was time to first change in photographic breast appearance (FAST) or time to first grade ≥2 RTOG bladder or bowel toxicity (CHHiP). The secondary endpoint in FAST was breast fibrosis. RESULTS The dataset included 103 FAST and 297 CHHiP trial patients. No significant association of RILA with the primary endpoint was observed in the FAST trial. However, the risk of grade ≥2 breast fibrosis was lower in patients with RILA ≥24% compared to those with RILA ≤16% (P = .012). In the CHHiP trial, no significant associations were found between CDA after prostate RT outcomes. However, higher levels of micronuclei per cell were associated with a lower risk of grade ≥2 RTOG pelvic toxicities. The relative risk of developing grade ≥2 RTAE decreased for patients with RILA ≥ 24% but was not statistically significant. CONCLUSIONS No association was found between RILA and photographic breast appearance. High RILA values were statistically associated with a lower risk of grade ≥2 breast fibrosis. In the CHHiP trial, most assays showed no association with pelvic toxicities. ADVANCES IN KNOWLEDGE RILA is confirmed as a potential predictor of breast fibrosis regarding fraction sizes.
Collapse
Affiliation(s)
- David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpelier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, 34298 Montpellier, France
| | - Joanne S Haviland
- The Institute of Cancer Research Clinical Trials and Statistics Unit, The Institute of Cancer Research, SW7 3RP London, United Kingdom
| | - Muriel Brengues
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpelier Cancer Institute (ICM), Montpellier Cancer Research Institute (IRCM), University of Montpellier, 34298 Montpellier, France
| | - Clare Griffin
- The Institute of Cancer Research Clinical Trials and Statistics Unit, The Institute of Cancer Research, SW7 3RP London, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton OX11 0RQ, United Kingdom
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton OX11 0RQ, United Kingdom
| | - David P Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, United kingdom
| | - Annie Gao
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, United kingdom
| | - Lone Gothard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, United kingdom
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton OX11 0RQ, United Kingdom
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, 20251 Hamburg, Germany
| | - John R Yarnold
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, United kingdom
| |
Collapse
|
2
|
Ma L, Zhang Y, Xu J, Yu Y, Zhou P, Liu X, Guan H. Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. Int J Mol Sci 2025; 26:3342. [PMID: 40244232 PMCID: PMC11989863 DOI: 10.3390/ijms26073342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a common endogenous chemical modification in eukaryotic DNA, primarily involving the covalent attachment of a methyl group to the fifth carbon of cytosine residues, leading to the formation of 5-methylcytosine (5mC). This epigenetic modification plays a crucial role in gene expression regulation and genomic stability maintenance in eukaryotic systems. Ionizing radiation (IR) has been shown to induce changes in global DNA methylation patterns, which exhibit significant temporal stability. This stability makes DNA methylation profiles promising candidates for radiation-specific biomarkers. This review systematically examines the impact of IR on genome-wide DNA methylation landscapes and evaluates their potential as molecular indicators of radiation exposure. Advancing the knowledge of radiation-induced epigenetic modifications in radiobiology contributes to a deeper understanding of IR-driven epigenetic reprogramming and facilitates the development of novel molecular tools for the early detection and quantitative risk assessment of radiation exposure.
Collapse
Affiliation(s)
- Lanfang Ma
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yu Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Jie Xu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yanan Yu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Hua Guan
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| |
Collapse
|
3
|
Ferreira-Lucena LR, Xavier AISF, Netto AM, Magnata SDSLP, Siqueira Lima G, Amaral A. Extending culture time to improve Mitotic Index for cytogenetic dosimetry. Int J Radiat Biol 2024; 100:1029-1040. [PMID: 38787719 DOI: 10.1080/09553002.2024.2356545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE To analyze the effects of extending lymphocyte cultivation time on the Mitotic Index, frequency of first-division cells, and dose estimation after irradiating blood samples with different doses of radiation. MATERIALS AND METHODS Blood samples from two healthy male volunteers were separately irradiated with three doses (3, 5, and 6 Gy) using a 60Co gamma source (average dose rate: 1.48 kGy.h-1) and cultivated in vitro for conventional (48 h) and extended (56, 68, and 72 h) amounts of time. Colcemid (0.01 µg.mL-1) was added at the beginning of the culture period. Cells were fixed, stained with fluorescence plus Giemsa (FPG), and analyzed under a light microscope. The effects of prolonged culture duration on the Mitotic Index (MI), frequency of first-division cells (M1 cells), and the First-Division Mitotic Index (FDMI) were investigated. The estimation of delivered doses was conducted using a conventional 48h-culture calibration curve. RESULTS Overall, cells presented higher MI (up to 12-fold) with the extension of culture, while higher radiation doses led to lower MI values (up to 80% reduction at 48 h). Cells irradiated with higher doses (5 and 6 Gy) had the most significant increase (5- to 12-fold) of MI as the cultivation was prolonged. The frequency of M1 cells decreased with the prolongation of culture for all doses (up to 75% reduction), while irradiated cells presented higher frequencies of M1 cells than non-irradiated ones. FDMI increased for all irradiated cultures but most markedly in those irradiated with higher doses (up to 10-fold). The conventional 48h-culture calibration curve proved adequate for assessing the delivered dose based on dicentric frequency following a 72-hour culture. CONCLUSION Compared to the conventional 48-hour protocol, extending the culture length to 72 hours significantly increased the Mitotic Index and the number of first-division metaphases of irradiated lymphocytes, providing slides with a better scorable metaphase density. Extending the culture time to 72 hours, combined with FPG staining to score exclusively first-division metaphases, improved the counting of dicentric chromosomes. The methodology presented and discussed in this study can be a powerful tool for dicentric-based biodosimetry, especially when exposure to high radiation doses is involved.
Collapse
Affiliation(s)
- Luciano Rodolfo Ferreira-Lucena
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | | | - André Maciel Netto
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | | | - Giovanna Siqueira Lima
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | - Ademir Amaral
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
Sun M, Moquet J, Lloyd D, Barnard S, Anbalagan S, Steel H, Sommer A, Gothard L, Somaiah N, Ainsbury E. Applicability of Scoring Calyculin A-Induced Premature Chromosome Condensation Objects for Dose Assessment Including for Radiotherapy Patients. Cytogenet Genome Res 2023; 163:143-153. [PMID: 37879308 PMCID: PMC10946622 DOI: 10.1159/000534656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
As an extension to a previous study, a linear calibration curve covering doses from 0 to 10 Gy was constructed and evaluated in the present study using calyculin A-induced premature chromosome condensation (PCC) by scoring excess PCC objects. The main aim of this study was to assess the applicability of this PCC assay for doses below 2 Gy that are critical for triage categorization. Two separate blind tests involving a total of 6 doses were carried out; 4 out of 6 dose estimates were within the 95% confidence limits (95% CL) with the other 2 just outside. In addition, blood samples from five cancer patients undergoing external beam radiotherapy (RT) were also analyzed, and the results showed whole-body dose estimates statistically comparable to the dicentric chromosome assay (DCA) results. This is the first time that calyculin A-induced PCC was used to analyze clinical samples by scoring excess objects. Although dose estimates for the pre-RT patient samples were found to be significantly higher than the mean value for the healthy donors and were also significantly higher than those obtained using DCA, all these pre-treatment patients fell into the same category as those who may have received a low dose (<1 Gy) and do not require immediate medical care during emergency triage. Additionally, for radiological accidents with unknown exposure scenario, PCC objects and rings can be scored in parallel for the assessment of both low- and high-dose exposures. In conclusion, scoring excess objects using calyculin A-induced PCC is confirmed to be another potential biodosimetry tool in radiological emergency particularly in mass casualty scenarios, even though the data need to be interpreted with caution when cancer patients are among the casualties.
Collapse
Affiliation(s)
- Mingzhu Sun
- UK Health Security Agency (UKHSA), Department of Radiation Effects, Cytogenetics and Pathology Group, RCEHD, Didcot, UK
| | - Jayne Moquet
- UK Health Security Agency (UKHSA), Department of Radiation Effects, Cytogenetics and Pathology Group, RCEHD, Didcot, UK
| | - David Lloyd
- UK Health Security Agency (UKHSA), Department of Radiation Effects, Cytogenetics and Pathology Group, RCEHD, Didcot, UK
| | - Stephen Barnard
- UK Health Security Agency (UKHSA), Department of Radiation Effects, Cytogenetics and Pathology Group, RCEHD, Didcot, UK
| | - Selvakumar Anbalagan
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR), Sutton, UK
| | - Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR), Sutton, UK
| | - Aurore Sommer
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR), Sutton, UK
| | - Lone Gothard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR), Sutton, UK
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR), Sutton, UK
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, UK
| | - Elizabeth Ainsbury
- UK Health Security Agency (UKHSA), Department of Radiation Effects, Cytogenetics and Pathology Group, RCEHD, Didcot, UK
- Environmental Research Group Within The School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
5
|
Jain V, Saini D, Soren DC, Kumar VA, Vivek Kumar PR, Koya PKM, Jaikrishan G, Das B. Non-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coast. Genes Environ 2023; 45:16. [PMID: 37127760 PMCID: PMC10150514 DOI: 10.1186/s41021-023-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The human population living in high level natural radiation areas (HLNRAs) of Kerala coast provide unique opportunities to study the biological effects of low dose and low dose rate ionizing radiation below 100 mGy. The level of radiation in this area varies from < 1.0 to 45 mGy/year. The areas with ≤ 1.50 mGy/year are considered as normal level natural radiation areas (NLNRA) and > 1.50 mGy/year, as high level natural radiation areas (HLNRA). The present study evaluated dose response relationship between DNA double strand breaks (DSBs) and background radiation dose in individuals residing in Kerala coast. Venous blood samples were collected from 200 individuals belonging to NLNRA (n = 50) and four dose groups of HLNRA; 1.51-5.0 mGy/year (n = 50), 5.01-10.0 mGy/year (n = 30), 10.01-15.0 mGy/year (n = 33), > 15.0 mGy/year (n = 37) with written informed consent. The mean dose of NLNRA and four HLNRA dose groups studied are 1.21 ± 0.21 (range: 0.57-1.49), 3.02 ± 0.95 (range: 1.57-4.93), 7.43 ± 1.48 (range: 5.01-9.75), 12.22 ± 1.47 (range: 10.21-14.99), 21.64 ± 6.28 (range: 15.26-39.88) mGy/year, respectively. DNA DSBs were quantified using γH2AX as a marker, where foci were counted per cell using fluorescence microscopy. RESULTS Our results revealed that the frequency of γH2AX foci per cell was 0.090 ± 0.051 and 0.096 ± 0.051, respectively in NLNRA and HLNRA individuals, which were not significantly different (t198 = 0.33; P = 0.739). The frequency of γH2AX foci was observed to be 0.090 ± 0.051, 0.096 ± 0.051, 0.076 ± 0.036, 0.087 ± 0.042, 0.108 ± 0.046 per cell, respectively in different dose groups of ≤ 1.50, 1.51-5.0, 5.01-10.0, 10.01-15.0, > 15.0mGy/year (ANOVA, F4,195 = 2.18, P = 0.072) and suggested non-linearity in dose response. The frequency of γH2AX foci was observed to be 0.098 ± 0.042, 0.078 ± 0.037, 0.084 ± 0.042, 0.099 ± 0.058, 0.097 ± 0.06 and 0.114 ± 0.033 per cell in the age groups of ≤ 29, 30-34, 35-39, 40-44, 45-49 and ≥ 50 years, respectively (ANOVA, F5,194 = 2.17, P = 0.059), which suggested marginal influence of age on the baseline of DSBs. Personal habits such as smoking (No v/s Yes: 0.092 ± 0.047 v/s 0.093 ± 0.048, t198 = 0.13; P = 0.895) and drinking alcohol (No v/s Yes: 0.096 ± 0.052 v/s 0.091 ± 0.045, t198 = 0.62; P = 0.538) did not show any influence on DSBs in the population. CONCLUSION The present study did not show any increase in DSBs in different dose groups of HLNRA compared to NLNRA, however, it suggested a non-linear dose response between DNA DSBs and chronic low dose radiation.
Collapse
Affiliation(s)
- Vinay Jain
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Divyalakshmi Saini
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - D C Soren
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - V Anil Kumar
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - P R Vivek Kumar
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - P K M Koya
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
| | - G Jaikrishan
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India.
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
6
|
Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-ray-Induced DNA Double-Strand Break Repair. Cancers (Basel) 2021; 13:cancers13215561. [PMID: 34771723 PMCID: PMC8582740 DOI: 10.3390/cancers13215561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs), known as the most severe damage in chromatin, were induced in breast cancer cells and normal skin fibroblasts by 2 Gy ionizing photon radiation. In response to DSB induction, phosphorylation of the histone variant H2AX to γH2AX was observed in the form of foci visualized by specific antibodies. By means of super-resolution single-molecule localization microscopy (SMLM), it has been recently shown in a first article about these data that these foci can be separated into clusters of about the same size (diameter ~400 nm). The number of clusters increased with the dose applied and decreased with the repair time. It has also been shown that during the repair period, antibody-labeled MRE11 clusters of about half of the γH2AX cluster diameter were formed inside several γH2AX clusters. MRE11 is part of the MRE11-RAD50-NBS1 (MRN) complex, which is known as a DNA strand resection and broken-end bridging component in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). This article is a follow-up of the former ones applying novel procedures of mathematics (topology) and similarity measurements on the data set: to obtain a measure for cluster shape and shape similarities, topological quantifications employing persistent homology were calculated and compared. In addition, based on our findings that γH2AX clusters associated with heterochromatin show a high degree of similarity independently of dose and repair time, these earlier published topological analyses and similarity calculations comparing repair foci within individual cells were extended by topological data averaging (2nd-generation heatmaps) over all cells analyzed at a given repair time point; thereby, the two dimensions (0 and 1) expressed by components and holes were studied separately. Finally, these mean value heatmaps were averaged, in addition. For γH2AX clusters, in both normal fibroblast and MCF-7 cancer cell lines, an increased similarity was found at early time points (up to 60 min) after irradiation for both components and holes of clusters. In contrast, for MRE11, the peak in similarity was found at later time points (2 h up to 48 h) after irradiation. In general, the normal fibroblasts showed quicker phosphorylation of H2AX and recruitment of MRE11 to γH2AX clusters compared to breast cancer cells and a shorter time interval of increased similarity for γH2AX clusters. γH2AX foci and randomly distributed MRE11 molecules naturally occurring in non-irradiated control cells did not show any significant topological similarity.
Collapse
|
7
|
Radiation Biomarkers: Silver Bullet, or Wild Goose Chase? J Pers Med 2021; 11:jpm11070603. [PMID: 34202274 PMCID: PMC8307972 DOI: 10.3390/jpm11070603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Humans have learned to harness the power of radiation for therapeutic ends, with 50% of all patients diagnosed with cancer undergoing radiotherapy as part of their treatment [...].
Collapse
|
8
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|