1
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
2
|
Huang F, Huang S, Sun K, Chen Y, Xie G, Bao J, Fan Y. Protective effect of compound K against podocyte injury in chronic kidney disease by maintaining mitochondrial homeostasis. Sci Rep 2025; 15:435. [PMID: 39748100 PMCID: PMC11696807 DOI: 10.1038/s41598-024-84704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy. Here, we unveil the profound therapeutic potential of CK in a folic acid (FA)-induced CKD mouse model, demonstrating its ability to restore renal function and mitigate podocyte injury. CK exerted its nephroprotective effects by reinforcing inter-podocyte junctions, suppressing aberrant podocyte motility, and preventing podocyte detachment and apoptosis, thereby safeguarding the glomerular filtration barrier. Mechanistically, we identified mitochondrial dysregulation as a key driver of excessive oxidative stress, which is commonly associated with podocyte damage. CK remarkably restored mitochondrial homeostasis by attenuating pathological mitochondrial fission and enhancing mitophagy, thereby rebalancing the delicate mitochondrial network. Intriguingly, CK may disrupt the formation of the Drp1-Bax dimer, a crucial mediator of mitochondrial apoptosis, further averting podocyte loss. Collectively, our findings highlight CK as a potent nephroprotective agent, offering a novel therapeutic avenue for CKD management and redefining possibilities in the battle against progressive renal disease.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shuo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yanhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Guanqun Xie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
| |
Collapse
|
3
|
Chen J, Hu L, Zhou W, Wang C, Zhou X. AMPK down-regulating Beclin-1 in prostate cancer patients with bone metastasis: An observational study. Medicine (Baltimore) 2024; 103:e41024. [PMID: 39705435 PMCID: PMC11666198 DOI: 10.1097/md.0000000000041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Bone metastasis is frequently seen in patients, particularly those with prostate cancer, showing a higher hazard that deteriorates the quality of life of patients, leading to poor prognosis, which eventually causes significant mortality in prostate cancer patients. The present study investigated the mechanism of prostate cancer with bone metastasis by utilizing prostate specimens from patients. A total of 418 patients were initially enrolled for clinical analysis, including age, prostate-specific antigen (PSA) levels, body mass index (BMI), prostate magnetic resonance imaging (MRI), and bone MRI, while pathological analysis included grade group and carcinoma of the prostate. Patients were divided into a prostate cancer with bone metastasis group (group 1, prostate cancer patients) and benign prostate patient group (group 2, control group) and underwent subsequent immunohistochemical (IHC) detection. Expression of AMPK/Beclin-1 signaling pathways was analyzed through immunohistochemistry. Finally, 46 patients with prostate cancer bone metastasis (prostate cancer patients) and 61 patients with benign prostate (control group) met the inclusion criteria. We examined the expression levels of Beclin-1 and AMPK in human prostate tissues by IHC and found that Beclin-1 levels were negatively correlated with AMPK in prostate cancer with bone metastasis (P < .05). The results of this study suggest that AMPK-Beclin-1 significantly reduces prostate cancer metastasis to the bone in human tissues.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Urology, The People’s Hospital of Jiangshan, Quzhou, Zhejiang Province, China
| | - Lingyun Hu
- Department of Urology, The People’s Hospital of Jiangshan, Quzhou, Zhejiang Province, China
| | - Wangguang Zhou
- Department of Urology, The People’s Hospital of Jiangshan, Quzhou, Zhejiang Province, China
| | - Chaoyang Wang
- Department of Urology, The People’s Hospital of Jiangshan, Quzhou, Zhejiang Province, China
| | - Xuewu Zhou
- Department of Urology, The People’s Hospital of Jiangshan, Quzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
5
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Liu Z, Zeng X, Bian W, Li H, Tegeleqi B, Gao Z, Liu J. Exosomes From Muscle-Derived Stem Cells Repair Peripheral Nerve Injury by Inhibiting Ferroptosis via the Keap1-Nrf2-Ho-1 Axis. J Cell Biochem 2024; 125:e30614. [PMID: 38884354 DOI: 10.1002/jcb.30614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Currently, the clinical outcomes of peripheral nerve injuries are suboptimal, highlighting the urgent need to understand the mechanisms of nerve injury to enhance treatment strategies. Muscle-derived stem cells (MDSCs) are a diverse group of multipotent cells that hold promise for peripheral nerve regeneration due to their strong antioxidant and regenerative properties. Our research has revealed that severe ferroptosis occurs in the sciatic nerve and ipsilateral dorsal root ganglion following sciatic nerve injury. Interestingly, we have observed that MDSC-derived exosomes effectively suppress cell ferroptosis and enhance cell viability in Schwann cells and dorsal root ganglion cells. Treatment with exosomes led to increased expression of BDNF and P62 in Schwann cells, decreased expression of Keap1, Nrf2, and HO-1 in Schwann cells, and upregulated dorsal root ganglion cells. Rats treated with exosomes exhibited improvements in sciatic nerve function, sensitivity to stimuli, and reduced muscle atrophy, indicating a positive impact on post-injury recovery. In conclusion, our findings demonstrate the occurrence of ferroptosis in the sciatic nerve and dorsal root ganglion post-injury, with MDSC exosomes offering a potential therapeutic strategy by inhibiting ferroptosis, activating the Keap1-Nrf2-HO-1 pathway, and optimizing the post-injury repair environment.
Collapse
Affiliation(s)
- Ziwen Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Zeng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Bian
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoze Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bu Tegeleqi
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zewei Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianyu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Nucera F, Di Stefano A, Ricciardolo FLM, Gnemmi I, Pizzimenti C, Monaco F, Tuccari G, Caramori G, Ieni A. Role of ATG4 Autophagy-Related Protein Family in the Lower Airways of Patients with Stable COPD. Int J Mol Sci 2024; 25:8182. [PMID: 39125750 PMCID: PMC11311497 DOI: 10.3390/ijms25158182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal-Wallis test and the Mann-Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Pneumology, University of Messina, 98125 Messina, Italy;
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Isabella Gnemmi
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Francesco Monaco
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Toracic Surgery, University of Messina, 98125 Messina, Italy;
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Gaetano Caramori
- Department of Medicine and Surgery, Sections of Pneumology, University of Parma, 43126 Parma, Italy;
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| |
Collapse
|
8
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
9
|
Ragheb MA, Abdelrashid HE, Elzayat EM, Abdelhamid IA, Soliman MH. Novel cyanochalcones as potential anticancer agents: apoptosis, cell cycle arrest, DNA binding, and molecular docking studies. J Biomol Struct Dyn 2024:1-19. [PMID: 38373066 DOI: 10.1080/07391102.2024.2316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
In the light of anticancer drug discovery and development, a new series of cyanochalcones incorporating indole moiety (5a-g) were efficiently synthesized and characterized by different spectral analysis. MTT assay was used to evaluate the antiproliferative activity of the synthesized compounds towards different cancer cells (Hela, MDA-MB-231, A375, and A549) in parallel with normal cells (HSF). Trimethoxy and diethoxy-containing derivatives (5d and 5e) displayed the most selective cytotoxic activities against cervical Hela cells with IC50 values of 8.29 and 11.82 µM, respectively, with great safety pattern toward normal HSF cells (Selectivity index: 21.3 and 13.9, respectively). Therefore, 5d and 5e were chosen to study their effects on apoptosis, cell cycle arrest, and migration of Hela cells using flow cytometric analysis and wound healing assay. They induced apoptosis and cell cycle arrest at the S phase and impaired migration of HeLa cells. Regarding their effects on the expression profile of crucial genes related to the potential anticancer activities, 5d and 5e remarkably upregulated caspase 3 and Beclin1 and downregulated cyclin A1, CDK2, CDH2, MMP9, and HIF1A using qRT-PCR and ELISA techniques. UV-Vis spectral measurement demonstrated the ability of 5d and 5e to bind CT-DNA efficiently with Kb values of 3.7 × 105 and 1 × 105 M-1, respectively. Moreover, in silico molecular docking was performed to assess the binding affinities of the compounds toward the active sites of Bcl2, CDK2, and DNA. Therefore, cyanochalcones 5d and 5e might be promising anticancer agents and could offer a scientific basis for intensive research into cancer chemotherapy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Hanan E Abdelrashid
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
11
|
Pan B, Pan Y, Wang S, Bai Y, Hu X, Yang Y, Wu L, Liu J. ANXA2 and Rac1 negatively regulates autophagy and osteogenic differentiation in osteosarcoma cells to confer CDDP resistance. Biochem Biophys Res Commun 2023; 676:198-206. [PMID: 37536195 DOI: 10.1016/j.bbrc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Cisplatin (CDDP) is a mainstay chemotherapeutic agent for OS treatment, but drug resistance has become a hurdle to limit its clinical effect. Autophagy plays an important role in CDDP resistance in OS, and in the present study we explored the role of ANXA2 and Rac1 in dictating CDDP sensitivity in OS cells. METHODS ANXA2 and Rac1 expression levels were examined by Western blot and autophagy induction was detected by transmission electron miscroscope (TEM) in the clinical samples and OS cell lines. CDDP resistant cells were established by exposing OS cells to increasing doses of CDDP. The effects of ANXA2 and Rac1 knockdown on CDDP sensitivity were evaluated in the cell and animal models. RESULTS Reduced autophagy was associated with the increased expression of ANXA2 and Rac1 in CDDP resistant OS tumor samples and cells. Autophagy suppression promoted CDDP resistance and inducing autophagy re-sensitized the resistant cells to CDDP treatment in vitro and in vivo. Further, knocking down ANXA2 or Rac1 re-activated autophagy and attenuated CDDP resistance in OS cells. We further demonstrated that CDDP resistant OS cells displayed a poorer osteogenic differentiation state when compared to the parental cell lines, which was significantly reversed by autophagy re-activation and ANXA2 or Rac1 silencing. CONCLUSION Our findings revealed a complicated interplay of ANXA2/Rac1, autophagy induction, and osteogenic differentiation in dictating CDDP resistance in OS cells, suggesting ANXA2 and Rac1 as promising targets to modulate autophagy and overcome CDDP resistance in OS cells.
Collapse
Affiliation(s)
- Baolong Pan
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yanyu Pan
- College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shuangneng Wang
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yingying Bai
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xuemei Hu
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yang Yang
- Health Examination Center, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Ling Wu
- Department of Blood Composition Production, Central Blood Station of Yuxi City, Yuxi, 653100, Yunnan, China.
| | - Jianping Liu
- Research Management Department, Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
12
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023; 64:12999-13023. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Recent Advances in Cellular Signaling Interplay between Redox Metabolism and Autophagy Modulation in Cancer: An Overview of Molecular Mechanisms and Therapeutic Interventions. Antioxidants (Basel) 2023; 12:antiox12020428. [PMID: 36829987 PMCID: PMC9951923 DOI: 10.3390/antiox12020428] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Autophagy is a fundamental homeostatic process in which certain cellular components are ingested by double-membrane autophagosomes and then degraded to create energy or to maintain cellular homeostasis and survival. It is typically observed in nutrient-deprived cells as a survival mechanism. However, it has also been identified as a crucial process in maintaining cellular homeostasis and disease progression. Normal cellular metabolism produces reactive oxygen (ROS) and nitrogen species at low levels. However, increased production causes oxidative stress, which can lead to diabetes, cardiovascular diseases, neurological disorders, and cancer. It was recently shown that maintaining redox equilibrium via autophagy is critical for cellular responses to oxidative stress. However, little is understood about the molecular cancer processes that connect to the control of autophagy. In cancer cells, oncogenic mutations, carcinogens, and metabolic reprogramming cause increased ROS generation and oxidative stress. Recent studies have suggested that increased ROS generation activates survival pathways that promote cancer development and metastasis. Moreover, the relationship between metabolic programming and ROS in cancer cells is involved in redox homeostasis and the malignant phenotype. Currently, while the signaling events governing autophagy and how redox homeostasis affects signaling cascades are well understood, very little is known about molecular events related to autophagy. In this review, we focus on current knowledge about autophagy modulation and the role of redox metabolism to further the knowledge of oxidative stress and disease progression in cancer regulation. Therefore, this review focuses on understanding how oxidation/reduction events fine-tune autophagy to help understand how oxidative stress and autophagy govern cancer, either as processes leading to cell death or as survival strategies for maintaining redox homeostasis in cancer.
Collapse
|