1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025; 599:112466. [PMID: 39848431 PMCID: PMC11886953 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| |
Collapse
|
2
|
Zhan S, Chen J, Wei L, Gan S, Zhang Q, Fu H. Allergic diseases and T2DM: a bidirectional multivariable Mendelian randomization study and mediation analysis. J Asthma 2025; 62:655-673. [PMID: 39541335 DOI: 10.1080/02770903.2024.2430368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Clinical studies involving observation have uncovered a mutual relationship between allergic disorders and diabetes, yet the precise causal link remains undetermined. METHODS We conducted two-sample bidirectional Mendelian randomization analyses using single nucleotide polymorphisms (SNPs) associated with allergic conditions (asthma, allergic rhinitis, atopic dermatitis) from genome-wide studies and SNPs related to type 2 diabetes from FinnGen. Initially, we evaluated the causal link between allergic disorders and type 2 diabetes through a univariate Mendelian randomization study, incorporating inverse variance weighting, MR-Egger, and the weighted median estimator. To address potential confounding, we employed multivariate Mendelian randomization. Finally, we validated mediators influencing the correlation between asthma and type 2 diabetes. RESULTS The Inverse variance weighted method showed that asthma genetically increased the risk of type 2 diabetes [Asthma-type 2 diabetes: β(95%CI)=0.892 (0.152-1.632), p = 0.018]. Allergic rhinitis and type 2 diabetes exhibit a mutual protective effect: β(95% CI)=-1.333 (-2.617 to -0.049), p = 0.042; type 2 diabetes-Allergic rhinitis: β(95%CI)=-0.002 (-0.004 to -0.000), p = 0.018. The Multivariable Mendelian randomization study results showed that after excluding confounding factors, asthma still demonstrates statistical significance in relation to type 2 diabetes. Through mediation analysis, it was discovered that lung function and the percentage of monocytes in leukocytes exert an inhibitory effect on the mediation between asthma and type 2 diabetes. CONCLUSION The Multivariable Mendelian randomization study indicates asthma as a risk factor for type 2 diabetes. Lung function, and the percentage of monocytes in leukocytes, play an inhibitory role in asthma and type 2 diabetes mediating effects.
Collapse
Affiliation(s)
- Shukun Zhan
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jinhua Chen
- Follow-Up Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lingxue Wei
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Siyu Gan
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Qi Zhang
- Department of Pediatrics, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| |
Collapse
|
3
|
Açik M, Çakiroğlu FP, Tekin A, Egeli A. The effect of fish oil versus krill oil intervention on clinical symptoms and cardiometabolic risk factors in patients with major depressive disorder: A randomized placebo-controlled double-blind trial. J Affect Disord 2025; 380:171-180. [PMID: 40118278 DOI: 10.1016/j.jad.2025.03.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND This study aimed to compare the effects of krill- and fish-oil interventions on clinical symptoms and metabolic risk factors in individuals with MDD. METHODS In this randomized study, 57 adults diagnosed with MDD were allocated to receive krill-oil (520 mg EPA + DHA), fish-oil (600 mg EPA + DHA), or a placebo (soybean-oil) daily for 8 weeks. Anthropometric measurements, depression anxiety stress-21 (DASS-21) scale, and Hamilton depression rating scale (HDRS) were performed at baseline and 4 and 8 weeks. In addition, venous blood samples were collected at baseline and post-intervention to evaluate lipid and glycemic profiles, including fasting glucose, HbA1c, cholesterol, triglycerides, LDL-c, and HDL-c levels.SPSS and R Studio software programs were used for statistical analysis. RESULTS A total of 50 participants completed the study, with 17 in each intervention group and 16 in the placebo. The mean HDRS scores decreased significantly in both the krill-oil (8.5 ± 1.2) and fish-oil groups (10.0 ± 1.2) compared to the placebo (p < 0.001), indicating clinical symptom improvement. Furthermore, the interaction effect of group-by-time was found to be statistically significant (η2p = 0.273;ptime×group < 0.001). Anxiety and distress scores decreased to similar levels after the post-intervention compared to baseline in krill- and fish-oil groups. Krill- and fish-oil supplementation increased plasma HDL-c and uric acid levels, but the group-by-time interaction effect was only observed at the HDL-c level (η2p = 0.238;ptime×group = 0.002). The mean HbA1c rates and plasma triglyceride levels of krill-oil recipients were lower after the post-intervention. CONCLUSION Krill- and fish-oil could be considered as a safe and effective adjuvant treatments for depression. However, there was no evidence of apparent superiority over each other.
Collapse
Affiliation(s)
- Murat Açik
- Fırat University, Department of Nutrition and Dietetics, Faculty of Health Sciences, Elazığ, Turkey.
| | - Funda Pınar Çakiroğlu
- Ankara University, Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara, Turkey
| | - Atilla Tekin
- Adıyaman University Faculty of Medicine, Department of Psychiatry, Adıyaman, Turkey
| | - Aslı Egeli
- Tarsus State Hospital, Psychiatric Clinic, Mersin, Turkey
| |
Collapse
|
4
|
Blomquist SA, Albrecht JH, Hallmark B, Klimentidis YC, Garcia LA, Mandarino LJ, Coletta DK, Chilton FH. The influence of FADS genetic variation and omega-3 fatty acid deficiency on cardiometabolic disease risk in a Mexican American population. Front Nutr 2025; 12:1538505. [PMID: 40129663 PMCID: PMC11932658 DOI: 10.3389/fnut.2025.1538505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025] Open
Abstract
Background Latinos, the largest racial/ethnic minority group in the United States, have high rates of cardiometabolic diseases, hypothesized due in part to genetic variation in the fatty acid desaturase (FADS) cluster that is associated with reduced omega-3 (n-3) highly unsaturated fatty acid (HUFA) biosynthesis. This study examined how variations in FADS and other HUFA pathway-related genes (ELOVL5 and ELOVL2) impact cardiometabolic disease risk factors in Latinos of Mexican Ancestry (LMA). Results This study analyzed 493 self-identified LMA from the Arizona Insulin Resistance registry (AIR) and found a marked enrichment in FADS alleles linked the ancestral haplotype (AH) compared to European Americans. LMA individuals with two AH alleles produced markedly lower levels of n-6 and n-3 HUFAs. However, this was more pronounced with the n-3 HUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), where the n-6 arachidonic acid (ARA) to EPA and DHA ratios were 30:1 and 5:1, respectively, and circulating EPA levels were reduced to <5 ng/mL. Importantly, genetic variations in both FADS and ELOVL2/5 regions also were strongly associated with several cardiometabolic disease (CMD) markers, with the presence of two FADS AH alleles corresponding to a 45, 33, and 41% increase in fasting insulin, triglyceride levels and HOMA-IR, respectively. Conclusion This study reveals the potential impact of genetically influenced HUFA regulation and n-3 HUFA deficiency on cardiometabolic disease risk within LMA. These insights provide a strong rationale for future studies and clinical trials that focus on n-3 HUFA supplementation to mitigate CMD disparities in LMA populations.
Collapse
Affiliation(s)
- Sarah A. Blomquist
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Jil H. Albrecht
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Brian Hallmark
- Department of Medicine, College of Medicine Tucson, and Asthma and Airway Diseases Research Center, University of Arizona Health Sciences, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Yann C. Klimentidis
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, United States
| | - Luis A. Garcia
- Division of Endocrinology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, AZ, United States
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
5
|
Essawy AE, Jimmiey EM, Abdel-Wahab WM, Ali RG, Eweda SM, Abdou HM. The protective efficacy of omega-3 polyunsaturated fatty acids on oxidative stress, inflammation, neurotransmitter perturbations, and apoptosis induced by monosodium glutamate in the brain of male rats. Metab Brain Dis 2025; 40:114. [PMID: 39878784 PMCID: PMC11779784 DOI: 10.1007/s11011-025-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs). Biochemical analysis, immunohistochemical, and histological examinations were conducted upon completion of the treatment protocol. Results revealed that MSG significantly increased malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin 1β, acetylcholinesterase, monoamine oxidase, and caspase-3. However, the MSG-treated group showed a decline in reduced glutathione, catalase, superoxide dismutase, dopamine, and serotonin. In addition, MSG caused histopathological changes in the cortical region which support the biochemical and immunohistochemical analysis. Supplementation of ω-3 PUFAs greatly improved the biochemical, immunohistochemical, and histopathological alterations induced by MSG administration in the brain cortex. Together, these findings revealed a neuroprotective effect of ω-3 PUFAs against MSG-induced toxicity in the brain cortex by attenuating oxidative damage, inflammation, neurochemical perturbations, and apoptosis.
Collapse
Affiliation(s)
- Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| | - Eman M Jimmiey
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| | - Wessam M Abdel-Wahab
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt.
| | - Rania G Ali
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Saber M Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21515, Egypt
| |
Collapse
|
6
|
Torres-Vanegas J, Rodríguez-Echevarría R, Campos-Pérez W, Rodríguez-Reyes SC, Reyes-Pérez SD, Pérez-Robles M, Martínez-López E. Effect of a Diet Supplemented with Marine Omega-3 Fatty Acids on Inflammatory Markers in Subjects with Obesity: A Randomized Active Placebo-Controlled Trial. Healthcare (Basel) 2025; 13:103. [PMID: 39857130 PMCID: PMC11764561 DOI: 10.3390/healthcare13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with chronic low-grade inflammation. Polyunsaturated fatty acids (PUFAs) such as omega-3 (n-3), are essential in anti-inflammatory processes. Therefore, the aim of this study was to evaluate the effect of a dietary intervention along with supplementation of 1.8 g of marine n-3 PUFAs on anthropometric, biochemical, and inflammatory markers in adults. METHODS An 8-week double-blind randomized clinical trial was conducted with a diet (200 kcal/day reduction each 4 weeks based on the estimated basal caloric expenditure) containing a n-6/n-3 PUFA ratio ≤ 5:1, along with daily 1.8 g of marine n-3 supplementation (EPA and DHA) vs. active placebo 1.6 g (ALA). A total of 40 subjects were included in the study, 21 in the marine omega-3 group and 19 in the active placebo group. Inclusion criteria included subjects aged 25 to 50 years with obesity as determined by body mass index (BMI) and/or abdominal obesity according to ATP III criteria. RESULTS The marine omega-3 supplemented group had a better effect compared to the active placebo group, increasing Resolvin D1 [129.3 (-90.1-193.5) vs. -16.8 (-237.8-92.5) pg/mL, p = 0.041], IL-10 [1.4 (-0.7-4.6) vs. -2.0 (-5-0.05) pg/mL, p = 0.001], and decreasing IL-6 [-0.67 (2.72--0.59) vs. 0.03 (-0.59-1.84) pg/mL, p = 0.015], and MCP-1 [-29.6 (-94.9-5.50) vs. 18.3 (-97.3-66.35) pg/mL, p = 0.040]. CONCLUSIONS A diet supplemented with marine n-3 improves inflammatory markers by increasing systemic levels of Resolvin D1 and IL-10 and decreasing IL-6 and MCP-1.
Collapse
Affiliation(s)
- Joel Torres-Vanegas
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Roberto Rodríguez-Echevarría
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Wendy Campos-Pérez
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Sarai Citlalic Rodríguez-Reyes
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Samantha Desireé Reyes-Pérez
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Mariana Pérez-Robles
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| | - Erika Martínez-López
- Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
- Doctorado en Ciencias en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, JA, Mexico
| |
Collapse
|
7
|
Loos C, Castelein A, Vanzant E, Adam E, McLeod KR. Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet. Animals (Basel) 2024; 14:3385. [PMID: 39682351 DOI: 10.3390/ani14233385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Insulin dysregulation (ID) is associated with an increased risk of laminitis which often necessitates the need for clinical intervention. To test the contention that the prophylactic supplementation of nutraceuticals could mitigate ID in susceptible horses, 16 mature horses with a history of ID were supplemented with either the placebo (n = 8) or nutraceutical (n = 8) once daily. Horses were housed in dry lots with ad libitum access to grass hay and fed a concentrate twice daily to provide 0.5 g starch/kg BW/meal. A combined glucose-insulin tolerance test was performed on all horses before and after 4 weeks of treatment. Nutraceutical-supplemented horses had 61% greater (p = 0.05) glucose clearance rates compared to the placebo group. This resulted in a shorter time in the positive phase of glucose clearance (p = 0.03) for the nutraceutical group compared to the placebo group. Horses receiving the nutraceutical had lower (p = 0.003) insulin concentrations at 75 min and lower (p = 0.04) glucose concentrations at 45 min compared to the placebo. Prophylactic supplementation with nutraceuticals resulted in greater glucose clearance rates during a starch challenge, indicating that nutraceuticals can mitigate ID in susceptible horses consuming an excess of non-structural carbohydrate.
Collapse
Affiliation(s)
- Caroline Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Annette Castelein
- Nutrition Department, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Eric Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Emma Adam
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Yan Y, Li Z, Lian Y, Liu P, Zhang B, Chen J. Global research dynamics in the Mediterranean diet and diabetes mellitus: a bibliometric study from 2014 to 2024. Front Nutr 2024; 11:1480856. [PMID: 39610877 PMCID: PMC11603804 DOI: 10.3389/fnut.2024.1480856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objective The Mediterranean diet (MedDiet) has been found to have benefits for diabetes mellitus (DM), but a bibliometric analysis of its association with DM has yet to be conducted. This paper aims to explore the current status and research hotspots on the connection between the Mediterranean diet and DM from 2014 to 2024, providing a reference for future studies. Methods We retrieved articles published between 2014 and 2024 from the Web of Science database and analyzed them using R software, VOSviewer, and CiteSpace. Results A total of 2,806 articles were included in this study. Research on the relationship between the MedDiet and DM showed a steady increase in publication volume from 2014 to 2019, followed by a sharp rise from 2020 to 2023. Spain was the leading country in terms of publication volume, followed by Italy, the United States, China, and Greece. Spain also led in international collaborations, with CIBER-Centro de Investigación Biomédica en Red and Harvard University being the most prominent collaboration centers. Nutrients was the most frequently published and cited journal in this field. Common keywords in this literature included components such as olive oil, legumes, and red wine. Mechanisms studied in this field primarily focused on antioxidant effects, improvements in insulin sensitivity and secretion, regulation of lipid metabolism, and modulation of gut microbiota. Conclusion Research on the beneficial effects of the MedDiet on DM patients has garnered significant attention from researchers worldwide, and it is expected to become a major focus for future DM prevention and treatment. This study provides a comprehensive analysis of the current status and research hotspots regarding the relationship between the MedDiet and DM, offering valuable references for future research.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanchu Lian
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Pingping Liu
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Juan Chen
- Department of Pharmacy, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| |
Collapse
|
9
|
Ying Z, Fu M, Fang Z, Ye X, Wang P, Lu J. Mediterranean diet lowers risk of new-onset diabetes: a nationwide cohort study in China. Nutr J 2024; 23:131. [PMID: 39443956 PMCID: PMC11515611 DOI: 10.1186/s12937-024-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MD) has shown promising results in preventing type 2 diabetes, particularly in Mediterranean and European populations. However, the applicability of these benefits to non-Mediterranean populations is unclear, with contradictory findings in the literature. METHODS In this study, we included 12,575 participants without diabetes at baseline from the China Health and Nutrition Survey (CHNS). Dietary intake was measured by three consecutive 24-h dietary recalls. The Mediterranean diet adherence (MDA) was measured by a score scale that included nine components of vegetables, legumes, fruits, nuts, cereals, fish, red meat, dairy products, and alcohol. New-onset diabetes was defined as self-reported physician-diagnosed diabetes during the follow-up. RESULTS During a median follow-up of 9.0 years, 445 (3.5%) subjects developed diabetes. Overall, there was an inverse association between the MDA score and new-onset diabetes (per score increment, HR 0.83, 95% CI 0.76-0.90). Moreover, age, sex, BMI, and energy intake significantly modified the association between the MDA score and the risk of new-onset diabetes (all P interactions < 0.05). Greater fruit, fish, and nut intake was significantly associated with a lower risk of new-onset diabetes. CONCLUSION There was an inverse association between Mediterranean diet adherence and new-onset diabetes in the Chinese population.
Collapse
Affiliation(s)
- Zhen Ying
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Huashan Hospital, Fudan University, Shanghai, 200032, China.
| | - Minjie Fu
- Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Zezhou Fang
- People's Hospital of Putuo, Zhoushan, 316000, China
| | - Xiaomei Ye
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Ping Wang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| | - Jiaping Lu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| |
Collapse
|
10
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Background Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. Methodology A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. Results and Discussion Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. Conclusion Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hemami RM, Farhangi MA, Rouzi MD, Abdi F. Dietary fatty acid pattern and its association with metabolic profile among overweight and obese adults. BMC Endocr Disord 2024; 24:141. [PMID: 39103858 DOI: 10.1186/s12902-024-01662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Numerous studies have revealed the role of dietary fatty acids in human health. However, few studies have evaluated dietary fatty acid patterns and their association with metabolic parameters. The current study aimed to explore the association between dietary fatty acid patterns and risk factors for metabolic syndrome (MetS) among overweight and obese adults. METHODS This cross-sectional study involved 340 participants who were overweight or obese. The study included assessments of body composition and anthropometric measurements. Dietary fatty acid consumption was evaluated using a validated Food Frequency Questionnaire (FFQ) containing 168 items. Additionally, biochemical parameters, including serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), fasting serum glucose (FSG), and insulin levels, were measured using enzymatic methods. Fatty acid patterns were determined by principal component analysis (PCA), and the association between these dietary FA patterns and risk factors related to MetS components was assessed using logistic regression. RESULTS Factor analysis conducted in this study explored three dietary fatty acid patterns: saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and long-chain combined fatty acids (LC-CFA). Those at the highest tertile of the SFA pattern had lower diastolic blood pressure (DBP) (P = 0.03). Low-density lipoprotein cholesterol (LDL) was lower in the second and third tertiles (P ≤ 0.05). Also, higher fasting blood glucose (FBS) was observed in the second and third tertiles (P < 0.05), and the homeostatic model assessment of insulin resistance (HOMA-IR) was higher in the third tertile (P = 0.049). In the PUFA pattern, FBS was lower in the third tertile (P = 0.03). In the LC-CFA pattern, lower TC was achieved in higher tertiles (P = 0.04). CONCLUSION Our findings demonstrated that consuming high and moderate SFA patterns is associated with higher FBS and HOMA-IR. Also, increased consumption of SCFAs is related to lower DPB and LDL. Individuals who consumed more PUFA, especially linoleic acid, had lower FBS. These outcomes might be beneficial in managing MetS and leading to a new field of research.
Collapse
Affiliation(s)
- Reyhaneh Mokhtari Hemami
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri street, Daneshgah Blv, Tabriz, Iran.
| | | | - Fatemeh Abdi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri street, Daneshgah Blv, Tabriz, Iran
| |
Collapse
|
12
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
13
|
Fresa K, Catandi GD, Whitcomb L, Gonzalez-Castro RA, Chicco AJ, Carnevale EM. Adiposity in mares induces insulin dysregulation and mitochondrial dysfunction which can be mitigated by nutritional intervention. Sci Rep 2024; 14:13992. [PMID: 38886475 PMCID: PMC11183153 DOI: 10.1038/s41598-024-64628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a complex disease associated with augmented risk of metabolic disorder development and cellular dysfunction in various species. The goal of the present study was to investigate the impacts of obesity on the metabolic health of old mares as well as test the ability of diet supplementation with either a complex blend of nutrients designed to improve equine metabolism and gastrointestinal health or L-carnitine alone to mitigate negative effects of obesity. Mares (n = 19, 17.9 ± 3.7 years) were placed into one of three group: normal-weight (NW, n = 6), obese (OB, n = 7) or obese fed a complex diet supplement for 12 weeks (OBD, n = 6). After 12 weeks and completion of sample collections, OB mares received L-carnitine alone for an additional 6 weeks. Obesity in mares was significantly associated with insulin dysregulation, reduced muscle mitochondrial function, and decreased skeletal muscle oxidative capacity with greater ROS production when compared to NW. Obese mares fed the complex diet supplement had better insulin sensivity, greater cell lipid metabolism, and higher muscle oxidative capacity with reduced ROS production than OB. L-carnitine supplementation alone did not significantly alter insulin signaling, but improved lipid metabolism and muscle oxidative capacity with reduced ROS. In conclusion, obesity is associated with insulin dysregulation and altered skeletal muscle metabolism in older mares. However, dietary interventions are an effective strategy to improve metabolic status and skeletal muscle mitochondrial function in older mares.
Collapse
Affiliation(s)
- Kyle Fresa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Giovana D Catandi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Luke Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Raul A Gonzalez-Castro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Elaine M Carnevale
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
14
|
Hao L, Chen CY, Nie YH, Kaliannan K, Kang JX. Differential Interventional Effects of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on High Fat Diet-Induced Obesity and Hepatic Pathology. Int J Mol Sci 2023; 24:17261. [PMID: 38139090 PMCID: PMC10743920 DOI: 10.3390/ijms242417261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Current Dietary Guidelines for Americans recommend replacing saturated fat (SFA) intake with polyunsaturated fatty acids (PUFAs) and monosaturated fatty acids (MUFAs) but do not specify the type of PUFAs, which consist of two functionally distinct classes: omega-6 (n-6) and omega-3 (n-3) PUFAs. Given that modern Western diets are already rich in n-6 PUFAs and the risk of chronic disease remains high today, we hypothesized that increased intake of n-3 PUFAs, rather than n-6 PUFAs, would be a beneficial intervention against obesity and related liver diseases caused by high-fat diets. To test this hypothesis, we fed C57BL/6J mice with a high-fat diet (HF) for 10 weeks to induce obesity, then divided the obese mice into three groups and continued feeding for another 10 weeks with one of the following three diets: HF, HF+n-6 (substituted half of SFA with n-6 PUFAs), and HF+n-3 (substituted half of SFA with n-3 PUFAs), followed by assessment of body weight, fat mass, insulin sensitivity, hepatic pathology, and lipogenesis. Interestingly, we found that the HF+n-6 group, like the HF group, had a continuous increase in body weight and fat mass, while the HF+n-3 group had a significant decrease in body weight and fat mass, although all groups had the same calorie intake. Accordingly, insulin resistance and fatty liver pathology (steatosis and fat levels) were evident in the HF+n-6 and HF groups but barely seen in the HF+n-3 group. Furthermore, the expression of lipogenesis-related genes in the liver was upregulated in the HF+n-6 group but downregulated in the HF+n-3 group. Our findings demonstrate that n-6 PUFAs and n-3 PUFAs have differential effects on obesity and fatty liver disease and highlight the importance of increasing n-3 PUFAs and reducing n-6 PUFAs (balancing the n-6/n-3 ratio) in clinical interventions and dietary guidelines for the management of obesity and related diseases.
Collapse
Affiliation(s)
- Lei Hao
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (L.H.); (C.-Y.C.)
- Department of Nursing and Allied Health Professions, Indiana University of Pennsylvania, Indiana, PA 15705, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (L.H.); (C.-Y.C.)
- Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yong-Hui Nie
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (L.H.); (C.-Y.C.)
| | - Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (L.H.); (C.-Y.C.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology (LLMT), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (L.H.); (C.-Y.C.)
- Omega-3 and Global Health Institute, Boston, MA 02129, USA
| |
Collapse
|
15
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
16
|
Zhao M, Xiao M, Tan Q, Lu F. Triglyceride glucose index as a predictor of mortality in middle-aged and elderly patients with type 2 diabetes in the US. Sci Rep 2023; 13:16478. [PMID: 37777574 PMCID: PMC10542790 DOI: 10.1038/s41598-023-43512-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Despite a wealth of research linking the triglyceride glucose index (TyG index) to metabolic diseases. However, little evidence links the TyG index to all-cause or CVD mortality in middle-aged and elderly individuals with type 2 diabetes (T2D). This study analyzed data from 2998 patients with T2D who participated in the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2018. The TyG index and mortality in middle-aged and elderly T2D patients were investigated using Cox regression models. The nonlinear association between the TyG index and mortality can be understood with the help of a restricted cubic spline (RCS). During a median follow-up period of 82 months, 883 fatalities were observed from all causes and 265 from CVD. The TyG index was found to have a U-shaped relationship with all-cause and CVD mortality in T2D, with cutoffs of 8.95 and 9, respectively, according to the RCS. After controlling for other factors, an increase of 1 unit in the TyG index was related to an increase of 33% in all-cause mortality and 50% in CVD mortality when TyG was ≥ 8.95 and 9. When TyG < 8.95 and 9, with the change in the TyG index, the change in all-cause and CVD death was insignificant. Patients with T2D who are middle-aged or older, especially elderly patients, have higher TyG levels associated with increased mortality. In middle-aged and elderly patients with T2D, the TyG index may predict the probability of death from any cause and death from CVD.
Collapse
Affiliation(s)
- Mengjie Zhao
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China
- Graduate School of Beijing University of Chinese Medicine, 11 North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Mengli Xiao
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China
| | - Qin Tan
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China
| | - Fang Lu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, 1 Xiyuan Caochang, Haidian District, Beijing, 100091, China.
| |
Collapse
|
17
|
da Silva BSF, Ferreira NR, Alamar PD, de Melo e Silva T, Pinheiro WBDS, dos Santos LN, Alves CN. FT-MIR-ATR Associated with Chemometrics Methods: A Preliminary Analysis of Deterioration State of Brazil Nut Oil. Molecules 2023; 28:6878. [PMID: 37836721 PMCID: PMC10574611 DOI: 10.3390/molecules28196878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Brazil nut oil is highly valued in the food, cosmetic, chemical, and pharmaceutical industries, as well as other sectors of the economy. This work aims to use the Fourier transform infrared (FTIR) technique associated with partial least squares regression (PLSR) and principal component analysis (PCA) to demonstrate that these methods can be used in a prior and rapid analysis in quality control. Natural oils were extracted and stored for chemical analysis. PCA presented two groups regarding the state of degradation, subdivided into super-degraded and partially degraded groups in 99.88% of the explained variance. The applied PLS reported an acidity index (AI) prediction model with root mean square error of calibration (RMSEC) = 1.8564, root mean square error of cross-validation (REMSECV) = 4.2641, root mean square error of prediction (RMSEP) = 2.1491, R2cal (calibration correlation coefficient) equal to 0.9679, R2val (validation correlation coefficient) equal to 0.8474, and R2pred (prediction correlation coefficient) equal to 0, 8468. The peroxide index (PI) prediction model showed RMSEC = 0.0005, REMSECV = 0.0016, RMSEP = 0.00079, calibration R2 equal to 0.9670, cross-validation R2 equal to 0.7149, and R2 of prediction equal to 0.9099. The physical-chemical analyses identified that five samples fit in the food sector and the others fit in other sectors of the economy. In this way, the preliminary monitoring of the state of degradation was reported, and the prediction models of the peroxide and acidity indexes in Brazil nut oil for quality control were determined.
Collapse
Affiliation(s)
- Braian Saimon Frota da Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Priscila Domingues Alamar
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Thiago de Melo e Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | | | - Lucely Nogueira dos Santos
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Cláudio Nahum Alves
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| |
Collapse
|
18
|
Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications-Current Advances and Future Prospects. Life (Basel) 2023; 13:1831. [PMID: 37763235 PMCID: PMC10533039 DOI: 10.3390/life13091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes poses a significant global health challenge, necessitating innovative therapeutic strategies. Natural products and their derivatives have emerged as promising candidates for diabetes management due to their diverse compositions and pharmacological effects. Algae, in particular, have garnered attention for their potential as a source of bioactive compounds with anti-diabetic properties. This review offers a comprehensive overview of algae-derived natural products for diabetes management, highlighting recent developments and future prospects. It underscores the pivotal role of natural products in diabetes care and delves into the diversity of algae, their bioactive constituents, and underlying mechanisms of efficacy. Noteworthy algal derivatives with substantial potential are briefly elucidated, along with their specific contributions to addressing distinct aspects of diabetes. The challenges and limitations inherent in utilizing algae for therapeutic interventions are examined, accompanied by strategic recommendations for optimizing their effectiveness. By addressing these considerations, this review aims to chart a course for future research in refining algae-based approaches. Leveraging the multifaceted pharmacological activities and chemical components of algae holds significant promise in the pursuit of novel antidiabetic treatments. Through continued research and the fine-tuning of algae-based interventions, the global diabetes burden could be mitigated, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Leonel Pereira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
- Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| |
Collapse
|
19
|
Therdyothin A, Phiphopthatsanee N, Isanejad M. The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Mar Drugs 2023; 21:399. [PMID: 37504930 PMCID: PMC10381755 DOI: 10.3390/md21070399] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality, and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation, have been sought to prevent this condition. This narrative review summarizes the current evidence on the effect and mechanism of n-3 PUFA on musculoskeletal health. Despite conflicting evidence, n-3 PUFA is suggested to benefit muscle mass and volume, with more evident effects with higher supplementation dose (>2 g/day). n-3 PUFA supplementation likely improves handgrip and quadriceps strength in the elderly. Improved muscle functions, measured by walking speed and time-up-to-go test, are also observed, especially with longer duration of supplementation (>6 months), although the changes are small and unlikely to be clinically meaningful. Lastly, n-3 PUFA supplementation may positively affect muscle protein synthesis response to anabolic stimuli, alleviating age-related anabolic resistance. Proposed mechanisms by which n-3 PUFA supplementation improves muscle health include 1. anti-inflammatory properties, 2. augmented expression of mechanistic target of rapamycin complex 1 (mTORC1) pathway, 3. decreased intracellular protein breakdown, 4. improved mitochondrial biogenesis and function, 5. enhanced amino acid transport, and 6. modulation of neuromuscular junction activity. In conclusion, n-3 PUFAs likely improve musculoskeletal health related to sarcopenia, with suggestive effect on muscle mass, strength, physical performance, and muscle protein synthesis. However, the interpretation of the findings is limited by the small number of participants, heterogeneity of supplementation regimens, and different measuring protocols.
Collapse
Affiliation(s)
- Atiporn Therdyothin
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Department of Orthopedics, Police General Hospital, Bangkok 10330, Thailand
| | | | - Masoud Isanejad
- Department of Musculoskeletal Ageing and Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|