1
|
Tkach VV, Morozova TV, de Mascarenhas Gaivão IO, Ivanushko YG, da Paiva Martins JIF, Barros AN. Advancements and Challenges in Sucralose Determination: A Comparative Review of Chromatographic, Electrochemical, and Spectrophotometric Methods. Foods 2025; 14:1267. [PMID: 40238521 PMCID: PMC11988418 DOI: 10.3390/foods14071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
This review presents an in-depth analysis of the latest methods used for the determination of sucralose (E955), focusing on research conducted over the past 10 years. As a widely used sugar substitute in the food and pharmaceutical industries, sucralose has raised concerns about its environmental persistence, potential genotoxicity, and health impacts. This study examines several spectrophotometric, chromatographic, and electrochemical techniques, evaluating their sensitivity, selectivity, and limitations in differentiating sucralose from natural carbohydrates and other sweeteners. The review highlights the pressing need for novel detection methods that not only improve accuracy in trace detection but also address growing concerns about its bioaccumulation and conversion into harmful metabolites. Advancing these analytical techniques is essential for enhancing food safety, public health surveillance, and environmental risk assessment. Chromatographic methods are dominant in sucralose determination in foods and environmental objects, as they allow the determination of sucralose at micro- and nanomolar levels. However, spectrophotometric and electrochemical methods are frequently used as complementary to chromatographic methodologies, sensitizing them. On the other hand, purely spectrophotometric methods are less popular, and electrochemical methods remain underdeveloped. Therefore, the advancement of sucralose determination must be due to cheaper chromatographic and classical electrochemical methods.
Collapse
Affiliation(s)
- Volodymyr V. Tkach
- General and Material Chemistry Department, Chernivtsi National University, Kotrsyubynsky Str. 2, 58000 Chernivtsi, Ukraine
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-065 Porto, Portugal;
| | - Tetiana V. Morozova
- Ecology and Environmental Protection Department, National Transport University, Omelianovych-Pavlenko Str. 1, 01001 Kyiv, Ukraine;
| | | | - Yana G. Ivanushko
- Disaster and Military Medicine Department, Bukovinian State Medical University, Teatralna Sq. 9, 58001 Chernivtsi, Ukraine;
| | | | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Huang H, Liu S, Peng Z, Wang B, Zhan S, Huang S, Li W, Liu D, Yang X, Zhu Y, Xiao W. Comparative effects of different sugar substitutes: Mogroside V, stevioside, sucralose, and erythritol on intestinal health in a type 2 diabetes mellitus mouse. Food Funct 2025; 16:2108-2123. [PMID: 39969196 DOI: 10.1039/d4fo04446k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Intestinal health disorders significantly contribute to the development of type 2 diabetes mellitus (T2DM). Sugar substitutes such as mogroside V (MOG), stevioside (ST), sucralose (TGS), and erythritol (ERT), are increasingly used in T2DM management as alternatives to sucrose (SUC). However, their effects on intestinal health in T2DM have not been fully compared. In the present study, we established a T2DM mouse model using a high-fat diet and streptozotocin injection. These mice were treated with equal doses of SUC, MOG, ST, TGS, or ERT for 4 weeks to evaluate the effects of these sugar substitutes on intestinal health in T2DM. T2DM mice exhibited increased intestinal permeability, reduced goblet cell numbers, elevated pro-inflammatory cytokine levels, and alterations in both gut microbiota and metabolite composition. After 4 weeks of treatment, MOG showed the most significant benefits. MOG activates the PI3K/AKT pathway, enhancing the expression of tight junction proteins, which improves intestinal barrier function and reduces permeability. This is accompanied by NF-κB inhibition, leading to reduced pro-inflammatory cytokine production and increased mucus secretion. These changes help maintain healthy gut microbiota and metabolites, preventing pathogenic bacteria from entering the bloodstream. ST downregulates NF-κB to alleviate intestinal inflammation and improves gut microbiota and metabolic homeostasis in T2DM. ERT has less beneficial effects. TGS and SUC reduce intestinal inflammation and have a better effect on the duodenum. However, TGS has a negative effect on the colon microbiota and metabolites, whereas SUC has a negative effect on the colon microbiota alone. MOG improved intestinal health in T2DM by modulating the PI3K/AKT and NF-κB pathways, whereas ST primarily modulated NF-κB to alleviate intestinal inflammation. Both treatments were effective, with MOG showing the best performance. Therefore, MOG can be considered a viable alternative to SUC for T2DM management.
Collapse
Affiliation(s)
- Huaxue Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China.
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Sha Liu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zhi Peng
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Bin Wang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuang Zhan
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Sirui Huang
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Wei Li
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Dai Liu
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Xiulian Yang
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China.
| | - Wenjun Xiao
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Celik Atalay E, Er Demirhan B, Sagdıcoglu Celep AG. Low-Calorie Sweeteners and Reproductive Health: Evidence and Debates. CURRENT NUTRITION & FOOD SCIENCE 2025; 21:309-332. [DOI: 10.2174/0115734013315621240802055207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025]
Abstract
The reduction in sugar consumption has led to increased use of low-calorie artificial
sweeteners. This coincides with an increase in infertility rates, suggesting that low-calorie artificial
sweeteners may negatively affect reproductive health. Low-calorie sweeteners may affect
oxidative stress, glucose regulation, and the microbiota, which are associated with reproductive
health. Therefore, a review was conducted to examine the effects of commonly used low-calorie
sweeteners on reproductive health through potential biological mechanisms. This review addresses
the effects of low-calorie sweeteners in a wide range of areas, such as infertility, pregnancy and
neonatal health, and early menarche. Recent studies have indicated potential adverse effects of artificial
sweeteners on reproductive health. Research has examined the potential impacts of artificial
sweeteners on various parameters, such as hormone levels, sperm quality, sperm motility, ovarian
function, and pregnancy outcomes. However, the findings of current studies are inconsistent, and
these disparate results may stem from metabolic differences among different types of artificial
sweeteners, variations in research methodologies, diversity in sample sizes, and fluctuations in
study populations. Therefore, further research is needed to comprehensively understand the effects
of artificial sweeteners on reproductive health.
Collapse
Affiliation(s)
- Ece Celik Atalay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Buket Er Demirhan
- Department of
Pharmaceutical Basic Science, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
4
|
Chakravartti SP, Jann K, Veit R, Liu H, Yunker AG, Angelo B, Monterosso JR, Xiang AH, Kullmann S, Page KA. Non-caloric sweetener effects on brain appetite regulation in individuals across varying body weights. Nat Metab 2025; 7:574-585. [PMID: 40140714 DOI: 10.1038/s42255-025-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/31/2025] [Indexed: 03/28/2025]
Abstract
Sucralose, a widely used non-caloric sweetener, provides sweet taste without calories. Some studies suggest that non-caloric sweeteners stimulate appetite, possibly owing to the delivery of a sweet taste without the post-ingestive metabolic signals that normally communicate with the hypothalamus to suppress hunger. In a randomized crossover trial (ClinicalTrials.gov identifier: NCT02945475 ), 75 young adults (healthy weight, overweight or with obesity) consumed a drink containing sucralose, sweetness-matched sucrose or water. We show that acute consumption of sucralose versus sucrose stimulates hypothalamic blood flow (P < 0.018) and greater hunger responses (P < 0.001). Sucralose versus water also increases hypothalamic blood flow (P < 0.019) but produces no difference in hunger ratings. Sucrose, but not sucralose, increases peripheral glucose levels, which are associated with reductions in medial hypothalamic blood flow (P < 0.007). Sucralose, compared to sucrose and water, results in increased functional connections between the hypothalamus and brain regions involved in motivation and somatosensory processing. These findings suggest that non-caloric sweeteners could affect key mechanisms in the hypothalamus responsible for appetite regulation.
Collapse
Affiliation(s)
- Sandhya P Chakravartti
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Hanyang Liu
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra G Yunker
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John R Monterosso
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Kathleen A Page
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
- Division of Endocrinology and Diabetes, Department of Medicine & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Filip R. Effects of Selected Food Additives on the Gut Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). MEDICINA (KAUNAS, LITHUANIA) 2025; 61:192. [PMID: 40005309 PMCID: PMC11857189 DOI: 10.3390/medicina61020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
The purpose of this article is to present selected food additives as disruptors of normal intestinal homeostasis with a potential impact on the development of metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive literature search was conducted in three major electronic databases: PubMed, ScienceDirect, and Google Scholar. MASLD is a prevalent liver condition that is closely related to the global rise in obesity. Its pathogenesis is multifactorial, with genetic, environmental, and metabolic factors playing a key role. The "multiple-hit" hypothesis suggests that a Western-style diet, rich in ultra-processed foods, saturated fats, and food additives, combined with low physical activity, contributes to obesity, which promotes lipid accumulation in the liver. Recent studies underscore the role of impaired intestinal homeostasis in the development of MASLD. Food additives, including preservatives, emulsifiers, and sweeteners, affect gut health and liver function. Selected preservatives inhibit pathogenic microorganisms but disrupt the intestinal microbiota, leading to changes in intestinal permeability and liver dysfunction. Some emulsifiers and thickeners can cause inflammation and alter the gut microbiome, contributing to liver steatosis. Furthermore, the use of sweeteners such as sucralose and aspartame has been linked to changes in liver metabolism and intestinal microbial composition, which in turn promotes metabolic disorders.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Gastroenterology Clinic, Center for Comprehensive Treatment of Inflammatory, Bowel Disease Regional Hospital No. 2 in Rzeszow, 35-301 Rzeszow, Poland
- Department of Internal Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
6
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|