1
|
Berkel C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol 2025; 67:1784-1799. [PMID: 38748072 DOI: 10.1007/s12033-024-01182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/10/2025]
Abstract
Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.
Collapse
Affiliation(s)
- Caglar Berkel
- Deparment of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
2
|
Yang TT, Lan CCE. Photocarcinogenesis of the skin: Current status and future trends. Kaohsiung J Med Sci 2025; 41:e12946. [PMID: 39907400 DOI: 10.1002/kjm2.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Solar radiation is essential for life on Earth but is also a major contributor to skin carcinogenesis. Solar radiation, particularly ultraviolet (UV) B (280-320 nm) and UVA (320-400 nm), induces photocarcinogenesis via various pathways. UV light can directly cause DNA damage, resulting in genetic mutations if not repaired correctly. UV light can also induce photocarcinogenesis by generating reactive oxygen species, inducing immunosuppression and inflammation. Recently, visible light (400-760 nm) has been shown to contribute to photocarcinogenesis by activating oxidative pathways. In addition to the irradiation dose (fluence, J/m2), UVB irradiance (W/m2) is also considered a factor influencing photocarcinogenesis. In this review, we summarize the mechanisms of photocarcinogenesis and provide strategies to prevent skin cancer.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Gangshan Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Karampinis E, Koumaki D, Sgouros D, Nechalioti PM, Toli O, Pappa G, Papadakis M, Georgopoulou KE, Schulze-Roussaki AV, Kouretas D. Non-Melanoma Skin Cancer: Assessing the Systemic Burden of the Disease. Cancers (Basel) 2025; 17:703. [PMID: 40002296 PMCID: PMC11853326 DOI: 10.3390/cancers17040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of systemic therapies and photoprotection against non-melanoma skin cancer (NMSC) raises questions on the broader systematic impact of the disease. Personalized medicine involves a holistic patient approach, through which the evaluation of systemic biomarkers can reveal the interconnected aspects of patient health and tailored therapies. Cumulative UV exposure disrupts redox equilibrium and triggers inflammation and cutaneous immunosuppression, processes that contribute independently or via their interplay to cutaneous carcinogenesis. This systemic impact can be further reinforced by biomolecules derived from the NMSC microenvironment, fueling a continuous cycle of oxidative stress and inflammation in the organism. Regarding investigation of the systemic burden of NMSC, we conducted a narrative review focusing on parameters related to redox status, inflammation, and immune suppression observed in the blood components (serum, plasma, and erythrocytes) of NMSC patients. Our findings revealed an association of NMSC patients with perturbations of redox homeostasis, as evidenced by the decreased antioxidant activity, lower levels of non-enzymatic antioxidants, and increased byproducts of lipid, protein, and DNA oxidative damage. Additionally, NMSC patients presented augmented levels of pro-inflammatory interleukins, reduced anti-tumor biomolecule levels, and enhanced immune response markers, as well as elevated vitamin D levels. These systemic changes may lead to the association of NMSC with a higher risk of secondary malignancies in other organs. Overall, the findings of the present study suggest that NMSC affects systemic health beyond the skin, underscoring the need for a comprehensive and individualized approach to the management and monitoring of the patient.
Collapse
Affiliation(s)
- Emmanouil Karampinis
- Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Dimitra Koumaki
- Department of Dermatology, University Hospital of Heraklion, 71500 Crete, Greece;
| | - Dimitrios Sgouros
- 2nd Department of Dermatology and Venereology, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.S.); (G.P.)
| | - Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Olga Toli
- Department of Dermatology, Oncoderm Center One Day Clinic, 45332 Ioannina, Greece;
| | - Georgia Pappa
- 2nd Department of Dermatology and Venereology, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.S.); (G.P.)
| | - Marios Papadakis
- Department of Surgery II, Witten/Herdecke University, Heusnerstrasse 40, 42283 Witten, Germany;
| | | | - Angeliki-Victoria Schulze-Roussaki
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| |
Collapse
|
4
|
Lesiak A, Wodz K, Ceryn J, Sobolewska-Sztychny D, Bednarski I, Piekarski J, Pabianek M, Nejc D, Dróżdż I, Narbutt J, Noweta M, Ciążyńska M. New insight into the role of the pathway NLRP1 and NLRP3 inflammasomes and IL-33 in ultraviolet-induced cutaneous carcinogenesis. Front Med (Lausanne) 2025; 11:1483208. [PMID: 39839625 PMCID: PMC11747519 DOI: 10.3389/fmed.2024.1483208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined. Purpose The objective of this study is to evaluate the expression of interleukin genes (IL-33, IL-18, IL-1β) following the activation and silencing of NLRP1 and NLRP3 at various wavelengths and doses of UV radiation, and to correlate these expressions with pertinent tumor markers (e.g., Gli1, Gli2, FOXO3A, SerpinA1, SerpinA3, and EphB2). Methods and materials Cultures of keratinocyte cell lines were exposed to varying doses of UV radiation using specific lamps. To inhibit the expression of NLRP1 and NLRP3 genes, cells were transfected with targeted siRNAs. Gene expression of inflammasome components and effector proteins was quantified using Real-time PCR and ELISA. Results There was a marked upregulation in the expression levels of cytokine genes IL-18, IL-1β, and IL-33 upon exposure to UVB and UVA radiation, compared to non-irradiated keratinocytes. Silencing NLRP1 or NLRP3 via RNA interference in primary human keratinocytes resulted in a significant reduction of cytokine gene expression. Additionally, a notable increase in tumor marker gene expression was observed in cells with functional NLRP1 and NLRP3 following UV radiation, whereas silencing these inflammasome genes altered the expression profiles of these markers. Conclusion This study provides a pioneering comprehensive assessment of the roles of NLRP1, NLRP3, and IL-33 in the pathogenesis of UV-induced cutaneous carcinogenesis. Our findings substantiate the role of IL-33 as a critical early danger signal elicited in response to inflammatory UV radiation, presumably regulated by inflammasomes.
Collapse
Affiliation(s)
- Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders Medical University of Łódź, Łódź, Poland
| | - Karolina Wodz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Brudzew, Poland
| | - Justyna Ceryn
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Dorota Sobolewska-Sztychny
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders Medical University of Łódź, Łódź, Poland
| | - Igor Bednarski
- Department of Neurology, Medical University of Lodz, Łódź, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Central Teaching Hospital of the Medical University of Lodz, Łódź, Poland
| | - Marta Pabianek
- Chemotherapy Sub-Department and One-Day Chemotherapy Department, Specialist Oncological Hospital NU-MED sp. z o. o., Tomaszów Mazowiecki, Poland
| | - Dariusz Nejc
- Department of Surgical Oncology, Central Teaching Hospital of the Medical University of Lodz, Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Łódź, Poland
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland
- Chemotherapy Sub-Department and One-Day Chemotherapy Department, Specialist Oncological Hospital NU-MED sp. z o. o., Tomaszów Mazowiecki, Poland
| |
Collapse
|
5
|
Krisanti RIA, Wanandi SI, Wuyung PE, Hoemardani ASD. Effect of narrowband ultraviolet B (311 nm) exposure on skin carcinogenesis in Wistar rats. J Adv Vet Anim Res 2024; 11:1105-1113. [PMID: 40013270 PMCID: PMC11855443 DOI: 10.5455/javar.2024.k861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 02/28/2025] Open
Abstract
Objective The aim of this study is to determine narrowband UVB (NB-UVB) irradiation's effect on the promotion of skin cancer, particularly its effect on DNA damage, oxidative stress, inflammation, and histological changes in Wistar rat skin. Materials and Methods Wistar rats were selected for this study and randomly divided into control, dimethylbenzanthracene (DMBA), and DMBA+NB-UVB groups. The rats were given a single dose of DMBA and exposed to NB-UVB 3 times a week for 10 weeks. The radiation dose started with 1 minimal erythema dose, which is equivalent to 3.192 J/cm². In the 11th week, analysis on cyclobutene pyrimidine dimer (CPD), malondialdehyde (MDA), nuclear factor kappa-B (NFκB), inflammatory cytokines, and histopathology examination of the skin tissue was conducted. Results Higher CPD, MDA, NFκB, tumor necrosis factor a (TNF-a), interleukin (IL)-6, IL-11, IL-10, and IL-12 levels in rats exposed to DMBA+NB-UVB for 10 weeks compared to control and DMBA groups. Macroscopic examination presented erythema, skin thickening, desquamation, ulcer, and crust. Histopathology examination showed hyperkeratosis, acanthosis, atypical keratinocytes, irregular arrangement of the basement membrane, and inflammatory cell infiltration in the DMBA+NB-UVB group. Conclusion This research has shown that 10 weeks of a combination of DMBA and NB-UVB irradiation induced DNA damage, oxidative stress, inflammation, and histological changes in the Wistar rat skin.
Collapse
Affiliation(s)
- Roro Inge Ade Krisanti
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita Eka Wuyung
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Aida S. D. Hoemardani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Yu ZW, Zheng M, Fan HY, Liang XH, Tang YL. Ultraviolet (UV) radiation: a double-edged sword in cancer development and therapy. MOLECULAR BIOMEDICINE 2024; 5:49. [PMID: 39417901 PMCID: PMC11486887 DOI: 10.1186/s43556-024-00209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
It has long been widely acknowledged that ultraviolet (UV) light is an environment risk factor that can lead to cancer, particularly skin cancer. However, it is worth noting that UV radiation holds potential for cancer treatment as a relatively high-energy electromagnetic wave. With the help of nanomaterials, the role of UV radiation has caught increasing attention in cancer treatment. In this review, we briefly summarized types of UV-induced cancers, including malignant melanoma, squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma. Importantly, we discussed the primary mechanisms underlying UV carcinogenesis, including mutations by DNA damage, immunosuppression, inflammation and epigenetic alterations. Historically limited by its shallow penetration depth, the introduction of nanomaterials has dramatically transformed the utilization of UV light in cancer treatment. The direct effect of UV light itself generally leads to the suppression of cancer cell growth and the initiation of apoptosis and ferroptosis. It can also be utilized to activate photosensitizers for reactive oxygen species (ROS) production, sensitize radiotherapy and achieve controlled drug release. Finally, we comprehensively weigh the significant risks and limitations associated with the therapeutic use of UV radiation. And the contradictory effect of UV exposure in promoting and inhibiting tumor has been discussed. This review provides clues for potential clinical therapy as well as future study directions in the UV radiation field. The precise delivery and control of UV light or nanomaterials and the wavelength as well as dose effects of UV light are needed for a thorough understanding of UV radiation.
Collapse
Affiliation(s)
- Zhen-Wei Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec.3, Renminnan Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
8
|
Liu C, Wei J, Wang X, Zhao Q, Lv J, Tan Z, Xin Y, Jiang X. Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection. Front Cell Dev Biol 2024; 12:1480571. [PMID: 39450273 PMCID: PMC11500330 DOI: 10.3389/fcell.2024.1480571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
According to official statistics, cancer remains the main reason of death and over 50% of patients with cancer receive radiotherapy. However, adverse consequences after radiation exposure like radiation-induced skin reactions (RISR) have negative or even fatal impact on patients' quality of life (QoL). In this review we summarize the mechanisms and managements of RISRs, a process that involve a variety of extracellular and intracellular signals, among which oxidative stress (OS) are now commonly believed to be the initial part of the occurrence of all types of RISRs. As for the management of RISRs, traditional treatments have been widely used but without satisfying outcomes while some promising therapeutic strategies related to OS still need further researches. In the context we discuss how OS leads to the happening of RISRs of different types, hoping it can shed some light on the exploration of new countermeasures.
Collapse
Affiliation(s)
- Chuchu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
9
|
Chummun Phul I, Gómez-Llonín A, Bhaw-Luximon A. From traditional medicine to nanomedicine: potential of Ginkgo biloba extracts in treating inflammatory skin diseases. RSC Med Chem 2024; 15:2643-2656. [PMID: 39149101 PMCID: PMC11324057 DOI: 10.1039/d4md00194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 08/17/2024] Open
Abstract
The use of plant extracts as a potential cure for various conditions has moved from traditional medicine to evidence-based medicine. Skin diseases have been addressed since time immemorial using plant extracts through observational and traditional knowledge and passed on through generations. With the advent of modern techniques, the molecular mechanisms of action of plant extracts/isolates are being deciphered with more precision, and more nanomedicine-based therapies are being studied to improve their therapeutic efficacy and stability. The leaves and seeds of Ginkgo biloba (G. biloba), an ancient medicinal tree species, have been used in Chinese herbal medicine for thousands of years. G. biloba extracts have been widely studied as a neuroprotective and anti-ischaemic drug for ischaemia-reperfusion injuries in the heart, lungs, brain, kidneys, and other organs. However, the use of G. biloba can be accompanied with side effects and drug interactions. Although, there is now a growing interest for its use in skincare, the mechanisms of action of the extract are not fully understood and vital aspects of G. biloba, such as its neuroprotective and angiogenic properties contributing to the treatment of inflammatory skin diseases and skin ageing, are yet to be investigated. This review critically discusses the mechanisms of action of different constituents of G. biloba extracts linked to their potential interference in the molecular mechanisms underlying the pathogenesis of inflammatory skin diseases. In addition to its ability to act on oxidative stress, G. biloba can regulate angiogenesis through its compounds such as ginkgetin or ginkgolide K, which either inhibit aberrant angiogenesis in eczema/psoriasis or increase microcirculation during skin ageing. G. biloba may also contribute to the control of pruritus in atopic dermatitis via a neuroprotective and anti-inflammatory mechanism by suppressing JAK2/STAT3 signalling pathways. This review also highlights nanomedicine strategies to decrease the side effects and enhance the efficacy of the extracts. Similar strategies have been successfully used for anticancer molecules in targeted chemotherapy and iron delivery in anaemia treatment.
Collapse
Affiliation(s)
- Itisha Chummun Phul
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| | - Andrea Gómez-Llonín
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius 80837 Réduit Mauritius
| |
Collapse
|
10
|
Malešević A, Tucović D, Kulaš J, Mirkov I, Popović D, Čakić Milošević M, Popov Aleksandrov A. Impact of Skin Exposure to Benzo[a]pyrene in Rat Model: Insights into Epidermal Cell Function and Draining Lymph Node Cell Response. Int J Mol Sci 2024; 25:8631. [PMID: 39201318 PMCID: PMC11354278 DOI: 10.3390/ijms25168631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The skin is a direct target of the air pollutant benzo[a]pyrene (BaP). While its carcinogenic qualities are well-studied, the immunotoxicity of BaP after dermal exposure is less understood. This study examines the immunomodulatory effects of a 10-day epicutaneous BaP application, in environmentally/occupationally relevant doses, by analyzing ex vivo skin immune response (skin explant, epidermal cells and draining lymph node/DLN cell activity), alongside the skin's reaction to sensitization with experimental hapten dinitrochlorobenzene (DNCB). The results show that BaP application disrupts the structure of the epidermal layer and promotes immune cell infiltration in the dermis. BaP exposure led to oxidative stress in epidermal cells, characterized by decreased reduced glutathione and increased AHR and Cyp1A1 expression. Production and gene expression of proinflammatory cytokines (TNF, IL-1β) by epidermal cells decreased, while IL-10 response increased. Decreased spontaneous production of IFN-γ and IL-17, along with unchanged IL-10, was observed in DLC cells, whereas ConA-stimulated production of these cytokines was elevated. Local immunosuppression caused by BaP application seems to reduce the skin's response to an additional stimulus, evidenced by decreased effector activity of DLN cells three days after sensitization with DNCB. These findings provide new insight into the immunomodulatory effects and health risks associated with skin exposure to BaP.
Collapse
Affiliation(s)
- Anastasija Malešević
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Dina Tucović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Jelena Kulaš
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Dušanka Popović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| | - Maja Čakić Milošević
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia;
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; (A.M.); (D.T.); (J.K.); (I.M.); (D.P.)
| |
Collapse
|
11
|
Alyafeai E, Qaed E, Al-Mashriqi HS, Almaamari A, Almansory AH, Futini FA, Sultan M, Tang Z. Molecular dynamics of DNA repair and carcinogen interaction: Implications for cancer initiation, progression, and therapeutic strategies. Mutat Res 2024; 829:111883. [PMID: 39265237 DOI: 10.1016/j.mrfmmm.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The integrity of the genetic material in human cells is continuously challenged by environmental agents and endogenous stresses. Among these, environmental carcinogens are pivotal in initiating complex DNA lesions that can lead to malignant transformations if not properly repaired. This review synthesizes current knowledge on the molecular dynamics of DNA repair mechanisms and their interplay with various environmental carcinogens, providing a comprehensive overview of how these interactions contribute to cancer initiation and progression. We examine key DNA repair pathways including base excision repair, nucleotide excision repair, and double-strand break repair and their regulatory networks, highlighting how defects in these pathways can exacerbate carcinogen-induced damage. Further, we discuss how understanding these molecular interactions offers novel insights into potential therapeutic strategies. This includes leveraging synthetic lethality concepts and designing targeted therapies that exploit specific DNA repair vulnerabilities in cancer cells. By integrating recent advances in molecular biology, genetics, and oncology, this review aims to illuminate the complex landscape of DNA repair and carcinogen-induced carcinogenesis, setting the stage for future research and therapeutic innovations.
Collapse
Affiliation(s)
- Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Anisa H Almansory
- Biological department, Faculty of Science, University of Sana'a, Yemen
| | - Fatima Al Futini
- Department of Food Science, Faculty of Food Science & Technology, University Putra Malaysia (UPM), Malaysia
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Jia Y, Chen F, Yan T, Zhang S, Salem MM, Singh S, Salem‐Bekhit MM, Kumar SK, Ali MM. Influence of environmental risk factors on the development of wounds associated with squamous cell carcinoma. Int Wound J 2024; 21:e14506. [PMID: 38010070 PMCID: PMC10898377 DOI: 10.1111/iwj.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
The incidence of squamous cell carcinoma (SCC) is on the rise, making it a significant global health concern. Environmental risk factors are crucial to the development of SCC. This study sought to examine comprehensively the impact of these factors on the onset of SCC. We conducted a cross-sectional study involving 480 participants at Beijing tertiary care hospital. Utilizing structured questionnaires, data on demographics, environmental exposures, medical history and clinical characteristics were collected. The cohort was composed of 272 men (56.67%) and 208 women (43.33%). The majority (44.38%) were between ages of 41 and 60, and Type III skin predominated (34.79%). Most of the participants belonged to the middle socioeconomic class (60.83%). 'Vegetarian' dietary habits (46.67%) were prevalent, as was the 'Sedentary' lifestyle (49.79%). Regarding environmental exposures, moderate sun exposure of 3 to 5 h per day (54.58%) and UV protective eyewear (30.83%) were prevalent. The majority (69.58%) of respondents indicated 'Never' exposure to carcinogens. A variety of wound characteristics were observed, with 'non-smokers' (64.17%) dominating. Most SCC lesions were located on the extremities (40.21%), lasted less than 6 months (44.38%) and measured 1-3 cm (39.79%). The majority (54.58%) did not have a history of cutaneous injuries. Our research uncovered substantial relationships between SCC and numerous environmental variables, gender, Fitzpatrick skin type, occupation, duration of sun exposure, exposure to carcinogens, dietary practices, history of skin wounds, wound location, duration, size and depth were significantly associated with the onset of SCC. These results highlighted the complexity of SCC aetiology and need for individualized prevention and treatment strategies.
Collapse
Affiliation(s)
- Yulei Jia
- Beauty Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Fengchao Chen
- Beauty Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Tongtong Yan
- Beauty Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Siya Zhang
- Beauty Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Mohamed M. Salem
- College of MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Soumya Singh
- College of MedicineHuazhong University of Science and TechnologyWuhanChina
| | | | | | - Muhammad Mehr Ali
- Department of Basic SciencesNorthwest School of MedicinePeshawarPakistan
| |
Collapse
|
13
|
Camicia A, Foppiani JA, Raska O, Hernandez Alvarez A, Lee D, Taritsa IC, Schuster KA, Wan R, Neradová S, Lin GJ, Lee TC, Molitor M, Zikan M, Lin SJ. From Case Reports to Molecular Insight: Examining the Outcomes and Underlying Mechanisms of Squamous Cell Carcinoma in Breast Implant Patients-A Systematic Review. Int J Mol Sci 2024; 25:2872. [PMID: 38474119 PMCID: PMC10932080 DOI: 10.3390/ijms25052872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There is extensive coverage in the existing literature on implant-associated lymphomas like anaplastic large-cell lymphoma, but breast implant-associated squamous cell carcinoma (BIA-SCC) has received limited scholarly attention since its first case in 1992. Thus, this study aims to conduct a qualitative synthesis focused on the underexplored association between breast implants and BIA-SCC. A systematic review was conducted utilizing the PubMed, Web of Science, and Cochrane databases to identify all currently reported cases of BIA-SCC. Additionally, a literature review was performed to identify potential biochemical mechanisms that could lead to BIA-SCC. Studies were vetted for quality using the NIH quality assessment tool. From an initial pool of 246 papers, 11 met the quality criteria for inclusion, examining a total of 14 patients aged between 40 and 81 years. BIA-SCC was found in a diverse range of implants, including those with smooth and textured surfaces, as well as those filled with saline and silicone. The condition notably manifested a proclivity for aggressive clinical progression, as evidenced by a mortality rate approximating 21.4% within a post-diagnostic interval of six months. Our literature review reveals that chronic inflammation, driven by various external factors such as pathogens and implants, can initiate carcinogenesis through epigenetic modifications and immune system alterations. This includes effects from exosomes and macrophage polarization, showcasing potential pathways for the pathogenesis of BIA-SCC. The study highlights the pressing need for further investigation into BIA-SCC, a subject hitherto inadequately addressed in the academic sphere. This necessitates the urgency for early screening and intervention to improve postoperative outcomes. While the review is confined by its reliance on case reports and series, it serves as a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Alexandra Camicia
- Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Jose A. Foppiani
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Otakar Raska
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Angelica Hernandez Alvarez
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Daniela Lee
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Iulianna C. Taritsa
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Kirsten A. Schuster
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Rou Wan
- Mayo Clinic, Rochester, MN 55902, USA;
| | - Sylva Neradová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Gavin J. Lin
- Nobles and Greenough School, Dedham, MA 02026, USA
| | | | - Martin Molitor
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
- Department of Plastic Surgery, Bulovka University Hospital, 46401 Praha, Czech Republic
| | - Michal Zikan
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
- Department of Obstetrics and Gynecology, Bulovka University Hospital, 46401 Praha, Czech Republic
| | - Samuel J. Lin
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| |
Collapse
|
14
|
Fatima N, Yaqoob S, Rana S, Hameed A, Mirza MR, Jabeen A. In vitro photoprotective potential of aryl-sandwiched (thio)semicarbazones against UVA mediated cellular and DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112841. [PMID: 38194816 DOI: 10.1016/j.jphotobiol.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.
Collapse
Affiliation(s)
- Noor Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Munazza Raza Mirza
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
15
|
Yang X, Xia Z, Fan Y, Xie Y, Ge G, Lang D, Ao J, Yue D, Wu J, Chen T, Zou Y, Zhang M, Yang R. Integrated Bioinformatics Analysis Reveals Diagnostic Biomarkers and Immune Cell Infiltration Characteristics of Solar Lentigines. Clin Cosmet Investig Dermatol 2024; 17:79-88. [PMID: 38230305 PMCID: PMC10790640 DOI: 10.2147/ccid.s439655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
Background Solar lentigines (SLs), serving as a prevalent characteristic of skin photoaging, present as cutaneous aberrant pigmentation. However, the underlying pathogenesis remains unclear and there is a dearth of reliable diagnostic biomarkers. Objective The aim of this study was to identify diagnostic biomarkers for SLs and reveal its immunological features. Methods In this study, gene expression profiling datasets (GSE192564 and GSE192565) of SLs were obtained from the GEO database. The GSE192564 was used as the training group for screening of differentially expressed genes (DEGs) and subsequent depth analysis. Gene set enrichment analysis (GSEA) was employed to explore the biological states associated with SLs. The weighted gene co-expression network analysis (WGCNA) was employed to identify the significant modules and hub genes. Then, the feature genes were further screened by the overlapping of hub genes and up-regulated differential genes. Subsequently, an artificial neural network was constructed for identifying SLs samples. The GSE192565 was used as the test group for validation of feature genes expression level and the model's classification performance. Furthermore, we conducted immune cell infiltration analysis to reveal the immune infiltration landscape of SLs. Results The 9 feature genes were identified as diagnostic biomarkers for SLs in this study. And an artificial neural network based on diagnostic biomarkers was successfully constructed for identification of SLs. GSEA highlighted potential role of immune system in pathogenesis of SLs. SLs samples had a higher proportion of several immune cells, including activated CD8 T cell, dendritic cell, myeloid-derived suppressor cell and so on. And diagnostic biomarkers exhibited a strong relationship with the infiltration of most immune cells. Conclusion Our study identified diagnostic biomarkers for SLs and explored its immunological features, enhancing the comprehension of its pathogenesis.
Collapse
Affiliation(s)
- Xin Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Department of Dermatology, Yanbian University Hospital, Yanji, People’s Republic of China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yitong Xie
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Ge Ge
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Dexiu Lang
- Department of Dermatology, XingYi People’s Hospital, Xingyi, People’s Republic of China
| | - Junhong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Danxia Yue
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Jiamin Wu
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Tong Chen
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Yuekun Zou
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Department of Dermatology, Yanbian University Hospital, Yanji, People’s Republic of China
| |
Collapse
|
16
|
Hosen ME, Jahan Supti S, Akash S, Rahman ME, Faruqe MO, Manirujjaman M, Acharjee UK, Gaafar ARZ, Ouahmane L, Sitotaw B, Bourhia M, Zaman R. Mechanistic insight of Staphylococcus aureus associated skin cancer in humans by Santalum album derived phytochemicals: an extensive computational and experimental approaches. Front Chem 2023; 11:1273408. [PMID: 38075499 PMCID: PMC10702530 DOI: 10.3389/fchem.2023.1273408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/01/2023] [Indexed: 04/09/2025] Open
Abstract
An excessive amount of multidrug-resistant Staphylococcus aureus is commonly associated with actinic keratosis (AK) and squamous cell carcinoma (SCC) by secreted virulence products that induced the chronic inflammation leading to skin cancer which is regulated by staphylococcal accessory regulator (SarA). It is worth noting that there is currently no existing published study that reports on the inhibitory activity of phytochemicals derived from Santalum album on the SarA protein through in silico approach. Therefore, our study has been designed to find the potential inhibitors of S. aureus SarA protein from S. album-derived phytochemicals. The molecular docking study was performed targeting the SarA protein of S. aureus, and CID:5280441, CID:162350, and CID: 5281675 compounds showed the highest binding energy with -9.4 kcal/mol, -9.0 kcal/mol, and -8.6 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period whereas the MMPBSA binding free energy proposed that the ligands were sustained with their binding site. All three complexes were found to be similar in distribution with the apoprotein through PCA analysis indicating conformational stability throughout the MD simulation. Moreover, all three compounds' ADMET profiles revealed positive results, and the AMES test did not show any toxicity whereas the pharmacophore study also indicates a closer match between the pharmacophore model and the compounds. After comprehensive in silico studies we evolved three best compounds, namely, Vitexin, Isovitexin, and Orientin, which were conducted in vitro assay for further confirmation of their inhibitory activity and results exhibited all of these compounds showed strong inhibitory activity against S. aureus. The overall result suggests that these compounds could be used as a natural lead to inhibit the pathogenesis of S. aureus and antibiotic therapy for S. aureus-associated skin cancer in humans as well.
Collapse
Affiliation(s)
- Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labeled Research Unit-CNRSTN°4, Cadi Ayyad University, Marrakesh, Morocco
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Rashed Zaman
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
17
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
18
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
19
|
Fandiño-Devia E, Santa-González GA, Klaiss-Luna MC, Guevara-Lora I, Tamayo V, Manrique-Moreno M. ΔM4: Membrane-Active Peptide with Antitumoral Potential against Human Skin Cancer Cells. MEMBRANES 2023; 13:671. [PMID: 37505037 PMCID: PMC10385147 DOI: 10.3390/membranes13070671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Peptides have become attractive potential agents due to their affinity to cancer cells. In this work, the biological activity of the peptide ΔM4 against melanoma cancer cell line A375, epidermoid carcinoma cell line A431, and non-tumoral HaCaT cells was evaluated. The cytotoxic MTT assay demonstrates that ΔM4 show five times more activity against cancer than non-cancer cells. The potential membrane effect of ΔM4 was evaluated through lactate dehydrogenase release and Sytox uptake experiments. The results show a higher membrane activity of ΔM4 against A431 in comparison with the A375 cell line at a level of 12.5 µM. The Sytox experiments show that ΔM4 has a direct effect on the permeability of cancer cells in comparison with control cells. Infrared spectroscopy was used to study the affinity of the peptide to membranes resembling the composition of tumoral and non-tumoral cells. The results show that ΔM4 induces a fluidization effect on the tumoral lipid system over 5% molar concentration. Finally, to determine the appearance of phosphatidylserine on the surface of the cell, flow cytometry analyses were performed employing an annexin V-PE conjugate. The results suggest that 12.5 µM of ΔM4 induces phosphatidylserine translocation in A375 and A431 cancer cells. The findings of this study support the potential of ΔM4 as a selective agent for targeting cancer cells. Its mechanism of action demonstrated selectivity, membrane-disrupting effects, and induction of phosphatidylserine translocation.
Collapse
Affiliation(s)
- Estefanía Fandiño-Devia
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Gloria A Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, A.A. 54959, Medellín 050010, Colombia
| | - Maria C Klaiss-Luna
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Verónica Tamayo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| |
Collapse
|
20
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
21
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
22
|
Gjörloff Wingren A, Ziyad Faik R, Holefors A, Filecovic E, Gustafsson A. In vitro effects of undifferentiated callus extracts from Plantago major L, Rhodiola rosea L and Silybum marianum L in normal and malignant human skin cells. Heliyon 2023; 9:e16480. [PMID: 37292297 PMCID: PMC10245016 DOI: 10.1016/j.heliyon.2023.e16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Background and objectives The occurrence of non-melanoma and melanoma skin cancers is currently increasing rapidly with one in every three cancers diagnosed as a skin cancer. A useful strategy to control the progression of skin cancer could be the use of plant flavonoids that suppress pro-inflammatory cytokines involved in tumor initiation and progression. In this study, the anti-inflammatory and antioxidant activity of undifferentiated callus extracts from Plantago major L, Silybum marianum L and Rhodiola rosea L was investigated both in normal and malignant skin cells. Methods Antioxidant activity of the extracts was analyzed by using the Trolox Equivalent Antioxidant Capacity (TEAC) assay. High-Performance Thin-Layer Chromatography (HPTLC) was performed to demonstrate the phytochemical profile, and the total flavonoid content was analyzed with an aluminum chloride colorimetric method. The anti-inflammatory effect was investigated by cell treatments using the plant extracts. Thereafter, the possible suppression of induced IL-6 response was measured from the cultured skin cancer cell lines A2058 and A431, and normal primary keratinocytes with Enzyme-Linked Immunosorbent Assay (ELISA). Results The HPTLC analysis assessed that the extracts contained a complex phytochemical profile that was rich in phenolic and flavonoid compounds. Dose response assays showed that concentrations between 15 and 125 μg/mL of all three plant extracts could be used to investigate an effect on the IL-6 production. The S. marianum extract had the most pronounced anti-inflammatory effect, which significantly inhibited induced IL-6 production in both normal keratinocytes and skin cells derived from epidermal carcinoma. The extract from S. marianum also had the highest flavonoid content and showed the highest antioxidant activity of the three extracts tested. Conclusion All in all, we have confirmed that undifferentiated callus extracts of S. marianum possess properties such as antioxidant and anti-inflammatory activities in both normal and malignant keratinocytes, and thus could be a promising agent controlling the pro-inflammatory IL-6 production.
Collapse
Affiliation(s)
- Anette Gjörloff Wingren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Riyam Ziyad Faik
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Anna Holefors
- In Vitro Plant-Tech AB, Geijersg 4B, 21618 Limhamn, Sweden
| | - Edina Filecovic
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Anna Gustafsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
23
|
Wang S, Dauletyarov Y, Krüger P, Horke DA. High-throughput UV-photofragmentation studies of thymine and guanine. Phys Chem Chem Phys 2023; 25:12322-12330. [PMID: 37083208 PMCID: PMC10155487 DOI: 10.1039/d3cp00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed us to produce detailed 2D maps of fragmentation as a function of incident laser intensity. The fragmentation was distinctly soft, the parent ions being at least an order of magnitude more abundant than fragment ions. For thymine there was a single dominant fragmentation channel, which involves consecutive HNCO and CO losses. In contrast, for guanine there were several competing ones, the most probable channel corresponding to CH2N2 loss through opening of the pyrimidine ring. The dependence of parent ion abundance on the ionisation laser intensity showed that at 257 nm the ionisation of thymine is a 1 + 1 resonance enhanced process through its open-shell singlet state.
Collapse
Affiliation(s)
- Siwen Wang
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yerbolat Dauletyarov
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Peter Krüger
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Daniel A Horke
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients—A Comparison between Different Immunomodulating Conditions. Cancers (Basel) 2023; 15:cancers15061764. [PMID: 36980651 PMCID: PMC10046308 DOI: 10.3390/cancers15061764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Immunosuppression is strongly associated with an increased risk of developing cutaneous squamous cell carcinoma (cSCC). Studies on solid organ transplant recipients (SOTR) and chronic lymphocytic leukemia (CLL) patients have already demonstrated higher rates of aggressive cSCC tumors in these populations compared to immunocompetent controls. Studies on other immunosuppressed patient groups are scarce. This study was aimed at assessing the effects of different immunomodulating conditions on patients diagnosed with cSCC. We sought to compare the clinical features, treatments, and survival rates among the different study groups, as well as outcomes to those of immunocompetent controls with cSCC. Methods: A retrospective analysis of 465 cSCC patients, both immunosuppressed (IS) and immunocompetent controls. Etiologies for immunosuppression included SOTR, CLL, chronic kidney disease (CKD), psoriasis, rheumatoid arthritis (RA) and systemic lupus erythematous (SLE). Results: Compared to the control group, IS patients demonstrated several significant differences. These include higher rates of positive resection margins, higher recurrence rates, and multiple SCC tumors. Patients in the IS group, who were also given immunomodulating agents, demonstrated even lower survival rates. Cox regression analysis demonstrated statistically significant decreased overall survival (OS) rates for IS patients compared to the controls (OR = 1.9, p = 0.031). SOTR patients tend to have multiple cSCC tumors (35%), with the highest number of primary tumors compared to controls (2.54 tumors per patient on average, p < 0.001), but also compared to all other IS groups. The average SCC lesion size in the SOTR group was the smallest, measuring at 13.5 mm, compared to the control group and all other IS groups. Decreased survival rates were seen on Cox regression analysis compared to controls (HR = 2.4, p = 0.001), but also to all other IS groups. CLL patients also had the highest rates of positive margins compared to controls (36% vs. 9%, p < 0.01) and to all other IS groups. They were also most likely to get adjuvant or definitive oncological treatments, either radiotherapy or chemotherapy, compared to controls (36% vs. 15%, p = 0.02) and to other IS groups. Patients in the CKD group demonstrated the highest rates for multiple cSCC (OR = 4.7, p = 0.001) and the worst rates of survival on Cox regression analysis (HR = 3.2, p = 0.001). Both rheumatoid arthritis and psoriasis patients demonstrated the shortest disease-free survival rates (2.9y ± 1.1, 2.3y ± 0.7, respectively), compared to controls (4.1y ± 2.8) and to all other IS groups. Conclusions: Among cSCC patients, immunosuppression due to SOTR, CLL, CKD, RA, and psoriasis is associated with worse outcomes compared to controls and other IS groups. These patients should be regarded as high-risk for developing aggressive cSCC tumors. This study is the first to assess and compare cSCC outcomes among multiple IS patient groups.
Collapse
|
25
|
Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel) 2023; 12:antiox12030546. [PMID: 36978794 PMCID: PMC10045429 DOI: 10.3390/antiox12030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mounting evidence indicates that the microbiota, the unique combination of micro-organisms residing in a specific environment, plays an essential role in the development of a wide range of human diseases, including skin cancer. Moreover, a persistent imbalance of microbial community, named dysbiosis, can also be associated with oxidative stress, a well-known emerging force involved in the pathogenesis of several human diseases, including cutaneous malignancies. Although their interplay has been somewhat suggested, the connection between microbiota, oxidative stress, and skin cancer is a largely unexplored field. In the present review, we discuss the current knowledge on these topics, suggesting potential therapeutic strategies.
Collapse
|
26
|
Cohen D, Portugal-Cohen M, Oron M, Frusic-Zlotkin M, Soroka Y, Ma'or Z, Amar D, Kohen R. Cutaneous Nrf2-Keap1 pathway modulation by environmental factors: The Dead Sea area as a test case. Biofactors 2022; 49:428-437. [PMID: 36522798 DOI: 10.1002/biof.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The skin is constantly exposed to exogenous environmental stressors and has to cope with excessive oxidative stress and tissue damage. However, exposure to moderate environmental stressors may be beneficial for the cutaneous tissue and assist in protecting against oxidative damage via the enhanced activation of the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway. Such moderate stressors can be found in various locations around the globe. In this manuscript, we chose to focus on the Dead Sea (DS) area as a test case to study the effect of moderate stressors on the cutaneous tissue because of the unique combinations of moderate stressors in this area. The exceptional location of the DS at an altitude of -438 meters below sea level (the lowest place on earth) is responsible for its rare accumulation of moderate stressors such as high-water salinity, high atmospheric pressure, and unique solar radiation. In this manuscript, we hypothesized that the unique solar radiation in the DS area generates moderate oxidative stress in the skin leading to the induction of intracellular electrophiles, which in turn can activate the protecting Nrf2-Keap1 pathway. We showed that exposure of human skin organ culture from the same donor to solar radiation at the DS resulted in significant activation of the Nrf2-Keap1 pathway, induction of phase II enzymes, and lower apoptotic activity compared to a nearby location at a higher altitude (Jerusalem +700 m). This remarkable effect of activating the Nrf2 protecting pathway and the importance and characteristics of the solar irradiation at the DS is discussed.
Collapse
Affiliation(s)
- Dror Cohen
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Skin Research Institute, The Dead Sea & Arava Science Center, Masada, Israel
| | | | - Miriam Oron
- Miriam Oron Mingelgrin Consulting, Jerusalem, Israel
| | - Marina Frusic-Zlotkin
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoram Soroka
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ze'evi Ma'or
- The Dead Sea Hub department, Fosun Jinmei (Shanghai) Cosmetics Co., Ltd, Shanghai, China
| | - Dalit Amar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Bhargava S, Yumeen S, Henebeng E, Kroumpouzos G. Erosive Pustular Dermatosis: Delving into Etiopathogenesis and Management. Life (Basel) 2022; 12:2097. [PMID: 36556462 PMCID: PMC9784138 DOI: 10.3390/life12122097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Erosive pustular dermatosis (EPD) is a chronic inflammatory skin disorder that usually affects mature individuals. It predominantly affects the scalp and can lead to scarring alopecia. Risk factors include actinic damage and androgenetic alopecia. A traumatic insult to the skin is considered a vital trigger of the condition. EPD is a diagnosis of exclusion; thus, several neoplastic, infectious, vesiculobullous, and inflammatory conditions should be ruled out. Biopsy and clinicopathologic correlation are required to differentiate between EPD and these entities. A dysregulated, chronic immune response is considered central to the etiopathogenesis of EPD. We performed an evidence-based systematic review of the management options. There were predominantly studies with level IV and V evidence and only two with level III. Despite the responsiveness of EPD to potent topical steroids, such as clobetasol propionate, recurrence occurs after treatment withdrawal. With the available data, tacrolimus 0.1%, curettage-assisted aminolevulinic acid-photodynamic therapy, and systemic retinoids can be considered second-line options for EPD with a role in maintenance regimens. However, controlled data and more powerful studies are needed to make solid recommendations.
Collapse
Affiliation(s)
- Shashank Bhargava
- Department of Dermatology, R.D. Gardi Medical College and C.R. Gardi Hospital, Ujjain 456006, India
| | - Sara Yumeen
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Esther Henebeng
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - George Kroumpouzos
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
28
|
Ouyang K, Zheng DX, Agak GW. T-Cell Mediated Immunity in Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14246058. [PMID: 36551547 PMCID: PMC9775569 DOI: 10.3390/cancers14246058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and frequently lethal skin cancer with neuroendocrine characteristics. MCC can originate from either the presence of MCC polyomavirus (MCPyV) DNA or chronic ultraviolet (UV) exposure that can cause DNA mutations. MCC is predominant in sun-exposed regions of the body and can metastasize to regional lymph nodes, liver, lungs, bone, and brain. Older, light-skinned individuals with a history of significant sun exposure are at the highest risk. Previous studies have shown that tumors containing a high number of tumor-infiltrating T-cells have favorable survival, even in the absence of MCPyV DNA, suggesting that MCPyV infection enhances T-cell infiltration. However, other factors may also play a role in the host antitumor response. Herein, we review the impact of tumor infiltrating lymphocytes (TILs), mainly the CD4+, CD8+, and regulatory T-cell (Tregs) responses on the course of MCC, including their role in initiating MCPyV-specific immune responses. Furthermore, potential research avenues related to T-cell biology in MCC, as well as relevant immunotherapies are discussed.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - David X. Zheng
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
29
|
Probing photoprotection properties of lipophilic chain conjugated thiourea-aryl group molecules to attenuate ultraviolet-A induced cellular and DNA damages. Sci Rep 2022; 12:20907. [PMID: 36463260 PMCID: PMC9719470 DOI: 10.1038/s41598-022-25515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Ultraviolet-A (UVA) radiation is a major contributor to reactive oxygen species (ROS), reactive nitrite species (RNS), inflammation, and DNA damage, which causes photoaging and photocarcinogenesis. This study aimed to evaluate the UVA protective potential of lipophilic chain conjugated thiourea-substituted aryl group molecules against UVA-induced cellular damages in human dermal fibroblasts (BJ cell line). We tested a series of nineteen (19) molecules for UVA photoprotection, from which 2',5'-dichlorophenyl-substituted molecule DD-04 showed remarkable UVA protection properties compared to the reference (benzophenone). The results indicate that DD-04 significantly reduced intracellular ROS and nitric oxide (NO) as compared to the UVA-irradiated control (p < 0.001). Moreover, the compound DD-04 showed anti-inflammatory activity as it significantly reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) pro-inflammatory cytokines produced by THP-1 (human monocytic) cells (p < 0.05). DNA damage was also prevented by DD-04 treatment in the presence of UVA. It was observed that DD-04 significantly reduced the number of cyclobutane pyrimidine dimers (CPDs) when compared to the UVA-irradiated control (p < 0.001). Finally, the DNA strand breaks were checked and a single intact DNA band was seen upon treatment with DD-04 in the presence of UVA. In conclusion, DD-04 can be considered a potential candidate UVA filter due to its photoprotective potential.
Collapse
|
30
|
Tampa M, Neagu M, Caruntu C, Constantin C, Georgescu SR. Skin Inflammation—A Cornerstone in Dermatological Conditions. J Pers Med 2022; 12:jpm12091370. [PMID: 36143155 PMCID: PMC9503831 DOI: 10.3390/jpm12091370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Correspondence:
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
31
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
32
|
Ciążyńska M, Pabianek M, Sławińska M, Reich A, Lewandowski B, Szczepaniak K, Ułańska M, Nejc D, Brodowski R, Sobjanek M, Owczarek W, Kamińska-Winciorek G, Lange D, Słowińska M, Wróbel K, Bieniek A, Woźniacka A, Pękala A, Kuncman Ł, Salińska M, Noweta M, Skibińska M, Narbutt J, Ciążyński K, Lewandowska M, Dziankowska-Zaborszczyk E, Lesiak A. Risk Factors and Clinicopathological Features for Developing a Subsequent Primary Cutaneous Squamous and Basal Cell Carcinomas. Cancers (Basel) 2022; 14:3069. [PMID: 35804841 PMCID: PMC9264931 DOI: 10.3390/cancers14133069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with diagnosed keratinocyte carcinomas (KCs) have an increased risk of subsequent skin cancers development. Current studies indicate that patients with subsequent tumors should be followed up regularly. However, none of the studies indicate the connection between the specific subtypes and an increased risk for further KCs development. The study assesses the differences in the risk of developing a subsequent skin cancer after a previous diagnosis of KC, especially considering individual types of skin malignances, and identifies potential factors associated with an increased risk of new cutaneous tumor describing non-invasive diagnosis and monitoring. METHODS Pathology and medical records were examined to identify the characteristics of patients with multiple KCs diagnosed between 1999 and 2019. RESULTS The study group comprised 13,913 KCs occurring in 10,083 patients. Multiple KCs were observed in 2300 patients (22.8%). The analysis showed aggressive subtypes, multiple tumors, and male sex as significant prognostic factors. CONCLUSIONS The most crucial risk factors for developing subsequent KC are being of a male gender, an aggressive tumor subtype, and previous history of multiple skin cancers. Basal cell carcinoma subtypes, such as infiltrative basosquamous, with aggressive growth patterns predispose not only to increased risk for the recurrence but are also expected to be at higher risk of subsequent KCs.
Collapse
Affiliation(s)
- Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, ul. Pabianicka 62, 93-513 Lodz, Poland; (M.P.); (K.S.); (M.U.); (A.P.)
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Lodz, Poland; (M.N.); (M.S.); (J.N.); (A.L.)
| | - Marta Pabianek
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, ul. Pabianicka 62, 93-513 Lodz, Poland; (M.P.); (K.S.); (M.U.); (A.P.)
| | - Martyna Sławińska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.S.); (M.S.)
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Bogumił Lewandowski
- Clinical Department of Maxillo-Facial Surgery, Frederic Chopin Provincial Specialist Hospital, 35-310 Rzeszow, Poland; (B.L.); (R.B.)
| | - Katarzyna Szczepaniak
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, ul. Pabianicka 62, 93-513 Lodz, Poland; (M.P.); (K.S.); (M.U.); (A.P.)
| | - Małgorzata Ułańska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, ul. Pabianicka 62, 93-513 Lodz, Poland; (M.P.); (K.S.); (M.U.); (A.P.)
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Robert Brodowski
- Clinical Department of Maxillo-Facial Surgery, Frederic Chopin Provincial Specialist Hospital, 35-310 Rzeszow, Poland; (B.L.); (R.B.)
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.S.); (M.S.)
| | - Witold Owczarek
- Dermatology Clinic, Military Institute of Medicine in Warsaw, 04-141 Warsaw, Poland; (W.O.); (M.S.); (K.W.)
| | - Grażyna Kamińska-Winciorek
- Department of Bone Marrow Transplantation and Hematology-Oncology, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Branch in Gliwice, 44-102 Gliwice, Poland;
| | - Dariusz Lange
- Department of Tumor Pathology, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Branch in Gliwice, 44-102 Gliwice, Poland;
| | - Monika Słowińska
- Dermatology Clinic, Military Institute of Medicine in Warsaw, 04-141 Warsaw, Poland; (W.O.); (M.S.); (K.W.)
| | - Katarzyna Wróbel
- Dermatology Clinic, Military Institute of Medicine in Warsaw, 04-141 Warsaw, Poland; (W.O.); (M.S.); (K.W.)
| | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (M.S.)
| | - Anika Pękala
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, ul. Pabianicka 62, 93-513 Lodz, Poland; (M.P.); (K.S.); (M.U.); (A.P.)
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, 93-513 Lodz, Poland;
| | - Magdalena Salińska
- Department of Dermatology and Venereology, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (M.S.)
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Lodz, Poland; (M.N.); (M.S.); (J.N.); (A.L.)
| | - Małgorzata Skibińska
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Lodz, Poland; (M.N.); (M.S.); (J.N.); (A.L.)
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Lodz, Poland; (M.N.); (M.S.); (J.N.); (A.L.)
| | - Karol Ciążyński
- Institute of Applied Computer Science, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Marta Lewandowska
- Department of Infectious Diseases and Hepatology for Adults, Medical University of Lodz, 93-513 Lodz, Poland;
| | | | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Lodz, Poland; (M.N.); (M.S.); (J.N.); (A.L.)
| |
Collapse
|
33
|
Actinic keratosis (review of literature). BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2022-11-1-37-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Actinic keratosis is an important medical and social problem, the correct diagnosis and treatment of which will help to avoid the development of invasive forms of cutaneous squamous cell carcinoma. With the further development of the early diagnosis of cancer, including skin cancer, the increase in human life expectancy, and the popularization of travel to exotic countries, the number of cases of actinic keratosis among the population will continue to grow. In this regard, it is important to discuss the causes and pathogenesis of the disease, the varied clinical picture of the disease, methods of non-invasive diagnostics, as well as methods of treatment, of which there are a great many in the treatment of actinic keratosis today. However, each of the methods has both advantages and disadvantages, and in the global trend towards a personalized approach to treatment, it is important to choose from the standpoint of evidence-based medicine the most suitable for each individual patient. Moreover, after treatment of actinic keratosis, relapses often occur, which are the result of insufficient diagnosis and the development of incorrect treatment tactics. The review article provides the clinical picture of actinic keratosis, diagnostic and therapeutic methods, and their comparison with each other in terms of efficacy and safety
Collapse
|
34
|
Jelly Fig (Ficus awkeotsang Makino) Exhibits Antioxidative and Anti-Inflammatory Activities by Regulating Reactive Oxygen Species Production via NFκB Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050981. [PMID: 35624846 PMCID: PMC9138086 DOI: 10.3390/antiox11050981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antioxidant and anti-inflammatory activities of Ficus awkeotsang Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H2O2, and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as ferric-reducing antioxidant capability. The antioxidant activity of FAE was strongly associated with polyphenolic content (flavonoids at 10.3 mg QE g−1 and total phenol at 107.6 mg GAE g−1). The anti-inflammatory activity of FAE and the underlying molecular mechanisms were also investigated. The a* value of the mouse dorsal skin after treatment with FAE at 1.5 mg/mL in addition to chronic UVB exposure was found to decrease by 19.2% during a ten-week period. The anti-inflammatory effect of FAE was evidenced by the decreased accumulation of inflammatory cells and skin thickness. Expression levels of UVB-induced inflammatory proteins, including ROS, NF-κB, iNOS, COX-2, and IL-6, were significantly reduced upon FAE treatment in vitro and in vivo. Collectively, our results suggest that the inhibition of ROS and UVB-induced activation of the NF-κB downstream signaling pathway by FAE, indicating considerable potential as a versatile adjuvant against free radical damage in pharmaceutical applications.
Collapse
|
35
|
Coppola S, Avagliano C, Sacchi A, Laneri S, Calignano A, Voto L, Luzzetti A, Berni Canani R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022; 27:1849. [PMID: 35335213 PMCID: PMC8949901 DOI: 10.3390/molecules27061849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
36
|
Tampa M, Neagu M, Caruntu C, Georgescu SR. Personalized Medicine in the Field of Inflammatory Skin Disorders. J Pers Med 2022; 12:jpm12030426. [PMID: 35330426 PMCID: PMC8950545 DOI: 10.3390/jpm12030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
37
|
Ethanolic Fenugreek Extract: Its Molecular Mechanisms against Skin Aging and the Enhanced Functions by Nanoencapsulation. Pharmaceuticals (Basel) 2022; 15:ph15020254. [PMID: 35215366 PMCID: PMC8879298 DOI: 10.3390/ph15020254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to define an in vitro collagenase inhibitory activity of fenugreek extract (IC50 = 0.57 ± 0.02 mg/mL), which is 2.6 times more potent than vitamin C (IC50 = 1.46 mg/mL). Nanoencapsulation has been applied to improve the extract stability, and subsequently enhanced its bioactivities. Liponiosome encapsulating fenugreek extract (LNF) was prepared using a high-speed homogenizer, resulting in homogeneous spherical nanoparticles with sizes in the range of 174.7 ± 49.2 nm, 0.26 ± 0.04 in PdI, and 46.6 ± 7.4% of entrapment efficiency. LNF formulation significantly facilitated a sustained release and significantly enhanced skin penetration over the extracts, suggesting a potential use of LNF for transdermal delivery. The formulated LNF was highly stable, not toxic to human fibroblast, and was able to enhance cell viability, collagen production, and inhibit MMP1, MMP9, IL-6, and IL-8 secretions compared to the extract in the co-cultured skin model. Therefore, ethanolic fenugreek extract and its developed LNF display molecular mechanisms against skin aging and could potentially be used as an innovative ingredient for the prevention of skin aging.
Collapse
|
38
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
39
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
40
|
Iosageanu A, Ilie D, Craciunescu O, Seciu-Grama AM, Oancea A, Zarnescu O, Moraru I, Oancea F. Effect of Fish Bone Bioactive Peptides on Oxidative, Inflammatory and Pigmentation Processes Triggered by UVB Irradiation in Skin Cells. Molecules 2021; 26:2691. [PMID: 34064423 PMCID: PMC8124703 DOI: 10.3390/molecules26092691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the present study, we evaluated for the first time the photoprotective effect of fish bone bioactive peptides (FBBP) preparation isolated from silver carp (Hypophthalmichthys molitrix) discarded tissue using in vitro experimental models of skin cells exposed to ultraviolet B (UVB) irradiation and stressing agents. FBBP preparation was obtained by papain treatment of minced bones and centrifugal ultrafiltration, and the molecular weight (MW) distribution was characterized by size exclusion and reversed-phase high performance liquid chromatography (RP-HPLC). In vitro assessment of the effect of FBBP pretreatment in UVB-irradiated L929 fibroblasts and HaCaT keratinocytes revealed their cytoprotective activity. Their capacity to efficiently reduce reactive oxygen species (ROS) production and lipid peroxidation varied in a dose-dependent manner, and it was greater in fibroblasts. A decrease of proinflammatory cytokines secretion, in particular of tumor necrosis factor alpha (TNF-α), was found after FBBP pretreatment of THP-1-derived inflamed macrophages. Melanin production and tyrosinase activity investigated in UVB-irradiated Mel-Juso cells were lowered in direct relation to FBBP concentrations. FBBP fractions with high radical scavenging activity were separated by ion exchange chromatography, and two collagenic sequences were identified. All these results offer new scientific data on aquaculture fish bone-derived peptides confirming their ability to control the antioxidant, anti-inflammatory and pigmentation processes developed during UV irradiation of skin cells and recommend their use as valuable natural ingredients of photoprotective cosmeceutical products.
Collapse
Affiliation(s)
- Andreea Iosageanu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Daniela Ilie
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Ana-Maria Seciu-Grama
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Anca Oancea
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (D.I.); (A.-M.S.-G.); (A.O.)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania;
| | - Ionut Moraru
- Laboratoarele Medica SRL, 11, Frasinului Street, 075100 Otopeni, Romania;
| | - Florin Oancea
- National Institute for R&D in Chemistry and Petrochemistry—Icechim, 202, Splaiul Independentei, 060021 Bucharest, Romania;
| |
Collapse
|