1
|
Pisera AO, Yu Y, Williams RL, Liu CC. Ultra-efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids. ACS Synth Biol 2025; 14:1002-1008. [PMID: 40127237 DOI: 10.1021/acssynbio.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid in vivo diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids and linearized plasmid fragments into yeast. We demonstrate our method's utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast, in general.
Collapse
Affiliation(s)
- Alexander Olek Pisera
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
| | - Yutong Yu
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Rory L Williams
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department of Chemistry, University of California, Irvine, California 92617, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
2
|
Espinheira R, Barrett K, Lange L, Sant’Ana da Silva A, Meyer AS. Discovery and Characterization of Mannan-Specialized GH5 Endo-1,4-β-mannanases: a Strategy for Açaí ( Euterpe oleracea Mart.) Seeds Upgrading. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:625-634. [PMID: 39680639 PMCID: PMC11726631 DOI: 10.1021/acs.jafc.4c07018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
The pulp of açaí palm fruits (Euterpe oleracea Mart.) is a valuable export commodity in Brazil. Its production generates 1.6 million tons/year of açaí seeds, a resource largely wasted. The seeds consist mainly of linear β-mannan, offering potential for prebiotic β-mannan-derived oligomers and mannose production. However, the crystalline structures of β-mannan hinder enzymatic hydrolysis. This study aimed to discover and characterize fungal enzymes targeting açaí seed β-mannan using a palm β-mannanase (EgMan5A) as a guide. Recombinant expression, enzyme optimization, kinetics, substrate specificity, and structural modeling were performed. The two fungal enzymes, JaMan5A and SlMan5A, were found to be specific for unsubstituted mannan, showing no activity toward galacto- and glucomannan. Among them, SlMan5A showed the highest activity on açaí seed β-mannan (∼24 U/mg) and other unsubstituted mannan substrates, likely due to its greater thermal robustness. These results provide valuable insights into β-mannan specificity contributing to the sustainable valorization of açaí seeds.
Collapse
Affiliation(s)
- Roberta
P. Espinheira
- Divisão
de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av. Venezuela 82, Rio de Janeiro 20081-312 ,Brazil
- Programa
de Pós-graduação em Bioquímica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909 ,Brazil
| | - Kristian Barrett
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, So̷ltofts Plads 221, 2800 Kgs Lyngby, Denmark
| | - Lene Lange
- LL
BioEconomy, Research & Advisory, Karensgade 5, 2500 Copenhagen, Denmark
| | - Ayla Sant’Ana da Silva
- Divisão
de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av. Venezuela 82, Rio de Janeiro 20081-312 ,Brazil
- Programa
de Pós-graduação em Bioquímica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909 ,Brazil
| | - Anne S. Meyer
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, So̷ltofts Plads 221, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
3
|
Pisera A, Yu Y, Williams RL, Liu CC. Ultra-Efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626108. [PMID: 39651169 PMCID: PMC11623697 DOI: 10.1101/2024.11.29.626108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid in vivo diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids into yeast. We demonstrate our method's utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast in general.
Collapse
|
4
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
5
|
Karapanagioti F, Atlason ÚÁ, Slotboom DJ, Poolman B, Obermaier S. Fitness landscape of substrate-adaptive mutations in evolved amino acid-polyamine-organocation transporters. eLife 2024; 13:RP93971. [PMID: 38916596 PMCID: PMC11198987 DOI: 10.7554/elife.93971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.
Collapse
Affiliation(s)
| | | | - Dirk J Slotboom
- Department of Biochemistry, University of GroningenGroningenNetherlands
| | - Bert Poolman
- Department of Biochemistry, University of GroningenGroningenNetherlands
| | | |
Collapse
|
6
|
Oliveira-Filho ER, Voiniciuc C, Hanson AD. Adapting enzymes to improve their functionality in plants: why and how. Biochem Soc Trans 2023; 51:1957-1966. [PMID: 37787016 PMCID: PMC10657173 DOI: 10.1042/bst20230532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Synthetic biology creates new metabolic processes and improves existing ones using engineered or natural enzymes. These enzymes are often sourced from cells that differ from those in the target plant organ with respect to, e.g. redox potential, effector levels, or proteostasis machinery. Non-native enzymes may thus need to be adapted to work well in their new plant context ('plantized') even if their specificity and kinetics in vitro are adequate. Hence there are two distinct ways in which an enzyme destined for use in plants can require improvement: In catalytic properties such as substrate and product specificity, kcat, and KM; and in general compatibility with the milieu of cells that express the enzyme. Continuous directed evolution systems can deliver both types of improvement and are so far the most broadly effective way to deliver the second type. Accordingly, in this review we provide a short account of continuous evolution methods, emphasizing the yeast OrthoRep system because of its suitability for plant applications. We then cover the down-to-earth and increasingly urgent issues of which enzymes and enzyme properties can - or cannot - be improved in theory, and which in practice are the best to target for crop improvement, i.e. those that are realistically improvable and important enough to warrant deploying continuous directed evolution. We take horticultural crops as examples because of the opportunities they present and to sharpen the focus.
Collapse
Affiliation(s)
| | - Cătălin Voiniciuc
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
7
|
Gossing M, Limeta A, Skrekas C, Wigglesworth M, Davis A, Siewers V, David F. Multiplexed Guide RNA Expression Leads to Increased Mutation Frequency in Targeted Window Using a CRISPR-Guided Error-Prone DNA Polymerase in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:2271-2277. [PMID: 37486342 PMCID: PMC10443033 DOI: 10.1021/acssynbio.2c00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 07/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, with its ability to target a specific DNA locus using guide RNAs (gRNAs), is particularly suited for targeted mutagenesis. The targeted diversification of nucleotides in Saccharomyces cerevisiae using a CRISPR-guided error-prone DNA polymerase─called yEvolvR─was recently reported. Here, we investigate the effect of multiplexed expression of gRNAs flanking a short stretch of DNA on reversion and mutation frequencies using yEvolvR. Phenotypic assays demonstrate that higher reversion frequencies are observed when expressing multiple gRNAs simultaneously. Next generation sequencing reveals a synergistic effect of multiple gRNAs on mutation frequencies, which is more pronounced in a mutant with a partially defective DNA mismatch repair system. Additionally, we characterize a galactose-inducible yEvolvR, which enables temporal control of mutagenesis. This study demonstrates that multiplex expression of gRNAs and induction of mutagenesis greatly improves the capabilities of yEvolvR for generation of genetic libraries in vivo.
Collapse
Affiliation(s)
- Michael Gossing
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, SE-41320 Gothenburg, Sweden
| | - Angelo Limeta
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| | - Christos Skrekas
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| | - Mark Wigglesworth
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Alderley Park SK10 2NA, U.K.
- Alderley
Lighthouse Laboratories Ltd., Alderley
Park SK10 4TG, Macclesfield, U.K.
| | - Andrew Davis
- Discovery
Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Verena Siewers
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Florian David
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
8
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Gelder K, Oliveira-Filho ER, García-García JD, Hu Y, Bruner SD, Hanson AD. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases. ACS Synth Biol 2023; 12:963-970. [PMID: 36920242 PMCID: PMC10127261 DOI: 10.1021/acssynbio.2c00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 03/16/2023]
Abstract
Sulfide-dependent THI4 thiazole synthases could potentially be used to replace plant cysteine-dependent suicide THI4s, whose high protein turnover rates make thiamin synthesis exceptionally energy-expensive. However, sulfide-dependent THI4s are anaerobic or microoxic enzymes and hence unadapted to the aerobic conditions in plants; they are also slow enzymes (kcat < 1 h-1). To improve aerotolerance and activity, we applied continuous directed evolution under aerobic conditions in the yeast OrthoRep system to two sulfide-dependent bacterial THI4s. Seven beneficial single mutations were identified, of which five lie in the active-site cleft predicted by structural modeling and two recapitulate features of naturally aerotolerant THI4s. That single mutations gave substantial improvements suggests that further advance under selection will be possible by stacking mutations. This proof-of-concept study established that the performance of sulfide-dependent THI4s in aerobic conditions is evolvable and, more generally, that yeast OrthoRep provides a plant-like bridge to adapt nonplant enzymes to work better in plants.
Collapse
Affiliation(s)
- Kristen
Van Gelder
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Edmar R. Oliveira-Filho
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | | | - You Hu
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D. Bruner
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Ozber N, Yu L, Hagel JM, Facchini PJ. Strong Feedback Inhibition of Key Enzymes in the Morphine Biosynthetic Pathway from Opium Poppy Detectable in Engineered Yeast. ACS Chem Biol 2023; 18:419-430. [PMID: 36735832 DOI: 10.1021/acschembio.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systematic screening of morphine pathway intermediates in engineered yeast revealed key biosynthetic enzymes displaying potent feedback inhibition: 3'-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT), which yields (S)-reticuline, and the coupled salutaridinol-7-O-acetyltransferase (SalAT) and thebaine synthase (THS2) enzyme system that produces thebaine. The addition of deuterated reticuline-d1 to a yeast strain able to convert (S)-norcoclaurine to (S)-reticuline showed reduced product accumulation in response to the feeding of all four successive pathway intermediates. Similarly, the addition of deuterated thebaine-d3 to a yeast strain able to convert salutaridine to thebaine showed reduced product accumulation from exogenous salutaridine or salutaridinol. In vitro analysis showed that reticuline is a noncompetitive inhibitor of 4'OMT, whereas thebaine exerts mixed inhibition on SalAT/THS2. In a yeast strain capable of de novo morphine biosynthesis, the addition of reticuline and thebaine resulted in the accumulation of several pathway intermediates. In contrast, morphine had no effect, suggesting that circumventing the interaction of reticuline and thebaine with 4'OMT and SalAT/THS2, respectively, could substantially increase opiate alkaloid titers in engineered yeast.
Collapse
Affiliation(s)
- Natali Ozber
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lisa Yu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Leong BJ, Hanson AD. Continuous Directed Evolution of a Feedback-Resistant Arabidopsis Arogenate Dehydratase in Plantized Escherichia coli. ACS Synth Biol 2023; 12:43-50. [PMID: 36534785 PMCID: PMC9872817 DOI: 10.1021/acssynbio.2c00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/24/2022]
Abstract
Continuous directed evolution (CDE) is a powerful tool for enzyme engineering due to the depth and scale of evolutionary search that it enables. If suitably controlled and calibrated, CDE could be widely applied in plant breeding and biotechnology to improve plant enzymes ex planta. We tested this concept by evolving Arabidopsis arogenate dehydratase (AtADT2) for resistance to feedback inhibition. We used an Escherichia coli platform with a phenylalanine biosynthesis pathway reconfigured ("plantized") to mimic the plant pathway, a T7RNA polymerase-base deaminase hypermutation system (eMutaT7), and 4-fluorophenylalanine as selective agent. Selection schemes were prevalidated using a known feedback-resistant AtADT2 variant. We obtained variants that had 4-fluorophenylalanine resistance at least matching the known variant and that carried mutations in the ACT domain responsible for feedback inhibition. We conclude that ex planta CDE of plant enzymes in a microbial platform is a viable way to tailor characteristics that involve interaction with small molecules.
Collapse
Affiliation(s)
- Bryan J. Leong
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
13
|
Molina RS, Rix G, Mengiste AA, Alvarez B, Seo D, Chen H, Hurtado J, Zhang Q, Donato García-García J, Heins ZJ, Almhjell PJ, Arnold FH, Khalil AS, Hanson AD, Dueber JE, Schaffer DV, Chen F, Kim S, Ángel Fernández L, Shoulders MD, Liu CC. In vivo hypermutation and continuous evolution. NATURE REVIEWS. METHODS PRIMERS 2022; 2:37. [PMID: 37073402 PMCID: PMC10108624 DOI: 10.1038/s43586-022-00130-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosana S. Molina
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Gordon Rix
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Amanuella A. Mengiste
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Beatriz Alvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Daeje Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Haiqi Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juan Hurtado
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Qiong Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jorge Donato García-García
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Nuevo Mexico, C.P. 45138, Zapopan, Jalisco, Mexico
| | - Zachary J. Heins
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Patrick J. Almhjell
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Frances H. Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad S. Khalil
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley and San Francisco, Berkeley, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley and San Francisco, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92617, USA
| |
Collapse
|
14
|
García-García JD, Van Gelder K, Joshi J, Bathe U, Leong BJ, Bruner SD, Liu CC, Hanson AD. Using continuous directed evolution to improve enzymes for plant applications. PLANT PHYSIOLOGY 2022; 188:971-983. [PMID: 34718794 PMCID: PMC8825276 DOI: 10.1093/plphys/kiab500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 05/12/2023]
Abstract
Continuous directed evolution of enzymes and other proteins in microbial hosts is capable of outperforming classical directed evolution by executing hypermutation and selection concurrently in vivo, at scale, with minimal manual input. Provided that a target enzyme's activity can be coupled to growth of the host cells, the activity can be improved simply by selecting for growth. Like all directed evolution, the continuous version requires no prior mechanistic knowledge of the target. Continuous directed evolution is thus a powerful way to modify plant or non-plant enzymes for use in plant metabolic research and engineering. Here, we first describe the basic features of the yeast (Saccharomyces cerevisiae) OrthoRep system for continuous directed evolution and compare it briefly with other systems. We then give a step-by-step account of three ways in which OrthoRep can be deployed to evolve primary metabolic enzymes, using a THI4 thiazole synthase as an example and illustrating the mutational outcomes obtained. We close by outlining applications of OrthoRep that serve growing demands (i) to change the characteristics of plant enzymes destined for return to plants, and (ii) to adapt ("plantize") enzymes from prokaryotes-especially exotic prokaryotes-to function well in mild, plant-like conditions.
Collapse
Affiliation(s)
- Jorge D García-García
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Kristen Van Gelder
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Ulschan Bathe
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Bryan J Leong
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Steven D Bruner
- Chemistry Department, University of Florida, Gainesville, Florida 32611
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92617
- Department of Chemistry, University of California, Irvine, California 92617
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Author for communication:
| |
Collapse
|
15
|
Jensen ED, Ambri F, Bendtsen MB, Javanpour AA, Liu CC, Jensen MK, Keasling JD. Integrating continuous hypermutation with high-throughput screening for optimization of cis,cis-muconic acid production in yeast. Microb Biotechnol 2021; 14:2617-2626. [PMID: 33645919 PMCID: PMC8601171 DOI: 10.1111/1751-7915.13774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Directed evolution is a powerful method to optimize proteins and metabolic reactions towards user-defined goals. It usually involves subjecting genes or pathways to iterative rounds of mutagenesis, selection and amplification. While powerful, systematic searches through large sequence-spaces is a labour-intensive task, and can be further limited by a priori knowledge about the optimal initial search space, and/or limits in terms of screening throughput. Here, we demonstrate an integrated directed evolution workflow for metabolic pathway enzymes that continuously generate enzyme variants using the recently developed orthogonal replication system, OrthoRep and screens for optimal performance in high-throughput using a transcription factor-based biosensor. We demonstrate the strengths of this workflow by evolving a rate-limiting enzymatic reaction of the biosynthetic pathway for cis,cis-muconic acid (CCM), a precursor used for bioplastic and coatings, in Saccharomyces cerevisiae. After two weeks of simply iterating between passaging of cells to generate variant enzymes via OrthoRep and high-throughput sorting of best-performing variants using a transcription factor-based biosensor for CCM, we ultimately identified variant enzymes improving CCM titers > 13-fold compared with reference enzymes. Taken together, the combination of synthetic biology tools as adopted in this study is an efficient approach to debottleneck repetitive workflows associated with directed evolution of metabolic enzymes.
Collapse
Affiliation(s)
- Emil D. Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Francesca Ambri
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Marie B. Bendtsen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Alex A. Javanpour
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCA92697USA
| | - Chang C. Liu
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCA92697USA
- Department of ChemistryUniversity of California, IrvineIrvineCA92697USA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCA92697USA
| | - Michael K. Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Jay D. Keasling
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Department of Chemical and Biomolecular EngineeringDepartment of BioengineeringUniversity of CaliforniaBerkeleyCAUSA
- Center for Synthetic BiochemistryInstitute for Synthetic BiologyShenzhen Institutes of Advanced TechnologiesShenzhenChina
| |
Collapse
|
16
|
Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases. Biochem J 2021; 478:3265-3279. [PMID: 34409984 PMCID: PMC8454699 DOI: 10.1042/bcj20210565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
Plant and fungal THI4 thiazole synthases produce the thiamin thiazole moiety in aerobic conditions via a single-turnover suicide reaction that uses an active-site Cys residue as sulfur donor. Multiple-turnover (i.e. catalytic) THI4s lacking an active-site Cys (non-Cys THI4s) that use sulfide as sulfur donor have been biochemically characterized —– but only from archaeal methanogens that are anaerobic, O2-sensitive hyperthermophiles from sulfide-rich habitats. These THI4s prefer iron as cofactor. A survey of prokaryote genomes uncovered non-Cys THI4s in aerobic mesophiles from sulfide-poor habitats, suggesting that multiple-turnover THI4 operation is possible in aerobic, mild, low-sulfide conditions. This was confirmed by testing 23 representative non-Cys THI4s for complementation of an Escherichia coli ΔthiG thiazole auxotroph in aerobic conditions. Sixteen were clearly active, and more so when intracellular sulfide level was raised by supplying Cys, demonstrating catalytic function in the presence of O2 at mild temperatures and indicating use of sulfide or a sulfide metabolite as sulfur donor. Comparative genomic evidence linked non-Cys THI4s with proteins from families that bind, transport, or metabolize cobalt or other heavy metals. The crystal structure of the aerotolerant bacterial Thermovibrio ammonificans THI4 was determined to probe the molecular basis of aerotolerance. The structure suggested no large deviations compared with the structures of THI4s from O2-sensitive methanogens, but is consistent with an alternative catalytic metal. Together with complementation data, use of cobalt rather than iron was supported. We conclude that catalytic THI4s can indeed operate aerobically and that the metal cofactor inserted is a likely natural determinant of aerotolerance.
Collapse
|
17
|
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids 2021; 53:1301-1312. [PMID: 34401958 DOI: 10.1007/s00726-021-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
L-valine is an essential branched-chain amino acid that cannot be synthesized by the human body and has a wide range of applications in food, medicine and feed. Market demand has stimulated people's interest in the industrial production of L-valine. At present, the mutagenized or engineered Corynebacterium glutamicum is an effective microbial cell factory for producing L-valine. Because the biosynthetic pathway and metabolic network of L-valine are intricate and strictly regulated by a variety of key enzymes and genes, highly targeted metabolic engineering can no longer meet the demand for efficient biosynthesis of L-valine. In recent years, the development of omics technology has promoted the upgrading of traditional metabolic engineering to systematic metabolic engineering. This whole-cell-scale transformation strategy has become a productive method for developing L-valine producing strains. This review provides an overview of the biosynthesis and regulation mechanism of L-valine, and summarizes the current metabolic engineering techniques and strategies for constructing L-valine high-producing strains. Finally, the opinion of constructing a cell factory for efficiently biosynthesizing L-valine was proposed.
Collapse
|
18
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. PLANT PHYSIOLOGY 2021; 186:1832-1847. [PMID: 33944954 PMCID: PMC8331165 DOI: 10.1093/plphys/kiab198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 05/06/2023]
Abstract
Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate, as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1), and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant's intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of nonphosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
- Author for communication:
| |
Collapse
|
19
|
Garagounis C, Delkis N, Papadopoulou KK. Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. THE NEW PHYTOLOGIST 2021; 231:1338-1352. [PMID: 33997999 DOI: 10.1111/nph.17470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 05/25/2023]
Abstract
Plants are a rich source of specialized metabolites with a broad range of bioactivities and many applications in human daily life. Over the past decades significant progress has been made in identifying many such metabolites in different plant species and in elucidating their biosynthetic pathways. However, the biological roles of plant specialized metabolites remain elusive and proposed functions lack an identified underlying molecular mechanism. Understanding the roles of specialized metabolites frequently is hampered by their dynamic production and their specific spatiotemporal accumulation within plant tissues and organs throughout a plant's life cycle. In this review, we propose the employment of strategies from the field of Synthetic Biology to construct and optimize genetically encoded biosensors that can detect individual specialized metabolites in a standardized and high-throughput manner. This will help determine the precise localization of specialized metabolites at the tissue and single-cell levels. Such information will be useful in developing complete system-level models of specialized plant metabolism, which ultimately will demonstrate how the biosynthesis of specialized metabolites is integrated with the core processes of plant growth and development.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Nikolaos Delkis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
20
|
The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proc Natl Acad Sci U S A 2021; 118:2023348118. [PMID: 33753504 PMCID: PMC8020674 DOI: 10.1073/pnas.2023348118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The continuous replacement of enzymes and other proteins appropriates up to half the maintenance energy budget in microorganisms and plants. High enzyme replacement rates therefore cut the productivity of biosystems ranging from microbial fermentations to crops. However, yardsticks to assess what drives enzyme protein replacement and guidelines on how to reduce it are lacking. Accordingly, we compared enzymes’ life spans across kingdoms using a new yardstick (catalytic cycles until replacement [CCR]) and related CCR to enzyme reaction chemistry. We concluded that 1) many enzymes fail due to collateral damage from the reaction they catalyze, and 2) such damage and its attendant enzyme replacement costs are mitigable by engineering and are therefore promising targets for synthetic biology. Metabolic engineering uses enzymes as parts to build biosystems for specified tasks. Although a part’s working life and failure modes are key engineering performance indicators, this is not yet so in metabolic engineering because it is not known how long enzymes remain functional in vivo or whether cumulative deterioration (wear-out), sudden random failure, or other causes drive replacement. Consequently, enzymes cannot be engineered to extend life and cut the high energy costs of replacement. Guided by catalyst engineering, we adopted catalytic cycles until replacement (CCR) as a metric for enzyme functional life span in vivo. CCR is the number of catalytic cycles that an enzyme mediates in vivo before failure or replacement, i.e., metabolic flux rate/protein turnover rate. We used estimated fluxes and measured protein turnover rates to calculate CCRs for ∼100–200 enzymes each from Lactococcus lactis, yeast, and Arabidopsis. CCRs in these organisms had similar ranges (<103 to >107) but different median values (3–4 × 104 in L. lactis and yeast versus 4 × 105 in Arabidopsis). In all organisms, enzymes whose substrates, products, or mechanisms can attack reactive amino acid residues had significantly lower median CCR values than other enzymes. Taken with literature on mechanism-based inactivation, the latter finding supports the proposal that 1) random active-site damage by reaction chemistry is an important cause of enzyme failure, and 2) reactive noncatalytic residues in the active-site region are likely contributors to damage susceptibility. Enzyme engineering to raise CCRs and lower replacement costs may thus be both beneficial and feasible.
Collapse
|