1
|
D'hondt R, Dedja K, Aerts S, Van Wijmeersch B, Kalincik T, Reddel S, Havrdova EK, Lugaresi A, Weinstock-Guttman B, Mrabet S, Lalive P, Kermode AG, Ozakbas S, Patti F, Prat A, Tomassini V, Roos I, Alroughani R, Gerlach O, Khoury SJ, van Pesch V, Sá MJ, Prevost J, Spitaleri D, McCombe P, Solaro C, van der Walt A, Butzkueven H, Laureys G, Sánchez-Menoyo JL, de Gans K, Al-Asmi A, Deri N, Csepany T, Al-Harbi T, Carroll WM, Rozsa C, Singhal B, Hardy TA, Ramanathan S, Peeters L, Vens C. Explainable time-to-progression predictions in multiple sclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108624. [PMID: 39965473 DOI: 10.1016/j.cmpb.2025.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Prognostic machine learning research in multiple sclerosis has been mainly focusing on black-box models predicting whether a patients' disability will progress in a fixed number of years. However, as this is a binary yes/no question, it cannot take individual disease severity into account. Therefore, in this work we propose to model the time to disease progression instead. Additionally, we use explainable machine learning techniques to make the model outputs more interpretable. METHODS A preprocessed subset of 29,201 patients of the international data registry MSBase was used. Disability was assessed in terms of the Expanded Disability Status Scale (EDSS). We predict the time to significant and confirmed disability progression using random survival forests, a machine learning model for survival analysis. Performance is evaluated on a time-dependent area under the receiver operating characteristic and the precision-recall curves. Importantly, predictions are then explained using SHAP and Bellatrex, two explainability toolboxes, and lead to both global (population-wide) as well as local (patient visit-specific) insights. RESULTS On the task of predicting progression in 2 years, the random survival forest achieves state-of-the-art performance, comparable to previous work employing a random forest. However, here the random survival forest has the added advantage of being able to predict progression over a longer time horizon, with AUROC >60% for the first 10 years after baseline. Explainability techniques further validated the model by extracting clinically valid insights from the predictions made by the model. For example, a clear decline in the per-visit probability of progression is observed in more recent years since 2012, likely reflecting globally increasing use of more effective MS therapies. CONCLUSION The binary classification models found in the literature can be extended to a time-to-event setting without loss of performance, thus allowing a more comprehensive prediction of patient prognosis. Furthermore, explainability techniques proved to be key to reach a better understanding of the model and increase validation of its behaviour.
Collapse
Affiliation(s)
- Robbe D'hondt
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium.
| | - Klest Dedja
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium
| | - Sofie Aerts
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Noorderhart Hospitals, Rehabilitation and MS Centre, Pelt, Belgium; UHasselt, Rehabilitation Research Center (REVAL), Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Bart Van Wijmeersch
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Noorderhart Hospitals, Rehabilitation and MS Centre, Pelt, Belgium; UHasselt, Rehabilitation Research Center (REVAL), Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Stephen Reddel
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Saloua Mrabet
- Department of Neurology, LR 18SP03, Clinical Investigation Centre Neurosciences and Mental Health, Razi University Hospital, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Patrice Lalive
- Department of Clinical Neurosciences, Division of Neurology, Unit of Neuroimmunology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Serkan Ozakbas
- Izmir University of Economics, Medical Point Hospital, Izmir, Turkey; Multiple Sclerosis Research Association, Izmir, Turkey
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy; Multiple Sclerosis Unit, AOU Policlinico "G Rodolico-San Marco", University of Catania, Italy
| | - Alexandre Prat
- CHUM MS Center and Universite de Montreal, Montreal, Canada
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Dept Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, Clinical Neurology, SS Annunziata University Hospital, Chieti, Italy
| | - Izanne Roos
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht 6131 BK, Netherlands
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Université Catholique de Louvain, Belgium
| | - Maria José Sá
- Department of Neurology, Centro Hospitalar Universitario de Sao Joao, Porto, Portugal; FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa, Portugal; FCS-UFP, Faculdade de Ciências da Saúde, Portugal; RISE-UFP, rede de Investigação em Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
| | - Pamela McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia; University of Queensland, Australia
| | - Claudio Solaro
- Department of Neurology, Galliera Hospital, Genova, Italy; Department of Rehabilitation, ML Novarese Hospital Moncrivello, Moncrivello, Italy
| | - Anneke van der Walt
- Department of Neurology, The Alfred Hospital, Melbourne, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Alfred Hospital, Melbourne, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Guy Laureys
- Department of Neurology, Universitary Hospital Ghent, Ghent, Belgium
| | - José Luis Sánchez-Menoyo
- Department of Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Galdakao, Spain; Biocruces-Bizkaia Health Research Institute, Spain
| | | | - Abdullah Al-Asmi
- Sultan Qaboos University, Al-Khodh, Oman; College of Medicine & Health Sciences and Sultan Qaboos University Hospital, Oman
| | - Norma Deri
- Neurology department, Hospital Fernandez, Capital Federal, Argentina
| | - Tunde Csepany
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Talal Al-Harbi
- Neurology Department, King Fahad Specialist Hospital-Dammam, Saudi Arabia
| | - William M Carroll
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, Australia; Sir Charles Gairdner Hospital, Perth, Australia
| | - Csilla Rozsa
- Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Bhim Singhal
- Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Todd A Hardy
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology, Concord Clinical School, Concord Hospital, Sydney, Australia
| | - Liesbet Peeters
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; I-Biostat, Data Science Institute (DSI), Hasselt University, Diepenbeek, Belgium
| | - Celine Vens
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium
| |
Collapse
|
2
|
Falet JPR, Nobile S, Szpindel A, Barile B, Kumar A, Durso-Finley J, Arbel T, Arnold DL. The role of AI for MRI-analysis in multiple sclerosis-A brief overview. Front Artif Intell 2025; 8:1478068. [PMID: 40265105 PMCID: PMC12011719 DOI: 10.3389/frai.2025.1478068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.
Collapse
Affiliation(s)
- Jean-Pierre R. Falet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Steven Nobile
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aliya Szpindel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Berardino Barile
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Amar Kumar
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Joshua Durso-Finley
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Tal Arbel
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Douglas L. Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Mayfield JD, Murtagh R, Ciotti J, Robertson D, Naqa IE. Time-Dependent Deep Learning Prediction of Multiple Sclerosis Disability. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3231-3249. [PMID: 38871944 PMCID: PMC11612123 DOI: 10.1007/s10278-024-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 06/15/2024]
Abstract
The majority of deep learning models in medical image analysis concentrate on single snapshot timepoint circumstances, such as the identification of current pathology on a given image or volume. This is often in contrast to the diagnostic methodology in radiology where presumed pathologic findings are correlated to prior studies and subsequent changes over time. For multiple sclerosis (MS), the current body of literature describes various forms of lesion segmentation with few studies analyzing disability progression over time. For the purpose of longitudinal time-dependent analysis, we propose a combinatorial analysis of a video vision transformer (ViViT) benchmarked against traditional recurrent neural network of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architectures and a hybrid Vision Transformer-LSTM (ViT-LSTM) to predict long-term disability based upon the Extended Disability Severity Score (EDSS). The patient cohort was procured from a two-site institution with 703 patients' multisequence, contrast-enhanced MRIs of the cervical spine between the years 2002 and 2023. Following a competitive performance analysis, a VGG-16-based CNN-LSTM was compared to ViViT with an ablation analysis to determine time-dependency of the models. The VGG16-LSTM predicted trinary classification of EDSS score in 6 years with 0.74 AUC versus the ViViT with 0.84 AUC (p-value < 0.001 per 5 × 2 cross-validation F-test) on an 80:20 hold-out testing split. However, the VGG16-LSTM outperformed ViViT when patients with only 2 years of MRIs (n = 94) (0.75 AUC versus 0.72 AUC, respectively). Exact EDSS classification was investigated for both models using both classification and regression strategies but showed collectively worse performance. Our experimental results demonstrate the ability of time-dependent deep learning models to predict disability in MS using trinary stratification of disability, mimicking clinical practice. Further work includes external validation and subsequent observational clinical trials.
Collapse
Affiliation(s)
- John D Mayfield
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA.
| | - Ryan Murtagh
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA
| | - John Ciotti
- Department of Neurology, University of South Florida, Morsani College of Medicine, USF Multiple Sclerosis Center, 13330 USF Laurel Drive, Tampa, FL, 33612, USA
| | - Derrick Robertson
- Department of Neurology, James A. Haley VA Medical Center, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Issam El Naqa
- University of South Florida, College of Engineering, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
- H. Lee Moffitt Cancer Center Department of Machine Learning, Tampa, FL, 33612, USA
| |
Collapse
|
4
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
5
|
Pilehvari S, Morgan Y, Peng W. An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis. Mult Scler Relat Disord 2024; 89:105761. [PMID: 39018642 DOI: 10.1016/j.msard.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.
Collapse
Affiliation(s)
- Shima Pilehvari
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Yasser Morgan
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Wei Peng
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
6
|
De Brouwer E, Becker T, Werthen-Brabants L, Dewulf P, Iliadis D, Dekeyser C, Laureys G, Van Wijmeersch B, Popescu V, Dhaene T, Deschrijver D, Waegeman W, De Baets B, Stock M, Horakova D, Patti F, Izquierdo G, Eichau S, Girard M, Prat A, Lugaresi A, Grammond P, Kalincik T, Alroughani R, Grand’Maison F, Skibina O, Terzi M, Lechner-Scott J, Gerlach O, Khoury SJ, Cartechini E, Van Pesch V, Sà MJ, Weinstock-Guttman B, Blanco Y, Ampapa R, Spitaleri D, Solaro C, Maimone D, Soysal A, Iuliano G, Gouider R, Castillo-Triviño T, Sánchez-Menoyo JL, Laureys G, van der Walt A, Oh J, Aguera-Morales E, Altintas A, Al-Asmi A, de Gans K, Fragoso Y, Csepany T, Hodgkinson S, Deri N, Al-Harbi T, Taylor B, Gray O, Lalive P, Rozsa C, McGuigan C, Kermode A, Sempere AP, Mihaela S, Simo M, Hardy T, Decoo D, Hughes S, Grigoriadis N, Sas A, Vella N, Moreau Y, Peeters L. Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study. PLOS DIGITAL HEALTH 2024; 3:e0000533. [PMID: 39052668 PMCID: PMC11271865 DOI: 10.1371/journal.pdig.0000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/14/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Disability progression is a key milestone in the disease evolution of people with multiple sclerosis (PwMS). Prediction models of the probability of disability progression have not yet reached the level of trust needed to be adopted in the clinic. A common benchmark to assess model development in multiple sclerosis is also currently lacking. METHODS Data of adult PwMS with a follow-up of at least three years from 146 MS centers, spread over 40 countries and collected by the MSBase consortium was used. With basic inclusion criteria for quality requirements, it represents a total of 15, 240 PwMS. External validation was performed and repeated five times to assess the significance of the results. Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) guidelines were followed. Confirmed disability progression after two years was predicted, with a confirmation window of six months. Only routinely collected variables were used such as the expanded disability status scale, treatment, relapse information, and MS course. To learn the probability of disability progression, state-of-the-art machine learning models were investigated. The discrimination performance of the models is evaluated with the area under the receiver operator curve (ROC-AUC) and under the precision recall curve (AUC-PR), and their calibration via the Brier score and the expected calibration error. All our preprocessing and model code are available at https://gitlab.com/edebrouwer/ms_benchmark, making this task an ideal benchmark for predicting disability progression in MS. FINDINGS Machine learning models achieved a ROC-AUC of 0⋅71 ± 0⋅01, an AUC-PR of 0⋅26 ± 0⋅02, a Brier score of 0⋅1 ± 0⋅01 and an expected calibration error of 0⋅07 ± 0⋅04. The history of disability progression was identified as being more predictive for future disability progression than the treatment or relapses history. CONCLUSIONS Good discrimination and calibration performance on an external validation set is achieved, using only routinely collected variables. This suggests machine-learning models can reliably inform clinicians about the future occurrence of progression and are mature for a clinical impact study.
Collapse
Affiliation(s)
| | - Thijs Becker
- I-Biostat, Hasselt University, Belgium
- Data Science Institute, Hasselt University, Belgium
| | | | - Pieter Dewulf
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Dimitrios Iliadis
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Cathérine Dekeyser
- Department of Neurology, Ghent University, Belgium
- 4 Brain, Ghent University, Belgium
- Biomedical Research Institute, Hasselt University, Belgium
| | - Guy Laureys
- Department of Neurology, Ghent University, Belgium
- 4 Brain, Ghent University, Belgium
| | - Bart Van Wijmeersch
- Noorderhart ziekenhuizen Pelt, Belgium
- Universitair MS Centrum Hasselt-Pelt, Belgium
| | - Veronica Popescu
- Noorderhart ziekenhuizen Pelt, Belgium
- Universitair MS Centrum Hasselt-Pelt, Belgium
| | - Tom Dhaene
- SUMO, IDLAB, Ghent University - imec, Belgium
| | | | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
- Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium
| | - Dana Horakova
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy
| | | | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Marc Girard
- CHUM and Université de Montreal, Montreal, Canada
| | | | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia and Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | | | - Tomas Kalincik
- Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
- CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | - Oliver Gerlach
- Academic MS Center Zuyderland, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Samia J. Khoury
- American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | - Maria José Sà
- Centro Hospitalar Universitario de Sao Joao, Porto, Portugal
| | | | | | | | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
| | - Claudio Solaro
- Dept. of Rehabilitation, CRFF Mons. Luigi Novarese, Moncrivello, Italy
| | - Davide Maimone
- MS center, UOC Neurologia, ARNAS Garibaldi, Catania, Italy
| | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | | | | | | | | | | | | | - Jiwon Oh
- St. Michael’s Hospital, Toronto, Canada
| | | | - Ayse Altintas
- Koc University, School of Medicine, Istanbul, Turkey
| | - Abdullah Al-Asmi
- College of Medicine & Health Sciences and Sultan Qaboos University Hospital, SQU, Oman
| | | | - Yara Fragoso
- Universidade Metropolitana de Santos, Santos, Brazil
| | | | | | - Norma Deri
- Hospital Fernandez, Capital Federal, Argentina
| | - Talal Al-Harbi
- King Fahad Specialist Hospital-Dammam, Khobar, Saudi Arabia
| | | | - Orla Gray
- South Eastern HSC Trust, Belfast, United Kingdom
| | | | - Csilla Rozsa
- Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | | | - Allan Kermode
- University of Western Australia, Nedlands, Australia
| | | | - Simu Mihaela
- Emergency Clinical County Hospital Pius Brinzeu, Timisoara, Romania and University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | | | - Todd Hardy
- Concord Repatriation General Hospital, Sydney, Australia
| | - Danny Decoo
- AZ Alma Ziekenhuis, Sijsele - Damme, Belgium
| | | | | | | | | | | | - Liesbet Peeters
- Data Science Institute, Hasselt University, Belgium
- Universitair MS Centrum Hasselt-Pelt, Belgium
| |
Collapse
|
7
|
Prathapan V, Eipert P, Wigger N, Kipp M, Appali R, Schmitt O. Modeling and simulation for prediction of multiple sclerosis progression. Comput Biol Med 2024; 175:108416. [PMID: 38657465 DOI: 10.1016/j.compbiomed.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.
Collapse
Affiliation(s)
- Vishnu Prathapan
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Peter Eipert
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Nicole Wigger
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Markus Kipp
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany; Department of Aging of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Universitätsplatz 1, 18055, Rostock, Germany.
| | - Oliver Schmitt
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany; Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| |
Collapse
|
8
|
Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A. The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach. Acta Ophthalmol 2024; 102:e272-e284. [PMID: 37300357 DOI: 10.1111/aos.15722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS. METHODS This paper combines a cross-sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10-year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier. RESULTS For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs. CONCLUSION We present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non-invasive, low-cost, easy-to-implement and effective method.
Collapse
Affiliation(s)
- Alberto Montolío
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- GIMSO Research and Innovation Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Reeve K, On BI, Havla J, Burns J, Gosteli-Peter MA, Alabsawi A, Alayash Z, Götschi A, Seibold H, Mansmann U, Held U. Prognostic models for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. Cochrane Database Syst Rev 2023; 9:CD013606. [PMID: 37681561 PMCID: PMC10486189 DOI: 10.1002/14651858.cd013606.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that affects millions of people worldwide. The disease course varies greatly across individuals and many disease-modifying treatments with different safety and efficacy profiles have been developed recently. Prognostic models evaluated and shown to be valid in different settings have the potential to support people with MS and their physicians during the decision-making process for treatment or disease/life management, allow stratified and more precise interpretation of interventional trials, and provide insights into disease mechanisms. Many researchers have turned to prognostic models to help predict clinical outcomes in people with MS; however, to our knowledge, no widely accepted prognostic model for MS is being used in clinical practice yet. OBJECTIVES To identify and summarise multivariable prognostic models, and their validation studies for quantifying the risk of clinical disease progression, worsening, and activity in adults with MS. SEARCH METHODS We searched MEDLINE, Embase, and the Cochrane Database of Systematic Reviews from January 1996 until July 2021. We also screened the reference lists of included studies and relevant reviews, and references citing the included studies. SELECTION CRITERIA We included all statistically developed multivariable prognostic models aiming to predict clinical disease progression, worsening, and activity, as measured by disability, relapse, conversion to definite MS, conversion to progressive MS, or a composite of these in adult individuals with MS. We also included any studies evaluating the performance of (i.e. validating) these models. There were no restrictions based on language, data source, timing of prognostication, or timing of outcome. DATA COLLECTION AND ANALYSIS Pairs of review authors independently screened titles/abstracts and full texts, extracted data using a piloted form based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS), assessed risk of bias using the Prediction Model Risk Of Bias Assessment Tool (PROBAST), and assessed reporting deficiencies based on the checklist items in Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). The characteristics of the included models and their validations are described narratively. We planned to meta-analyse the discrimination and calibration of models with at least three external validations outside the model development study but no model met this criterion. We summarised between-study heterogeneity narratively but again could not perform the planned meta-regression. MAIN RESULTS We included 57 studies, from which we identified 75 model developments, 15 external validations corresponding to only 12 (16%) of the models, and six author-reported validations. Only two models were externally validated multiple times. None of the identified external validations were performed by researchers independent of those that developed the model. The outcome was related to disease progression in 39 (41%), relapses in 8 (8%), conversion to definite MS in 17 (18%), and conversion to progressive MS in 27 (28%) of the 96 models or validations. The disease and treatment-related characteristics of included participants, and definitions of considered predictors and outcome, were highly heterogeneous amongst the studies. Based on the publication year, we observed an increase in the percent of participants on treatment, diversification of the diagnostic criteria used, an increase in consideration of biomarkers or treatment as predictors, and increased use of machine learning methods over time. Usability and reproducibility All identified models contained at least one predictor requiring the skills of a medical specialist for measurement or assessment. Most of the models (44; 59%) contained predictors that require specialist equipment likely to be absent from primary care or standard hospital settings. Over half (52%) of the developed models were not accompanied by model coefficients, tools, or instructions, which hinders their application, independent validation or reproduction. The data used in model developments were made publicly available or reported to be available on request only in a few studies (two and six, respectively). Risk of bias We rated all but one of the model developments or validations as having high overall risk of bias. The main reason for this was the statistical methods used for the development or evaluation of prognostic models; we rated all but two of the included model developments or validations as having high risk of bias in the analysis domain. None of the model developments that were externally validated or these models' external validations had low risk of bias. There were concerns related to applicability of the models to our research question in over one-third (38%) of the models or their validations. Reporting deficiencies Reporting was poor overall and there was no observable increase in the quality of reporting over time. The items that were unclearly reported or not reported at all for most of the included models or validations were related to sample size justification, blinding of outcome assessors, details of the full model or how to obtain predictions from it, amount of missing data, and treatments received by the participants. Reporting of preferred model performance measures of discrimination and calibration was suboptimal. AUTHORS' CONCLUSIONS The current evidence is not sufficient for recommending the use of any of the published prognostic prediction models for people with MS in clinical routine today due to lack of independent external validations. The MS prognostic research community should adhere to the current reporting and methodological guidelines and conduct many more state-of-the-art external validation studies for the existing or newly developed models.
Collapse
Affiliation(s)
- Kelly Reeve
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - Begum Irmak On
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Havla
- lnstitute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | | | - Albraa Alabsawi
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zoheir Alayash
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Health Services Research in Dentistry, University of Münster, Muenster, Germany
| | - Andrea Götschi
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | | | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ulrike Held
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Li J, Huang Y, Hutton GJ, Aparasu RR. Assessing treatment switch among patients with multiple sclerosis: A machine learning approach. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2023; 11:100307. [PMID: 37554927 PMCID: PMC10405092 DOI: 10.1016/j.rcsop.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Patients with multiple sclerosis (MS) frequently switch their Disease-Modifying Agents (DMA) for effectiveness and safety concerns. This study aimed to develop and compare the random forest (RF) machine learning (ML) model with the logistic regression (LR) model for predicting DMA switching among MS patients. METHODS This retrospective longitudinal study used the TriNetX data from a federated electronic medical records (EMR) network. Between September 2010 and May 2017, adults (aged ≥18) MS patients with ≥1 DMA prescription were identified, and the earliest DMA date was assigned as the index date. Patients prescribed any DMAs different from their index DMAs were considered as treatment switch. . The RF and LR models were built with 72 baseline characteristics and trained with 70% of the randomly split data after up-sampling. Area Under the Curves (AUC), accuracy, recall, G-measure, and F-1 score were used to evaluate the model performance. RESULTS In this study, 7258 MS patients with ≥1 DMA were identified. Within two years, 16% of MS patients switched to a different DMA. The RF model obtained significantly better discrimination than the LR model (AUC = 0.65 vs. 0.63, p < 0.0001); however, the RF model had a similar predictive performance to the LR model with respect to F- and G-measures (RF: 72% and 73% vs. LR: 72% and 73%, respectively). The most influential features identified from the RF model were age, type of index medication, and year of index. CONCLUSIONS Compared to the LR model, RF performed better in predicting DMA switch in MS patients based on AUC measures; however, judged by F- and G-measures, the RF model performed similarly to LR. Further research is needed to understand the role of ML techniques in predicting treatment outcomes for the decision-making process to achieve optimal treatment goals.
Collapse
Affiliation(s)
- Jieni Li
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, TX, USA
| | - Yinan Huang
- Department of Pharmacy Administration, College of Pharmacy, University of Mississippi, Oxford, MS, USA
| | | | - Rajender R Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, TX, USA
| |
Collapse
|
11
|
Lopez-Soley E, Martinez-Heras E, Solana E, Solanes A, Radua J, Vivo F, Prados F, Sepulveda M, Cabrera-Maqueda JM, Fonseca E, Blanco Y, Alba-Arbalat S, Martinez-Lapiscina EH, Villoslada P, Saiz A, Llufriu S. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep 2023; 13:3565. [PMID: 36864113 PMCID: PMC9981711 DOI: 10.1038/s41598-023-30502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between brain diffusion microstructural changes and disability in multiple sclerosis (MS) remains poorly understood. We aimed to explore the predictive value of microstructural properties in white (WM) and grey matter (GM), and identify areas associated with mid-term disability in MS patients. We studied 185 patients (71% female; 86% RRMS) with the Expanded Disability Status Scale (EDSS), timed 25-foot walk (T25FW), nine-hole peg test (9HPT), and Symbol Digit Modalities Test (SDMT) at two time-points. We used Lasso regression to analyse the predictive value of baseline WM fractional anisotropy and GM mean diffusivity, and to identify areas related to each outcome at 4.1 years follow-up. Motor performance was associated with WM (T25FW: RMSE = 0.524, R2 = 0.304; 9HPT dominant hand: RMSE = 0.662, R2 = 0.062; 9HPT non-dominant hand: RMSE = 0.649, R2 = 0.139), and SDMT with GM diffusion metrics (RMSE = 0.772, R2 = 0.186). Cingulum, longitudinal fasciculus, optic radiation, forceps minor and frontal aslant were the WM tracts most closely linked to motor dysfunction, and temporal and frontal cortex were relevant for cognition. Regional specificity related to clinical outcomes provide valuable information that can be used to develop more accurate predictive models that could improve therapeutic strategies.
Collapse
Affiliation(s)
- E Lopez-Soley
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - E Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - A Solanes
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
| | - J Radua
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Early Psychosis Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - F Vivo
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - F Prados
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - M Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - J M Cabrera-Maqueda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Fonseca
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Y Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Alba-Arbalat
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E H Martinez-Lapiscina
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - P Villoslada
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - A Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
12
|
Sá MJ, Basílio C, Capela C, Cerqueira JJ, Mendes I, Morganho A, Correia de Sá J, Salgado V, Martins Silva A, Vale J, Sousa L. Consensus for the Early Identification of Secondary Progressive Multiple Sclerosis in Portugal: a Delphi Panel. ACTA MEDICA PORT 2023; 36:167-173. [PMID: 36735763 DOI: 10.20344/amp.18543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Multiple sclerosis is a disease with a heterogeneous evolution. The early identification of secondary progressive multiple sclerosis is a clinical challenge, which would benefit from the definition of biomarkers and diagnostic tools applicable in the transition phase from relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis. We aimed to reach a Portuguese national consensus on the monitoring of patients with multiple sclerosis and on the more relevant clinical variables for the early identification of its progression. MATERIAL AND METHODS A Delphi panel which included eleven Portuguese Neurologists participated in two rounds of questions between July and August of 2021. In the first round, 39 questions which belonged to the functional, cognitive, imaging, biomarkers and additional evaluations were included. Questions for which no consensus was obtained in the first round (less than 80% of agreement), were appraised by the panel during the second round. RESULTS The response rate was 100% in both rounds and consensus was reached for a total of 33 questions (84.6%). Consensus was reached for monitoring time, evaluation scales and clinical variables such as the degree of brain atrophy and mobility reduction, changes suggestive of secondary progressive multiple sclerosis. Additionally, digital devices were considered tools with potential to identify disease progression. Most questions for which no consensus was obtained referred to the cognitive assessment and the remaining referred to both functional and imaging domains. CONCLUSION Consensus was obtained for the determination of the monitorization interval and for most of the clinical variables. Most questions that did not reach consensus were related with the confirmation of progression taking into account only one test/domain, reinforcing the multifactorial nature of multiple sclerosis.
Collapse
Affiliation(s)
- Maria José Sá
- Serviço de Neurologia. Centro Hospitalar e Universitário de São João. Porto. Portugal
| | - Carlos Basílio
- Serviço de Neurologia. Centro Hospitalar Universitário do Algarve. Faro. Portugal
| | - Carlos Capela
- Serviço de Neurologia. Centro Hospitalar Universitário de Lisboa Central. Lisboa. Portugal
| | | | - Irene Mendes
- Serviço de Neurologia. Hospital Garcia de Orta. Almada. Portugal
| | - Armando Morganho
- Serviço de Neurologia. Hospital Dr. Nélio Mendonça. Funchal. Portugal
| | - João Correia de Sá
- Serviço de Neurologia. Hospital de Santa Maria. Centro Hospitalar Universitário de Lisboa Norte. Lisboa. Portugal
| | - Vasco Salgado
- Serviço de Neurologia. Hospital Professor Doutor Fernando Fonseca. Amadora. Portugal
| | - Ana Martins Silva
- Serviço de Neurologia. Centro Hospitalar Universitário do Porto. Porto. Portugal
| | - José Vale
- Serviço de Neurologia. Hospital Beatriz Ângelo. Loures. Portugal
| | - Lívia Sousa
- Serviço de Neurologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| |
Collapse
|
13
|
Camino-Pontes B, Gonzalez-Lopez F, Santamaría-Gomez G, Sutil-Jimenez AJ, Sastre-Barrios C, de Pierola IF, Cortes JM. One-year prediction of cognitive decline following cognitive-stimulation from real-world data. J Neuropsychol 2023. [PMID: 36727214 DOI: 10.1111/jnp.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Clinical evidence based on real-world data (RWD) is accumulating exponentially providing larger sample sizes available, which demand novel methods to deal with the enhanced heterogeneity of the data. Here, we used RWD to assess the prediction of cognitive decline in a large heterogeneous sample of participants being enrolled with cognitive stimulation, a phenomenon that is of great interest to clinicians but that is riddled with difficulties and limitations. More precisely, from a multitude of neuropsychological Training Materials (TMs), we asked whether was possible to accurately predict an individual's cognitive decline one year after being tested. In particular, we performed longitudinal modelling of the scores obtained from 215 different tests, grouped into 29 cognitive domains, a total of 124,610 instances from 7902 participants (40% male, 46% female, 14% not indicated), each performing an average of 16 tests. Employing a machine learning approach based on ROC analysis and cross-validation techniques to overcome overfitting, we show that different TMs belonging to several cognitive domains can accurately predict cognitive decline, while other domains perform poorly, suggesting that the ability to predict decline one year later is not specific to any particular domain, but is rather widely distributed across domains. Moreover, when addressing the same problem between individuals with a common diagnosed label, we found that some domains had more accurate classification for conditions such as Parkinson's disease and Down syndrome, whereas they are less accurate for Alzheimer's disease or multiple sclerosis. Future research should combine similar approaches to ours with standard neuropsychological measurements to enhance interpretability and the possibility of generalizing across different cohorts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jesus M Cortes
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
14
|
Hapfelmeier A, On BI, Mühlau M, Kirschke JS, Berthele A, Gasperi C, Mansmann U, Wuschek A, Bussas M, Boeker M, Bayas A, Senel M, Havla J, Kowarik MC, Kuhn K, Gatz I, Spengler H, Wiestler B, Grundl L, Sepp D, Hemmer B. Retrospective cohort study to devise a treatment decision score predicting adverse 24-month radiological activity in early multiple sclerosis. Ther Adv Neurol Disord 2023; 16:17562864231161892. [PMID: 36993939 PMCID: PMC10041597 DOI: 10.1177/17562864231161892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic neuroinflammatory disease affecting about 2.8 million people worldwide. Disease course after the most common diagnoses of relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) is highly variable and cannot be reliably predicted. This impairs early personalized treatment decisions. Objectives The main objective of this study was to algorithmically support clinical decision-making regarding the options of early platform medication or no immediate treatment of patients with early RRMS and CIS. Design Retrospective monocentric cohort study within the Data Integration for Future Medicine (DIFUTURE) Consortium. Methods Multiple data sources of routine clinical, imaging and laboratory data derived from a large and deeply characterized cohort of patients with MS were integrated to conduct a retrospective study to create and internally validate a treatment decision score [Multiple Sclerosis Treatment Decision Score (MS-TDS)] through model-based random forests (RFs). The MS-TDS predicts the probability of no new or enlarging lesions in cerebral magnetic resonance images (cMRIs) between 6 and 24 months after the first cMRI. Results Data from 65 predictors collected for 475 patients between 2008 and 2017 were included. No medication and platform medication were administered to 277 (58.3%) and 198 (41.7%) patients. The MS-TDS predicted individual outcomes with a cross-validated area under the receiver operating characteristics curve (AUROC) of 0.624. The respective RF prediction model provides patient-specific MS-TDS and probabilities of treatment success. The latter may increase by 5-20% for half of the patients if the treatment considered superior by the MS-TDS is used. Conclusion Routine clinical data from multiple sources can be successfully integrated to build prediction models to support treatment decision-making. In this study, the resulting MS-TDS estimates individualized treatment success probabilities that can identify patients who benefit from early platform medication. External validation of the MS-TDS is required, and a prospective study is currently being conducted. In addition, the clinical relevance of the MS-TDS needs to be established.
Collapse
Affiliation(s)
| | - Begum Irmak On
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Alexander Wuschek
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Bussas
- Department of Neurology, Klinikum rechts der Isar School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Boeker
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Antonios Bayas
- Department of Neurology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Makbule Senel
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Klaus Kuhn
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Ingrid Gatz
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Helmut Spengler
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lioba Grundl
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Sepp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
15
|
Chen X, Schädelin S, Lu PJ, Ocampo-Pineda M, Weigel M, Barakovic M, Ruberte E, Cagol A, Marechal B, Kober T, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients. Neuroimage Clin 2023; 37:103349. [PMID: 36801600 PMCID: PMC9958406 DOI: 10.1016/j.nicl.2023.103349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES AND AIMS Quantitative MRI (qMRI) has greatly improved the sensitivity and specificity of microstructural brain pathology in multiple sclerosis (MS) when compared to conventional MRI (cMRI). More than cMRI, qMRI also provides means to assess pathology within the normal-appearing and lesion tissue. In this work, we further developed a method providing personalized quantitative T1 (qT1) abnormality maps in individual MS patients by modeling the age dependence of qT1 alterations. In addition, we assessed the relationship between qT1 abnormality maps and patients' disability, in order to evaluate the potential value of this measurement in clinical practice. METHODS We included 119 MS patients (64 relapsing-remitting MS (RRMS), 34 secondary progressive MS (SPMS), 21 primary progressive MS (PPMS)), and 98 Healthy Controls (HC). All individuals underwent 3T MRI examinations, including Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) for qT1 maps and High-Resolution 3D Fluid Attenuated Inversion Recovery (FLAIR) imaging. To calculate personalized qT1 abnormality maps, we compared qT1 in each brain voxel in MS patients to the average qT1 obtained in the same tissue (grey/white matter) and region of interest (ROI) in healthy controls, hereby providing individual voxel-based Z-score maps. The age dependence of qT1 in HC was modeled using linear polynomial regression. We computed the average qT1 Z-scores in white matter lesions (WMLs), normal-appearing white matter (NAWM), cortical grey matter lesions (GMcLs) and normal-appearing cortical grey matter (NAcGM). Lastly, a multiple linear regression (MLR) model with the backward selection including age, sex, disease duration, phenotype, lesion number, lesion volume and average Z-score (NAWM/NAcGM/WMLs/GMcLs) was used to assess the relationship between qT1 measures and clinical disability (evaluated with EDSS). RESULTS The average qT1 Z-score was higher in WMLs than in NAWM. (WMLs: 1.366 ± 0.409, NAWM: -0.133 ± 0.288, [mean ± SD], p < 0.001). The average Z-score in NAWM in RRMS patients was significantly lower than in PPMS patients (p = 0.010). The MLR model showed a strong association between average qT1 Z-scores in white matter lesions (WMLs) and EDSS (R2 = 0.549, β = 0.178, 97.5 % CI = 0.030 to 0.326, p = 0.019). Specifically, we measured a 26.9 % increase in EDSS per unit of qT1 Z-score in WMLs in RRMS patients (R2 = 0.099, β = 0.269, 97.5 % CI = 0.078 to 0.461, p = 0.007). CONCLUSIONS We showed that personalized qT1 abnormality maps in MS patients provide measures related to clinical disability, supporting the use of those maps in clinical practice.
Collapse
Affiliation(s)
- Xinjie Chen
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Esther Ruberte
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Benedicte Marechal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Machine learning for exploring neurophysiological functionality in multiple sclerosis based on trigeminal and hand blink reflexes. Sci Rep 2022; 12:21078. [PMID: 36473893 PMCID: PMC9726823 DOI: 10.1038/s41598-022-24720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Brainstem dysfunctions are very common in Multiple Sclerosis (MS) and are a critical predictive factor for future disability. Brainstem functionality can be explored with blink reflexes, subcortical responses consisting in a blink following a peripheral stimulation. Some reflexes are already employed in clinical practice, such as Trigeminal Blink Reflex (TBR). Here we propose for the first time in MS the exploration of Hand Blink Reflex (HBR), which size is modulated by the proximity of the stimulated hand to the face, reflecting the extension of the peripersonal space. The aim of this work is to test whether Machine Learning (ML) techniques could be used in combination with neurophysiological measurements such as TBR and HBR to improve their clinical information and potentially favour the early detection of brainstem dysfunctionality. HBR and TBR were recorded from a group of People with MS (PwMS) with Relapsing-Remitting form and from a healthy control group. Two AdaBoost classifiers were trained with TBR and HBR features each, for a binary classification task between PwMS and Controls. Both classifiers were able to identify PwMS with an accuracy comparable and even higher than clinicians. Our results indicate that ML techniques could represent a tool for clinicians for investigating brainstem functionality in MS. Also, HBR could be promising when applied in clinical practice, providing additional information about the integrity of brainstem circuits potentially favouring early diagnosis.
Collapse
|
17
|
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Al Ghamdi K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207856. [PMID: 36298206 PMCID: PMC9609137 DOI: 10.3390/s22207856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 05/17/2023]
Abstract
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients' data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization.
Collapse
Affiliation(s)
- Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Bashamakh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima A. Alghool
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Menna Aboulnour
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noorah M. Alsuwayan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rawa’a K. Alturaif
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samiha Brahimi
- Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh S. Aljameel
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Kholoud Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
18
|
Svoboda E, Bořil T, Rusz J, Tykalová T, Horáková D, Guttmann CRG, Blagoev KB, Hatabu H, Valtchinov VI. Assessing clinical utility of machine learning and artificial intelligence approaches to analyze speech recordings in multiple sclerosis: A pilot study. Comput Biol Med 2022; 148:105853. [PMID: 35870318 DOI: 10.1016/j.compbiomed.2022.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. METHOD The objective was to determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-the-curve. RESULTS The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-the-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. CONCLUSION Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding multiple sclerosis diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.
Collapse
Affiliation(s)
- E Svoboda
- Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Institute of Phonetics, Faculty of Arts, Charles University, Prague, Czech Republic
| | - T Bořil
- Institute of Phonetics, Faculty of Arts, Charles University, Prague, Czech Republic
| | - J Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Neurology & ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - T Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - D Horáková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - C R G Guttmann
- Center for Neurological Imaging, Brigham & Women's Hospital and Harvard Medical School, USA
| | - K B Blagoev
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - H Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V I Valtchinov
- Center for Evidence-Based Imaging, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis. Ann Biomed Eng 2022; 50:507-528. [PMID: 35220529 PMCID: PMC9001622 DOI: 10.1007/s10439-022-02930-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022]
Abstract
Machine learning approaches in diagnosis and prognosis of multiple sclerosis (MS) were analysed using retinal nerve fiber layer (RNFL) thickness, measured by optical coherence tomography (OCT). A cross-sectional study (72 MS patients and 30 healthy controls) was used for diagnosis. These 72 MS patients were involved in a 10-year longitudinal follow-up study for prognostic purposes. Structural measurements of RNFL thickness were performed using different Spectralis OCT protocols: fast macular thickness protocol to measure macular RNFL, and fast RNFL thickness protocol and fast RNFL-N thickness protocol to measure peripapillary RNFL. Binary classifiers such as multiple linear regression (MLR), support vector machines (SVM), decision tree (DT), k-nearest neighbours (k-NN), Naïve Bayes (NB), ensemble classifier (EC) and long short-term memory (LSTM) recurrent neural network were tested. For MS diagnosis, the best acquisition protocol was fast macular thickness protocol using k-NN (accuracy: 95.8%; sensitivity: 94.4%; specificity: 97.2%; precision: 97.1%; AUC: 0.958). For MS prognosis, our model with a 3-year follow up to predict disability progression 8 years later was the best predictive model. DT performed best for fast macular thickness protocol (accuracy: 91.3%; sensitivity: 90.0%; specificity: 92.5%; precision: 92.3%; AUC: 0.913) and SVM for fast RNFL-N thickness protocol (accuracy: 91.3%; sensitivity: 87.5%; specificity: 95.0%; precision: 94.6%; AUC: 0.913). This work concludes that measurements of RNFL thickness obtained with Spectralis OCT have a good ability to diagnose MS and to predict disability progression in MS patients. This machine learning approach would help clinicians to have valuable information.
Collapse
|
20
|
Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, Nagels G. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med 2021; 11:1349. [PMID: 34945821 PMCID: PMC8707909 DOI: 10.3390/jpm11121349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) manifests heterogeneously among persons suffering from it, making its disease course highly challenging to predict. At present, prognosis mostly relies on biomarkers that are unable to predict disease course on an individual level. Machine learning is a promising technique, both in terms of its ability to combine multimodal data and through the capability of making personalized predictions. However, most investigations on machine learning for prognosis in MS were geared towards predicting physical deterioration, while cognitive deterioration, although prevalent and burdensome, remained largely overlooked. This review aims to boost the field of machine learning for cognitive prognosis in MS by means of an introduction to machine learning and its pitfalls, an overview of important elements for study design, and an overview of the current literature on cognitive prognosis in MS using machine learning. Furthermore, the review discusses new trends in the field of machine learning that might be adopted for future studies in the field.
Collapse
Affiliation(s)
- Stijn Denissen
- AIMS Laboratory, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.D.M.); (J.V.S.); (D.M.S.); (G.N.)
- icometrix, 3012 Leuven, Belgium
| | - Oliver Y. Chén
- Faculty of Social Sciences and Law, University of Bristol, Bristol BS8 1QU, UK;
- Department of Engineering, University of Oxford, Oxford OX1 3PJ, UK
| | - Johan De Mey
- AIMS Laboratory, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.D.M.); (J.V.S.); (D.M.S.); (G.N.)
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maarten De Vos
- Faculty of Engineering Science, KU Leuven, 3001 Leuven, Belgium;
- Faculty of Medicine, KU Leuven, 3001 Leuven, Belgium
| | - Jeroen Van Schependom
- AIMS Laboratory, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.D.M.); (J.V.S.); (D.M.S.); (G.N.)
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Diana Maria Sima
- AIMS Laboratory, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.D.M.); (J.V.S.); (D.M.S.); (G.N.)
- icometrix, 3012 Leuven, Belgium
| | - Guy Nagels
- AIMS Laboratory, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (J.D.M.); (J.V.S.); (D.M.S.); (G.N.)
- icometrix, 3012 Leuven, Belgium
- St Edmund Hall, Queen’s Ln, Oxford OX1 4AR, UK
| |
Collapse
|
21
|
Mititelu RR, Albu CV, Bacanoiu MV, Padureanu V, Padureanu R, Olaru G, Buga AM, Balasoiu M. Homocysteine as a Predictor Tool in Multiple Sclerosis. Discoveries (Craiova) 2021; 9:e135. [PMID: 34816003 PMCID: PMC8601869 DOI: 10.15190/d.2021.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive and irreversible disease which affects the central nervous system (CNS) with still unknown etiology. Our study aimes to establish the homocysteine pattern that can predict the MS diseases progression and to identify a potential disease progression marker that can be easy to perform and non-invasive, in order to predict the diseases outcome. In order to achieve this goal, we included 10 adult RRMS subjects, 10 adult SPMS subjects and 10 age-matched healthy subjects. The homocysteine plasma level was measured using automated latex enhanced immunoassay and the cobalamin and folate measurements were performed using automated chemiluminescence immunoassay (CLIA). HCR was calculated by dividing the homocysteine plasma level by cobalamin plasma level. We found that the homocysteine level in plasma of both RRMS patients and SPMS group are significantly increased compared with the control group. There is a significantly higher concentration of homocysteine in SPMS group compared with the RRMS group. In addition, the HCR is significantly increased in SPMS compared with the RRMS group and is a very good index of disease severity.
Collapse
Affiliation(s)
- Radu Razvan Mititelu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Rodica Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Gabriela Olaru
- Department of Sports and Kinetic Therapy, University of Craiova, Romania
| | - Ana-Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Romania
| | - Maria Balasoiu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|