1
|
Guo L, Qiao J, Huo J, Rupasinghe HV. Plant iridoids: Chemistry, dietary sources and potential health benefits. Food Chem X 2025; 27:102491. [PMID: 40336984 PMCID: PMC12056409 DOI: 10.1016/j.fochx.2025.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
Iridoids, a diverse class of plant food monoterpenoids, are characterized by a cyclopentane-fused pyran ring structure and exhibit extensive structural diversity and functional versatility. This review highlights recent advances in iridoid chemistry, biosynthesis via the methylerythritol phosphate pathway, and advanced extraction techniques such as ultrasound-assisted, microwave-assisted, and supercritical fluid extraction. Analytical methods such as liquid chromatography-mass spectrometry enable precise identification and quantification, advancing the study of their health-promoting properties. Iridoids demonstrate potent antioxidant, anti-inflammatory, neuroprotective, antitumor, antiviral, and hepatoprotective effects suggesting their potential use in functional foods, nutraceuticals, pharmaceuticals, and cosmetics. However, for the successful commercialization of iridoid-based products, future research should aim at the cost-effective production of iridoids using sustainable production systems, biotechnological synthesis, and clinical validation. This review reveals the significant promise of iridoids in enhancing human health through potential product innovation and assessment.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Brodyak I, Moroz A, Bernacka K, Kucharska AZ, Sybirna N. Alleviation of hyperglycaemia and oxidative stress by fruit extracts of different cultivars of the cornelian cherry ( Cornus mas L. and Cornus mas × Cornus officinalis) in rats with diabetes mellitus. Food Funct 2025; 16:2136-2155. [PMID: 39981984 DOI: 10.1039/d4fo05426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The development of new cornelian cherry cultivars with stronger antidiabetic properties than those of previously studied Cornus mas L. extracts is essential. Accordingly, the aim of the present study was to assess the biological effects of fruit extracts derived from the 'Uholok' and 'Koralovyi' cultivars of C. mas and mix of two hybrids of C. mas × C. officinalis ('Jerzy' and 'Tomasz' cultivars) in rats with streptozotocin-induced diabetes mellitus. The quantitative and qualitative identification of bioactive substances in cornelian cherry fruits was conducted using HPLC-PDA. Fruit extracts from different cultivars were administered orally to rats with diabetes for 14 days at a dose of 20 mg per kg b.w. This resulted in a notable decrease in glucose-related parameters in the blood, proving the extracts' effectiveness as inhibitors of α-glucosidase activity. The fruit extract from the hybrids showed the most pronounced effect among the studied extracts with regard to these indicators. In addition, the fruit extracts demonstrated a positive corrective impact on the metabolites of glycolysis (pyruvate and L-lactate) and lactate dehydrogenase activity. The extracts produced antioxidant effect in diabetic rats by reducing oxidative stress biomarkers in plasma. Extracts from fruits of the 'Uholok' and 'Koralovyi' cultivars exhibited a higher efficiency than the extracts from C. mas 'Yantarnyi' and 'Flava' cultivars. The biological effects of the fruit extract from the 'Uholok' cultivar are comparable to those of the 'Podolski' cultivar. These findings contribute to the understanding of the antidiabetic effect of the studied extracts and indicate their potential application as promising drugs.
Collapse
Affiliation(s)
- Iryna Brodyak
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevsky St, Lviv 79005, Ukraine.
| | - Anna Moroz
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevsky St, Lviv 79005, Ukraine.
| | - Karolina Bernacka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 J. Chełmoński St, Wrocław 51-630, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 J. Chełmoński St, Wrocław 51-630, Poland
| | - Nataliia Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevsky St, Lviv 79005, Ukraine.
- Collegium Medicum, Faculty of Biotechnology, University of Rzeszow, 8B Zelwerowicza St, Rzeszow 35-601, Poland
| |
Collapse
|
3
|
Panda SR, Panja P, Singh M, Soni U, Rajdev B, Garg P, Pawar SD, Acharya R, Ranade A, Naidu VGM. Loganic Acid Alleviates the Olfactory-Brain NLRP3 Inflammasome Activation and Rescues Dopaminergic Neurons in Experimental Models of Parkinson's Disease. J Neuroimmune Pharmacol 2025; 20:19. [PMID: 39934492 DOI: 10.1007/s11481-025-10183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
The NLRP3 inflammasome signaling cascade activation is a significant contributor to the initiation and progression of Parkinson's disease (PD). Recent evidence supports that targeting NLRP3 inflammasome assembly could be a potential strategy to halt PD progression. The molecular mechanism of the olfactory-brain axis in mediating PD remains elusive. The current study explores that MPTP exposure to C57BL/6 mice leads to glial cell activation and impairs the olfactory function. The role of NLRP3 inflammasome activation in the olfactory bulb and the brain mediating neuroinflammation and neurodegeneration by activating multiple inflammatory pathways is explored. Loganic acid (LA), an iridoid glycoside, has been shown to provide antioxidant, anti-inflammatory, and inhibit microglial activation. Our results in-vitro studies demonstrated that LA treatment in MPP+-induced microglial cells inhibits NLRP3 inflammasome assembly, halts phagocytosis, and downregulates the release of pro-inflammatory cytokines such as IL-1β and IL-18. Further, results confirm that LA increases the neuronal differentiation markers and assists neurite growth. To correlate the in-vitro experiments with the in-vivo study, LA treatment prevented the loss of olfactory and motor function. In immunoblotting, LA treatment significantly inhibits the expression of NLRP3 inflammasome signaling cascade when compared to the MPTP group of the olfactory bulb and substantia nigra. Computational studies on LA on IL-β, NLRP3, caspase-1, and ASC also support strong evidence in the downregulation of inflammasome and cytokines through potential non-covalent interactions. The results confirm the neuroprotective effect of LA in PD by halting the NLRP3 inflammasome activation in the olfactory bulb and nigra region of the mice.
Collapse
Affiliation(s)
- Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Pallabi Panja
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Meenakshi Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Ujjawal Soni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Pankaj Garg
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India
| | - Sharad D Pawar
- Regional Ayurveda Institute for Fundamental Research, Pune, Maharashtra, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Science, Ministry of AYUSH, New Delhi, 110058, India
| | - Anagha Ranade
- Central Council for Research in Ayurvedic Science, Ministry of AYUSH, New Delhi, 110058, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Assam, 781101, India.
| |
Collapse
|
4
|
Zagórska-Dziok M, Mokrzyńska A, Ziemlewska A, Nizioł-Łukaszewska Z, Sowa I, Feldo M, Wójciak M. Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. Int J Mol Sci 2024; 25:10993. [PMID: 39456776 PMCID: PMC11507244 DOI: 10.3390/ijms252010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of UV radiation on skin discoloration, skin aging and the development of skin cancer is widely known. As a part of this study, the effect of extracts from three varieties of Cornus mas L. (C. mas L.) on skin cells exposed to UVA radiation was assessed. The analyses were performed on both normal and cancer skin cells. For this purpose, the potential photoprotective effects of the obtained extracts (aqueous and ethanolic) was assessed by performing two cytotoxicity tests (Alamar blue and Neutral red). Additionally, the antioxidant capacity was compared using three different assays. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe was used to evaluate the intracellular level of free radicals in cells exposed to the simultaneous action of UVA radiation and dogwood extracts. Additionally, the ability to inhibit excessive pigmentation was determined by assessing the inhibition of melanin formation and tyrosinase activity. The obtained results confirmed the strong antioxidant properties of dogwood extracts and their photoprotective effect on normal skin cells. The ability to inhibit the viability of melanoma cells was also observed. Additionally, a reduction in oxidative stress in skin cells exposed to UVA radiation and a strong inhibition of melanin formation and tyrosinase activity have been demonstrated. This study shows that dogwood extract could be a valuable cosmetic raw material that can play both a photoprotective and antihyperpigmentation role in cosmetic preparations.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
5
|
Frumuzachi O, Kieserling H, Rohn S, Mocan A, Crișan G. The Impact of Cornelian Cherry ( Cornus mas L.) on Cardiometabolic Risk Factors: A Meta-Analysis of Randomised Controlled Trials. Nutrients 2024; 16:2173. [PMID: 38999920 PMCID: PMC11243109 DOI: 10.3390/nu16132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
This meta-analysis aimed to summarise clinical evidence regarding the effect of supplementation with cornelian cherry (Cornus mas L.) on different cardiometabolic outcomes. An extensive literature survey was carried out until 10 April 2024. A total of 415 participants from six eligible studies were included. The overall results from the random-effects model indicated that cornelian cherry supplementation significantly reduced body weight (standardised mean difference [SMD] = -0.27, confidence interval [CI]: -0.52, -0.02, p = 0.03), body mass index (SMD = -0.42, CI: -0.73, -0.12, p = 0.007), fasting blood glucose (SMD = -0.46, CI: -0.74, -0.18, p = 0.001), glycated haemoglobin (SMD = -0.70, CI: -1.19, -0.22, p = 0.005), and HOMA-IR (SMD = -0.89, CI: -1.62, -0.16, p = 0.02), while high-density lipoprotein cholesterol significantly increased (SMD = 0.38, CI: 0.10, 0.65, p = 0.007). A sensitivity analysis showed that cornelian cherry supplementation significantly reduced total plasma triglycerides, total cholesterol, low-density lipoprotein cholesterol, and insulin levels. Cornelian cherry supplementation did not significantly affect waist circumference and liver parameters among the participants. Considering these findings, this meta-analysis indicates that supplementation with cornelian cherry may impact diverse cardiometabolic risk factors among individuals considered to be at a high risk.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Helena Kieserling
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Andrei Mocan
- Research Centre of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yu W, Luo M, Wu H, Yu Y, Li J, He M, Feng Y, Yang S, Zhang W, Yao M. Analysis of phytochemical components of Tibetan medicine Pedicularis flava and Pedicularis muscicola by GC-MS and UHPLC-TOF-MS. Nat Prod Res 2024; 38:2245-2251. [PMID: 36705315 DOI: 10.1080/14786419.2023.2169920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Traditional medicine, 'LuRu', is a commonly used Tibetan medicine for clearing away heat and detoxifying. Dried products of Pedicularis flava and Pedicularis muscicola are often used as 'LuRu' in the market. This study aims to compare the chemical constituents of P. flava and P. muscicola using GC-MS and UPLC-TOF-MS, and confirm which plant species is more suitable to be used as 'LuRu'. A total of 46 and 68 compounds were identified from the volatile and non-volatile components, respectively. Out of these, 17 and 37 volatile and non-volatile components, respectively, had pharmacological activities. P. flava showed a higher content of the same active components than P. muscicola. Good biological activities are only observed in the unique components in P. flava, and not in P. muscicola. The two herbs should not be mixed in clinical medication. Our study shows that P. flava is better suited as a high-quality herb for the Tibetan medicine, 'LuRu'.
Collapse
Affiliation(s)
- Wentao Yu
- Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Man Luo
- Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Huan Wu
- Jiangxi Bencao Tiangong Technology Co., Ltd, Nanchang, PR China
| | - Yayun Yu
- Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Junmao Li
- National Engineering Research Center for Solid Preparation Manufacturing Technology of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Minzhen He
- National Engineering Research Center for Solid Preparation Manufacturing Technology of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Yunlin Feng
- Jiangxi Bencao Tiangong Technology Co., Ltd, Nanchang, PR China
| | - Shilin Yang
- National Engineering Research Center for Solid Preparation Manufacturing Technology of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Wugang Zhang
- National Engineering Research Center for Solid Preparation Manufacturing Technology of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Min Yao
- Jiangxi Institute of Drug Testing, Nanchang, PR China
| |
Collapse
|
7
|
Cheng J, Li J, Xiong RG, Wu SX, Xu XY, Tang GY, Huang SY, Zhou DD, Li HB, Feng Y, Gan RY. Effects and mechanisms of anti-diabetic dietary natural products: an updated review. Food Funct 2024; 15:1758-1778. [PMID: 38240135 DOI: 10.1039/d3fo04505f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.
Collapse
Affiliation(s)
- Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
8
|
Chala D, Sabadashka M, Morozovych A, Krychowiak-Maśnicka M, Królicka A, Sybirna N. Immunomodulatory and antibacterial effect of red wine concentrate rich in a natural complex of polyphenols under diabetes mellitus. Biomed Pharmacother 2024; 170:116023. [PMID: 38104417 DOI: 10.1016/j.biopha.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
Changes in immunocompetent cells influence the course of diabetes mellitus and contribute to its complications. Thus, correction of diabetes-induced immune system disorders is vital for normalizing the state of the organism. Red wine polyphenols due to their biological activities could be considered a potential remedy for correcting diabetes. The study aimed to evaluate the antimicrobial potential and the influence of red wine polyphenols on immune system in streptozotocin-induced diabetes. We studied immunological parameters, i.e. quantity of white blood cells in peripheral blood and peritoneal macrophages, the bactericidal activity of phagocytes of blood, the activity of myeloperoxidase, and the level of cationic proteins in these cells after the administration of the polyphenol-rich red wine concentrate (PC concentrate) of known composition, obtained from Ukrainian wine, for 14th day to rats with streptozotocin-induced diabetes. The Minimal Bactericidal Concentration (MBC) of the PC concentrate was determined with the Broth Microdilution method. The PC concentrate normalized the quantity and functional activity of peripheral blood neutrophils and peritoneal macrophages, and decreased the quantity of lymphocytes under diabetes, as well as possessed the antibacterial activity against Staphylococcus aureus and Escherichia coli. Our results indicate the significant biological potential of the PC concentrate and its therapeutic relevance to correct diabetes-induced disorders.
Collapse
Affiliation(s)
- Dariya Chala
- Ivan Franko National University of Lviv, Hrushevskogo 4, Lviv 79005, Ukraine.
| | - Mariya Sabadashka
- Ivan Franko National University of Lviv, Hrushevskogo 4, Lviv 79005, Ukraine
| | | | - Marta Krychowiak-Maśnicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG & MUG, Laboratory of Biologically Active Compounds, Abrahama 58, 80-307 Gdansk, Poland
| | - Aleksandra Królicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG & MUG, Laboratory of Biologically Active Compounds, Abrahama 58, 80-307 Gdansk, Poland
| | - Nataliia Sybirna
- Ivan Franko National University of Lviv, Hrushevskogo 4, Lviv 79005, Ukraine
| |
Collapse
|
9
|
Prakash AN, Prasad N, Puppala ER, Panda SR, Jain S, Ravichandiran V, Singh M, Naidu VGM. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int Immunopharmacol 2023; 122:110585. [PMID: 37421777 DOI: 10.1016/j.intimp.2023.110585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.
Collapse
Affiliation(s)
- Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal 700054, India
| | - Meenakshi Singh
- Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India; Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
10
|
Lievykh A, Zhyliuk V, Tkachenko V, Kharchenko Y, Ushakova G, Shevtsova A. Effects of edaravone on oxidative protein modification and activity of gelatinases after intracerebral hemorrhage in rats with nicotinamide-streptozotocin induced diabetes. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke, especially hemorrhagic form, is one of the most serious comorbidity disease of diabetes mellitus, often associated with high mortality, particularly in type 2 DM (T2DM). Therefore, it is relevant the search for drugs with a metabolically justified protective effect. Edaravone (Eda) is widely used for treating ischemic stroke but its biochemical effects in intracerebral hemorrhage (ICH) associated with T2DM is not still confirmed. The aim of the study was to assess the impact of Eda on the markers of oxidative modification of proteins (OMP), such as advanced oxidation protein products (AOPP), neutral and basic carbonyls (PC370 and PC430), advanced glycation end products (AGE) and ischemia modified albumin (IMA) as well as on the activity of matrix metalloproteinases MMP2/MMP9 (gelatinases) in rats with experimental T2DM after collagenase-induced ICH. Metformin was used as a comparative drug. The data obtained indicate that ICH in diabetic rats is accompanied by an increase in AOPP, PC370, AGE, and mature forms of both gelatinases. On the contrary, IMA and proMMP9 were below normal level after ICH. Both studied drugs decreased the OMP markers to the levels of intact rats or lower, and Eda show a more potent effect. Besides, Eda significantly decreased the activity of MMP9 and changed progelatinases activity. We conclude that Eda has a perspective to be useful in the treatment of comorbid brain hemorrhage in T2DM due to inhibiting of oxidative stress and modulation of gelatinases activity.
Collapse
|
11
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
12
|
Zengin G, Uba AI, Ocal M, Sharifi-Rad M, Caprioli G, Angeloni S, Altunoglu YC, Baloglu MC, Yıldıztugay E. Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Przybylska D, Kucharska AZ, Sozański T. A Review on Bioactive Iridoids in Edible Fruits – from Garden to Food and Pharmaceutical Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - A. Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T. Sozański
- Department of Pharmacology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
14
|
Simu SY, Alam MB, Kim SY. The Activation of Nrf2/HO-1 by 8-Epi-7-deoxyloganic Acid Attenuates Inflammatory Symptoms through the Suppression of the MAPK/NF-κB Signaling Cascade in In Vitro and In Vivo Models. Antioxidants (Basel) 2022; 11:antiox11091765. [PMID: 36139839 PMCID: PMC9495988 DOI: 10.3390/antiox11091765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, we examined the ameliorative effects of 8-epi-7-deoxyloganic acid (DLA), an iridoid glycoside, on oxidative stress and inflammation in both LPS-stimulated macrophages and mice with carrageenan-induced inflammation. DLA decreased oxidative stress through the up-regulation of heme oxygenase-1 (HO-1) via the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to the suppression of reactive oxygen species (ROS) and nitric oxide generation (NO). In addition, DLA inhibited the activation of mitogen-activated protein kinases (MAPKs) and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, resulting in a decreased production of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and -6 (IL-6), as well as of monocyte chemoattractant protein-1 (MCP-1). In addition, DLA effectively inhibited the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) by inhibiting the expression of the upstream genes inducible nitric oxidase (iNOS) and cyclooxygenase-2 (COX-2). DLA demonstrated powerful anti-inflammatory and antioxidant properties and thus appears as an intriguing prospective therapeutic treatment.
Collapse
Affiliation(s)
- Shakina Yesmin Simu
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Incheon 21936, Korea
- Correspondence: ; Tel.: +82-102292-9232
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Incheon 21936, Korea
| |
Collapse
|
15
|
Yang M, Hao Z, Wang X, Zhou S, Zhu D, Yang Y, Wei J, Li M, Zheng X, Feng W. Neocornuside A–D, Four Novel Iridoid Glycosides from Fruits of Cornus officinalis and Their Antidiabetic Activity. Molecules 2022; 27:molecules27154732. [PMID: 35897906 PMCID: PMC9331380 DOI: 10.3390/molecules27154732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Four previously undescribed iridoid glycosides neocornuside A–D (1–4), along with six known ones (5–10), were isolated from Cornus officinalis fruit. Their structures were elucidated by extensive spectroscopic (NMR, UV, IR, and MS) analysis and comparison with data reported in the literature. All isolates were assessed for their antidiabetic activity on the relative glucose consumption in insulin-induced insulin-resistant HepG2 cells. The results showed that compounds 1, 3, and 7 exhibited significant antidiabetic activities with EC50 values of 0.582, 1.275, and 0.742μM, respectively. Moreover, compounds 1, 3, and 7 could improve the ability of 2-NBDG uptake of insulin-induced HepG2 cells.
Collapse
Affiliation(s)
- Meng Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Zhiyou Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Xiaolan Wang
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqi Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Denghui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Ying Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Junjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Correspondence: (X.Z.); (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Correspondence: (X.Z.); (W.F.)
| |
Collapse
|
16
|
Małodobra-Mazur M, Cierzniak A, Ryba M, Sozański T, Piórecki N, Kucharska AZ. Cornus mas L. Increases Glucose Uptake and the Expression of PPARG in Insulin-Resistant Adipocytes. Nutrients 2022; 14:nu14112307. [PMID: 35684107 PMCID: PMC9183168 DOI: 10.3390/nu14112307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cornus mas L., also known as cornelian cherry (CM), is a species that has long been cultivated in many different countries. In numerous scientific reports, cornelian cherry is used to treat numerous diseases and conditions. The presented study evaluated the effect of red and yellow Cornus mas L. extract on insulin sensitivity in adipocytes. 3T3-L1 fibroblasts as well as human SAT-derived and VAT-derived adipocytes were differentiated in vitro, and insulin resistance was induced using palmitic acid (16:0). The effect of CM fruit extract was analyzed in terms of glucose uptake and insulin signaling gene expression. In the glucose uptake test after insulin stimulation, a significant increase in glucose uptake was demonstrated in cells treated with CM fruit extracts. Furthermore, CM fruit extracts increased the expression of insulin signaling genes in adipocytes stimulated with insulin in control cells and adipocytes treated with CM extract. Additionally, a significant increase in peroxisome proliferator activated receptor gamma (PPARG) expression was observed in cells supplemented with CM extract. In conclusion, studies have shown that CM fruits can overcome insulin resistance and thus they have a positive effect on cell metabolism.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
- Correspondence:
| | - Aneta Cierzniak
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
| | - Martyna Ryba
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (A.C.); (M.R.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Narcyz Piórecki
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland;
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland;
| |
Collapse
|
17
|
Dzydzan O, Brodyak I, Strugała-Danak P, Strach A, Kucharska AZ, Gabrielska J, Sybirna N. Biological Activity of Extracts of Red and Yellow Fruits of Cornus mas L.-An In Vitro Evaluation of Antioxidant Activity, Inhibitory Activity against α-Glucosidase, Acetylcholinesterase, and Binding Capacity to Human Serum Albumin. Molecules 2022; 27:molecules27072244. [PMID: 35408646 PMCID: PMC9000679 DOI: 10.3390/molecules27072244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
Although extracts are broadly used in order to support the treatment of numerous diseases, only in a limited number of cases is the process of applying and establishing their mechanisms of action scientifically analyzed. Fruits of Cornelian cherry are an abundant source of iridoids, anthocyanins, flavonols and phenolic acids. The aim of the present study was to evaluate the in vitro bioactivity of red and yellow Cornelian cherry fruits’ extracts. The biological potential of extracts, in a broad sense, involved antioxidant activity in relation to phosphatidylcholine liposomes, inhibitory ability against α-glucosidase and acetylcholinesterase enzymes, as well as interactions with human serum albumin. Studies showed that both extracts were more effective in protecting liposome membranes against free radicals produced by AAPH in an aqueous environment due to the fact that they can be better eliminated by the hydrophilic components of the extracts than those produced by UVB radiation. Extracts exhibited inhibitory activity against acetylcholinesterase and α-glucosidase, wherein loganic acid extract showed noncompetitive inhibition of the enzyme. Moreover, extracts binded to albumin mainly through hydrogen bonds and van der Waals forces. Taken together, red and yellow cherry fruits’ extracts exhibit diverse biological properties and can be exploited as a source of natural therapeutic agents.
Collapse
Affiliation(s)
- Olha Dzydzan
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (I.B.); (N.S.)
| | - Iryna Brodyak
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (I.B.); (N.S.)
| | - Paulina Strugała-Danak
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland; (A.S.); (J.G.)
- Correspondence: ; Tel.: +48-71-320-5461
| | - Angelika Strach
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland; (A.S.); (J.G.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 37/41, 51-630 Wrocław, Poland;
| | - Janina Gabrielska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland; (A.S.); (J.G.)
| | - Natalia Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (I.B.); (N.S.)
| |
Collapse
|
18
|
Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H 2O 2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5710440. [PMID: 34873430 PMCID: PMC8642821 DOI: 10.1155/2021/5710440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Full-length (pro)renin receptor (fPRR), a research hotspot of the renin-angiotensin system (RAS), plays a serious role in kidney injury. However, the relationship between fPRR and advanced oxidation protein product (AOPP) remains largely unexplored. This study was aimed at exploring the effect of fPRR, especially its 28 kDa soluble form called soluble PRR (sPRR), in AOPP-induced oxidative stress in HK-2 cells, a renal proximal tubular epithelial cell line. Incubation of HK-2 cells with 100 μg/ml AOPP resulted in significant upregulation of fPRR expression and caused an approximately fourfold increase in medium sPRR secretion. However, unmodified albumin did not demonstrate the same effects under the same concentration. Treatment of HK-2 cells with the site-1 protease (S1P) inhibitor PF429242 (40 μM) or S1P siRNA significantly inhibited AOPP-induced sPRR generation. fPRR decoy inhibitor PRO20 and PF429242 treatment for 24 h remarkably attenuated the AOPP-induced upregulation of RAS components. Furthermore, PF429242 significantly reduced the AOPP-stimulated expression of NADPH oxidase 4 (Nox4) and H2O2 expression. The use of a small recombinant protein, named sPRR-His, reversed these alterations. In conclusion, these results provided the first demonstration of AOPP-promoted activation of sPRR. Increased renal proximal tubule Nox4-derived H2O2 contributed to the aggravation of oxidative stress. Targeting S1P-derived sPRR is a promising intervention strategy for chronic kidney disease.
Collapse
|
19
|
Czerwińska ME, Bobińska A, Cichocka K, Buchholz T, Woliński K, Melzig MF. Cornus mas and Cornus officinalis-A Comparison of Antioxidant and Immunomodulatory Activities of Standardized Fruit Extracts in Human Neutrophils and Caco-2 Models. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112347. [PMID: 34834710 PMCID: PMC8618406 DOI: 10.3390/plants10112347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 05/06/2023]
Abstract
Fruits of Cornus mas and Cornus officinalis are representative plant materials traditionally used in Europe and Asia, respectively, in the treatment of diabetes and diabetes-related complications, which are often mediated by pathogenic inflammatory agents. Additionally, due to the fact of mutual infiltration of Asian and European medicines, the differentiation as well as standardization of traditional prescriptions seem to be crucial for ensuring the quality of traditional products. The objective of this study was a comparison of biological activity of extracts from fruits of C. mas and C. officinalis by an assessment of their effect on reactive oxygen species (ROS) generation in human neutrophils as well as cytokines secretion both in neutrophils (tumor necrosis factor α, TNF- α; interleukin 8, IL-8; interleukin 1β, IL-1β) and in human colon adenocarcinoma cell line Caco-2 (IL-8). To evaluate the phytochemical differences between the studied extracts as well as to provide a method for standardization procedures, a quantitative analysis of iridoids, such as loganin, sweroside, and loganic acid, found in extracts of Cornus fruits was performed with HPLC-DAD. All standardized extracts significantly inhibited ROS production, whereas the aqueous-alcoholic extracts were particularly active inhibitors of IL-8 secretion by neutrophils. The aqueous-methanolic extract of C. officinalis fruit, decreased IL-8 secretion by neutrophils to 54.64 ± 7.67%, 49.68 ± 6.55%, 50.29 ± 5.87% at concentrations of 5, 50, and 100 µg/mL, respectively, compared to LPS-stimulated control (100%). The aqueous extract of C. officinalis fruit significantly inhibited TNF-α release by neutrophils at concentrations of 50 and 100 µg/mL. On the other hand, the aqueous-ethanolic extract of C. mas fruit showed the propensity to increase TNF-α and IL-1β secretion. The modulatory activity of the Cornus extracts was noted in the case of secretion of IL-8 in Caco-2 cells. The effect was comparable with dexamethasone. The content of loganin in aqueous and aqueous-methanolic extract of C. officinalis fruit was higher than in the aqueous-ethanolic extract of C. mas fruit, which was characterized by a significant quantity of loganic acid. In conclusion, the immunomodulatory effect observed in vitro may partially confirm the traditional use of Cornus fruits through alleviation of the development of diabetes-derived inflammatory complications. Loganin and loganic acid are significant markers for standardization of C. mas and C. officinalis fruit extracts, respectively.
Collapse
Affiliation(s)
- Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-221-166-185
| | - Agata Bobińska
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Katarzyna Cichocka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Tina Buchholz
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| | - Konrad Woliński
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| |
Collapse
|
20
|
Nazir N, Zahoor M, Nisar M, Khan I, Ullah R, Alotaibi A. Antioxidants Isolated from Elaeagnus umbellata (Thunb.) Protect against Bacterial Infections and Diabetes in Streptozotocin-Induced Diabetic Rat Model. Molecules 2021; 26:molecules26154464. [PMID: 34361617 PMCID: PMC8348310 DOI: 10.3390/molecules26154464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
The increase in resistance of microbes against conventional drugs is currently a hot issue, whereas diabetes is another main cause of mortalities encountered throughout the world after cancer and heart attacks. New drug sources in the form of plants are investigated to get effective drugs for the mentioned diseases with minimum side effects. Elaeagnus umbellata Thunb. is a medicinal plant used for the management of stress related disorders like diabetes and other health complications. The active constituents of the chloroform extract derived from E. umbellata berries was isolated by silica gel column chromatography which were identified as morin, phloroglucinol, and 1-hexyl benzene through various spectroscopic techniques (electron ionization mass spectrometry, 1H-NMR, and 13C-NMR spectroscopy). The possible protective effects (antioxidant, antibacterial, and antidiabetic activity) of isolated compounds were evaluated using reported methods. Morin exhibited strong in vitro antiradical potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals along with prominent antibacterial activities against selected bacterial strains (Escherichia coli, Bacillus cereus, Salmonella typhi, Klebsiella pneumonia, Pseudomonas aeruginosa and Proteus mirabilis). Among the isolated compounds the more potent one (morin) was assessed for its in vivo antidiabetic potential in streptozotocin-induced diabetic rat model. The in vivo effects observed were further confirmed in ex vivo experiments where the effect of isolated compound on antioxidant enzyme like glutathione peroxidase (GPx), total content of reduced glutathione (GSH), % DPPH inhibition, and the lipid peroxidation MDA (Malondialdehyde) level in pancreatic tissues homogenates were evaluated. In vivo morin at tested doses (2, 10, 15, 30 and 50 mg/kg body weight) significantly restored the alterations in the levels of fasting blood glucose level and body weight loss along with significant decrease in levels of cholesterol, triglycerides, low density lipoprotein, HbA1c level, and significantly increased the high-density lipoprotein in diabetic rats. Morin also effectively ameliorated the hepatic enzymes, and renal functions like serum creatinine. Morin significantly increased the antioxidant enzyme like GPx activity, GSH content, and % DPPH inhibition activity, while reduced the lipid peroxidation MDA (malondialdehyde) level in pancreatic tissues homogenates, and modification of histopathological changes in diabetic rats. Morin exhibited high antioxidant, antibacterial, and antidiabetic potentials as compared to phloroglucinol and 1-hexyl benzene, that could, therefore, be considered as a promising therapeutic agent to treat diabetes mellitus and bacterial infections.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
- Correspondence: authors: (M.Z.); (A.A.)
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Imran Khan
- Department of Pharmacy, University of Swabi, Anbar 94604, Khyber Pakhtunkhwa, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, (MAPPRC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: authors: (M.Z.); (A.A.)
| |
Collapse
|
21
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|