1
|
Vinken M, Grimm D, Baatout S, Baselet B, Beheshti A, Braun M, Carstens AC, Casaletto JA, Cools B, Costes SV, De Meulemeester P, Doruk B, Eyal S, Ferreira MJS, Miranda S, Hahn C, Helvacıoğlu Akyüz S, Herbert S, Krepkiy D, Lichterfeld Y, Liemersdorf C, Krüger M, Marchal S, Ritz J, Schmakeit T, Stenuit H, Tabury K, Trittel T, Wehland M, Zhang YS, Putt KS, Zhang ZY, Tagle DA. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv 2025; 81:108574. [PMID: 40180136 PMCID: PMC12048243 DOI: 10.1016/j.biotechadv.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Bjorn Baselet
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Afshin Beheshti
- Center of Space Biomedicine, McGowan Institute for Regenerative Medicine, and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markus Braun
- German Space Agency, German Aerospace Center, Bonn, Germany
| | | | - James A Casaletto
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Ben Cools
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sylvain V Costes
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Phoebe De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bartu Doruk
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Silvana Miranda
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Christiane Hahn
- European Space Agency, Human and Robotic Exploration Programmes, Human Exploration Science team, Noordwijk, the Netherlands
| | - Sinem Helvacıoğlu Akyüz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Herbert
- Space Systems, Airbus Defence and Space, Immenstaad am Bodensee, Germany
| | - Dmitriy Krepkiy
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yannick Lichterfeld
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jette Ritz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Theresa Schmakeit
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hilde Stenuit
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Torsten Trittel
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yu Shrike Zhang
- Division of Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA; Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Danilo A Tagle
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Panzo N, Memon H, Ong J, Suh A, Sampige R, Lee R, Waisberg E, Kadipasaoglu CM, Berdahl J, Chévez-Barrios P, Lee AG. Molecular and biomechanical changes of the cornea and lens in spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:151-157. [PMID: 40280636 DOI: 10.1016/j.lssr.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Nicholas Panzo
- Texas A&M School of Medicine, Bryan, Texas, United States.
| | - Hamza Memon
- Texas A&M School of Medicine, Bryan, Texas, United States
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Alex Suh
- Tulane School of Medicine, New Orleans, Louisiana, United States
| | - Ritu Sampige
- Baylor College of Medicine, Houston, Texas, United States
| | - Ryung Lee
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - Cihan M Kadipasaoglu
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States
| | - John Berdahl
- Vance Thompson Vision, Sioux Falls, South Dakota, USA
| | - Patricia Chévez-Barrios
- Baylor College of Medicine, Houston, Texas, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, United States
| | - Andrew G Lee
- University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Ghani F, Zubair AC. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 2025:10.1038/s41375-025-02624-4. [PMID: 40275072 DOI: 10.1038/s41375-025-02624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
With the advent of deep space exploration and ambitious plans to return humans to the Moon and journey onward to Mars, humans will face exposure to ionizing radiation beyond Earth's atmosphere and magnetosphere. This is particularly concerning for the hematopoietic system that is sensitive to galactic cosmic rays (GCRs) during interplanetary missions. Epidemiological studies and animal studies implicate that exposure to ionizing radiation can cause leukemias, with recent consensus showing that almost all types of leukemias, even chronic lymphocytic leukemia, can be caused by ionizing radiation despite previous controversies. The possible deleterious effects of deep space travel on the formation, development, etiology, and pathophysiology of hematologic malignancies, specifically leukemias, remain largely unclear. The mechanism(s) by which ionizing radiations cause leukemia differs for different leukemia types and is poorly understood in the spaceflight environment, posing a serious health risk for future astronauts. This paper provides a comprehensive review of the various studies and evidence available on Earth and in space assessing the relationship between ionizing radiation and increased risk of leukemia. We also discuss the unique characteristics of leukemia in space, ethical considerations, risk assessments and potential challenges this may bring to astronauts and healthcare professionals as humanity continues to explore the cosmos.
Collapse
Affiliation(s)
- Fay Ghani
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Li X, He Y, Han H, Chen Z. Evaluation of shielding materials against galactic cosmic rays for protecting astronauts. RADIATION PROTECTION DOSIMETRY 2025; 201:361-377. [PMID: 40130568 DOI: 10.1093/rpd/ncaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Exposure to Galactic Cosmic Rays (GCR) presents significant health risks to astronauts during long-duration deep space missions. Although existing studies have examined dose and particle energy spectra under GCR exposure scenarios, there is still a lack of studies covering various shielding quantities, especially regarding the self-shielding transmission characteristics of the human body. In this study, we used Monte Carlo simulations with the PHITS codes, coupled with the ICRP male reference phantom, to evaluate the performance of shielding materials against GCR. We comprehensively analyzed several physical quantities, including organ dose equivalent, absorbed dose, effective dose equivalent, and the flux and dose of secondary particles. Our findings analyzed the body's self-shielding effect and proton dose buildup effect. This study provides systematic data that offers valuable insights into astronaut safety during deep space exploration.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Yutao He
- School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Huanyu Han
- School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Zhi Chen
- School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| |
Collapse
|
5
|
Prakash P, Weerasinghe J, Levchenko I, Prasad K, Alexander K. Polyimide nanocomposites for next generation spacesuits. MATERIALS HORIZONS 2025. [PMID: 40094194 DOI: 10.1039/d4mh01816h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyimides have a long history of use in space missions, with Kapton® being the first polymer material to touch the surface of the Moon. Polyimides offer remarkable mechanical strength, superior thermal stability, and resistance to radiation, chemicals, and wear, and as such are often serve as a thermal barrier and a protective layer against extreme radiation and temperatures in multi-layer insulation systems. While the use of Kapton® in spacesuits dates back to the two aluminised Kapton® layers used in the spacesuits in the Apollo 11 mission, the potential uses of polyimides in the design of spacesuits remain underexplored, particularly considering the advancement made in the development of high-performance polyimide-based composites. This review explores the opportunities that emerge when the desirable properties of polyimides are combined with that of nanomaterials, specifically carbon nanomaterials, to produce strategic material combinations that promise to achieve enhanced thermal and mechanical properties, improved resistance to abrasion and puncture, and potentially reduced weight compared to traditional spacesuit materials. In turn, these advancements will contribute to the development of next-generation spacesuits that offer superior comfort, protection, and astronaut mobility during extravehicular activities.
Collapse
Affiliation(s)
- Priyanka Prakash
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Janith Weerasinghe
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Karthika Prasad
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Katia Alexander
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
6
|
Roy U, Hadad R, Rodriguez AA, Saju A, Roy D, Gil M, Keane RW, Scott RT, Mao XW, de Rivero Vaccari JP. Effects of Space Flight on Inflammasome Activation in the Brain of Mice. Cells 2025; 14:417. [PMID: 40136666 PMCID: PMC11941215 DOI: 10.3390/cells14060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.
Collapse
Affiliation(s)
- Upal Roy
- Department of Health and Biomedical Science, University of Texas Rio Grande Valley, Brownsville, TX 78539, USA; (A.A.R.)
| | - Roey Hadad
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angel A. Rodriguez
- Department of Health and Biomedical Science, University of Texas Rio Grande Valley, Brownsville, TX 78539, USA; (A.A.R.)
| | - Alen Saju
- Department of Health and Biomedical Science, University of Texas Rio Grande Valley, Brownsville, TX 78539, USA; (A.A.R.)
| | - Deepa Roy
- Department of Health and Biomedical Science, University of Texas Rio Grande Valley, Brownsville, TX 78539, USA; (A.A.R.)
| | - Mario Gil
- Department of Psychological Science and School of Medicine Institute of Neuroscience, University of Texas Rio Grande Valley, Brownsville, TX 78539, USA
| | - Robert W. Keane
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ryan T. Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Xiao W. Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA 92354, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Luoni F, Weber U, Lang AK, Westermayer M, Horst F, Baricco M, Bocchini L, Giraudo M, Santin G, Schuy C, Durante M, Boscolo D. Dose Build-up of High-energy 1H and 4He Ions in Standard, Innovative and In Situ Shielding Materials for Space Radiation: Measurements and Simulations. Radiat Res 2025; 203:163-174. [PMID: 39923805 DOI: 10.1667/rade-24-00244.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Galactic cosmic rays (GCR) are among the biggest hindrances to crewed space exploration. The ions contributing the most to fluence and absorbed dose in free space are 1H and 4He. In addition, their contribution to dose equivalent increases behind thick shields. In this work, the results of depth-dose measurements performed with high-energy 1H and 4He ions (2 GeV and 480 MeV 1H, and 430 MeV/u 4He) in structural (aluminum alloy), standard (PMMA and high-density polyethylene), innovative (lithium hydride) and in situ (Moon regolith simulant) shielding materials are presented. A strong dose build-up effect, due to target fragments and secondary protons, is observed in the first part of the Bragg curve for all the tested ion beams. The experimental results are compared to the Monte Carlo simulation tools most used for radiation protection in space, i.e., different physics lists of Geant4, PHITS, and FLUKA.
Collapse
Affiliation(s)
- Francesca Luoni
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
- Current address: RP-AS Group, CERN, Meyrin, Switzerland
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
| | - Alica Karin Lang
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Moritz Westermayer
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
- CREATIS, CNRS UMR5220, University of Lyon, Villeurbanne, France
| | - Felix Horst
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Marcello Baricco
- Chemistry Department and NIS-INSTM, University of Turin, Torino, Italy
| | | | | | | | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Daria Boscolo
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
8
|
Clement K, Nemec-Bakk AS, Jun SR, Sridharan V, Patel CM, Williams DK, Newhauser WD, Willey JS, Williams J, Boerma M, Chancellor JC, Koturbash I. Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:17-27. [PMID: 39841235 DOI: 10.1007/s00411-025-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.5 Gy, or 1.5 Gy simplified simulated 5 ion GCR (GCRsim). Exposure to microgravity was simulated using hindlimb unloading (HLU). At nine months post exposure, the mice were terminated to assess for the presence of exposure-induced epigenetic alterations. DNA hypermethylation in the 5'-untranslated regions of Lx_III, MdFanc_I, and MdMus_II families of the Long Interspersed Nucleotide Element 1 (LINE-1) was observed in the lungs of male mice. These effects were accompanied by increases in the expression of DNA methyltransferases Dnmt1 and Dnmt3a, and methyl-binding protein, MecP2. Trends towards DNA hypomethylation, although insignificant, were observed in the lungs of female mice in the HLU + 1.5 Gy GCRsim group. Altogether, our findings suggest persistent and sex-specific epigenetic reprogramming in the mouse lung and suggests that the DNA methylation status of LINE-1 can serve as a robust and reliable biomarker of previous radiation exposure.
Collapse
Affiliation(s)
- Kirsten Clement
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Ashley S Nemec-Bakk
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Chirayu M Patel
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - D Keith Williams
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Mary Bird Perkins Cancer Center, Louisiana State University, 439-B Nicholson Hall, Tower Dr, Baton Rouge, LA, 70803-4001, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Jeffrey C Chancellor
- Department of Medical Physiology, College of Medicine, Medical Research and Education Building II, Texas A&M University, 8447 Riverside Pkwy, Office, 341, Bryan, TX, 77807, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
| |
Collapse
|
9
|
Scheinkman R, Aggarwal R, Janmohamed SR, Ginsburg S, Houk G, Gwillim E. Dermatological ramifications of radiation for NASA's Artemis and Gateway missions: a narrative review. Arch Dermatol Res 2025; 317:461. [PMID: 39987262 DOI: 10.1007/s00403-025-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Affiliation(s)
- Ryan Scheinkman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Rahul Aggarwal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sherief R Janmohamed
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
- Cosmodermic BV, Brussels, Belgium
| | - Sabrina Ginsburg
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Garrett Houk
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eran Gwillim
- Scripps Health, San Diego, CA, USA
- Elli & Co, La Jolla, San Diego, CA, USA
| |
Collapse
|
10
|
Zhang Y, Du X, Zhang M, Sun Y. Constructing mRNA-meth-miRNA single-sample networks to reveal the molecular interaction patterns induced by lunar orbital stressors in rice (Oryzasativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109430. [PMID: 39724765 DOI: 10.1016/j.plaphy.2024.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber. Compared to the control group, rice seeds that underwent spaceflight showed inhibited growth and development when planted on the ground. Then we collected samples and employed RNA sequencing (RNA-Seq) and whole-genome bisulfite sequencing (WGBS) in the tillering and heading stages of rice. To gain a comprehensive understanding of the dysregulation in molecular interaction patterns during Moon exploration, a bioinformatics pipeline based on mRNA-meth-miRNA Single-Sample Networks (SSNs) was developed. Specifically, we constructed four SSNs for each sample at the mRNA, DNA methylation (promoter and gene bodies), and miRNA levels. By combining with the Protein-Protein Interaction (PPI) network, SSNs can character individual-specific gene interaction patterns. Under spaceflight conditions, distinct interaction patterns emerge across various omics levels. However, the molecules driving changes at each omics level predominantly regulate consistent biological functions, such as metabolic processes, DNA damage and repair, cell cycle, developmental processes, etc. In the tillering stage, pathways such as ubiquitin mediated proteolysis, nucleotide excision repair, and nucleotide metabolism are significantly enriched. Moreover, we identified 18 genes that played key/hub roles in the dysregulation of multi-omics molecular interaction patterns, and observed their involvement in regulating the above biological processes. As aforementioned, our multi-omics SSNs method can reveal the molecular interaction patterns under deep space exploration.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Xiaohui Du
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
11
|
Sugimoto M, Maekawa M, Mita H, Yokobori SI. Anthocyanin can improve the survival of rice seeds from solar light outside the international space station. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:79-85. [PMID: 39864915 DOI: 10.1016/j.lssr.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 01/28/2025]
Abstract
A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively. RNA analysis revealed that 1,590 and 1,546 seed-stored mRNAs (long-lived mRNAs) were degraded in the white seeds of the top and the bottom layers, respectively, whereas those of the purple seeds in the top and bottom layers were 548 and 303, respectively. These results suggest that anthocyanin protected seeds and safeguarded long-lived mRNAs from solar light and space radiation to increase the seed viability.
Collapse
Affiliation(s)
- Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Hajime Mita
- Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka, Fukuoka 811-0295, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
12
|
Ong J, Soares B, Osteicoechea D, Kadipasaoglu CM, Waisberg E, Suh A, Sampige R, Nguyen T, Masalkhi M, Sarker P, Zaman N, Tavakkoli A, Berdahl J, Chévez-Barrios P, Lee AG. The cornea during spaceflight: a frontier in space medicine ophthalmology. Eye (Lond) 2024; 38:3207-3209. [PMID: 39034319 PMCID: PMC11584635 DOI: 10.1038/s41433-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA.
| | - Benjamin Soares
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | | | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK
| | - Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Ritu Sampige
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | | | - Patricia Chévez-Barrios
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew G Lee
- Texas A&M School of Medicine, Bryan, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Marchal S, Choukér A, Bereiter-Hahn J, Kraus A, Grimm D, Krüger M. Challenges for the human immune system after leaving Earth. NPJ Microgravity 2024; 10:106. [PMID: 39557881 PMCID: PMC11574097 DOI: 10.1038/s41526-024-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.
Collapse
Affiliation(s)
- Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, LMU University Hospital, LMU Munich, Marchioninistr. 15, Munich, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
14
|
Du X, Zhang Y, Zhang M, Sun Y. Variations in DNA methylation and the role of regulatory factors in rice ( Oryza sativa) response to lunar orbit stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1427578. [PMID: 39610890 PMCID: PMC11603183 DOI: 10.3389/fpls.2024.1427578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Deep space flight imposes higher levels of damage on biological organisms; however, its specific effects on rice remain unclear. To investigate the variations in DNA methylation under deep space flight conditions, this study examined rice seeds carried by Chang'e-5. After 23 days of lunar orbital flight, the samples were planted in an artificial climate chamber and subjected to transcriptome and DNA methylation sequencing during the tillering and heading stages. The methylation patterns in the rice genome exhibited variability in response to lunar orbital stressors. DNA methylation alters the expression and interaction patterns of functional genes, involving biological processes such as metabolism and defense. Furthermore, we employed single-sample analysis methods to assess the gene expression and interaction patterns of different rice individuals. The genes exhibiting changes at the transcriptional and methylation levels varied among the different plants; however, these genes regulate consistent biological functions, primarily emphasizing metabolic processes. Finally, through single-sample analysis, we identified a set of miRNAs induced by lunar orbital stressors that potentially target DNA methylation regulatory factors. The findings of this study broaden the understanding of space biological effects and lay a foundation for further exploration of the mechanisms by which deep space flight impacts plants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and
Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
15
|
Zhang Y, Wang W, Zhang M, Zhang B, Gao S, Hao M, Zhou D, Zhao L, Reitz G, Sun Y. Using single-sample networks and genetic algorithms to identify radiation-responsive genes in rice affected by heavy ions of the galactic cosmic radiation with different LET values. FRONTIERS IN PLANT SCIENCE 2024; 15:1457587. [PMID: 39582626 PMCID: PMC11581881 DOI: 10.3389/fpls.2024.1457587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Introduction Heavy ions of the galactic cosmic radiation dominate the radiation risks and biological effects for plants under spaceflight conditions. However, the biological effects and sensitive genes caused by heavy ions with different linear energy transfer (LET) values have not been thoroughly studied. Methods To comprehensively analyze the biological effects of heavy ions with different LET values on rice under spaceflight conditions, we utilized the Shijian-10 recoverable satellite (SJ-10) to transport the dehydrated rice seeds on a 12.5-day mission in a 252 km low Earth orbit (LEO), and obtained rice plants hit by individual heavy ions with LET values ranging from 18 keV/μm to 213 keV/μm. The transcriptome and methylation sequencing were conducted on above plants, and a bioinformatics pipeline based on single-sample networks (SSNs) and genetic algorithms (GA) was developed to analyze the multi-omics expression profiles in this work. Note that SSNs can depict the gene interaction patterns within a single sample. The LET regression models were constructed from both gene expression and interaction pattern perspectives respectively, and the radiation response genes that played significant roles in the models were identified. We designed a gene selection algorithm based on GA to enhance the performance of LET regression models. Results The experimental results demonstrate that all our models exhibit excellent regression performance (R2 values close to 1), which indicates that both gene expressions and interaction patterns can reflect the molecular changes caused by heavy ions with different LET values. LET-related genes (genes exhibiting strong correlation with LET values) and radiation-responsive genes were identified, primarily involved in DNA damage and repair, oxidative stress, photosynthesis, nucleic acid metabolism, energy metabolism, amino acid/protein metabolism, and lipid metabolism, etc. DNA methylation plays a crucial role in responding to heavy ions stressors and regulates the aforementioned processes. Discussion To the best of our knowledge, this is the first study to report the multi-omics changes in plants after exposure to heavy ions with different LET values under spaceflight conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Shuai Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Hao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Guenther Reitz
- Consultant German Aerospace Center, Aerospace Medicine, Radiobiology Department, Köln, Germany
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
16
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
17
|
Restier-Verlet J, Ferlazzo ML, Granzotto A, Al-Choboq J, Bellemou C, Estavoyer M, Lecomte F, Bourguignon M, Pujo-Menjouet L, Foray N. Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station. Cells 2024; 13:1703. [PMID: 39451221 PMCID: PMC11506070 DOI: 10.3390/cells13201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Radiation impacting astronauts in their spacecraft come from a "bath" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a "stochastic rain" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.
Collapse
Affiliation(s)
- Juliette Restier-Verlet
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Camélia Bellemou
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Maxime Estavoyer
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Florentin Lecomte
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| |
Collapse
|
18
|
Feinland M, Blum LW, Marshall RA, Gan L, Shumko M, Looper M. Lightning-induced relativistic electron precipitation from the inner radiation belt. Nat Commun 2024; 15:8721. [PMID: 39379389 PMCID: PMC11461791 DOI: 10.1038/s41467-024-53036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
The Earth's radiation belts are maintained by a number of acceleration, loss and transport mechanisms, and the electron fluxes at any given time are highly variable. Microbursts, which are rapid (sub-second) bursts of energetic electrons entering the atmosphere from the magnetosphere, are one of the key loss mechanisms controlling radiation belt fluxes. Such rapid bursts are typically observed from the outer radiation belt and driven by interactions with whistler mode chorus waves, but they can also occur in the inner belt and slot region, driven by lightning-generated whistlers. This lightning-induced electron precipitation is typically observed at 10s-100s keV, but here we present direct observations of this phenomenon at MeV energies. This unveils a coupling between near-Earth processes, such as lightning, and radiation belt processes, such as relativistic electron microbursts, bridging the gap between Earth weather and space weather.
Collapse
Affiliation(s)
- Max Feinland
- Aerospace Engineering Sciences, University of Colorado, 3775 Discovery Drive, Boulder, CO, USA.
| | - Lauren W Blum
- Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, Boulder, CO, USA
| | - Robert A Marshall
- Aerospace Engineering Sciences, University of Colorado, 3775 Discovery Drive, Boulder, CO, USA
| | - Longzhi Gan
- Center for Space Physics, Boston University, 725 Commonwealth Ave, Boston, MA, USA
| | - Mykhaylo Shumko
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD, USA
| | - Mark Looper
- Space Sciences Department, The Aerospace Corporation, 2310 E. El Segundo Blvd, El Segundo, CA, USA
| |
Collapse
|
19
|
Zhao M, Aintablian H, Satcher RL, Daneshjou R, Rosenbach M. Dermatologic Considerations for Spaceflight and Space Exploration. JID INNOVATIONS 2024; 4:100293. [PMID: 39104566 PMCID: PMC11298918 DOI: 10.1016/j.xjidi.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Affiliation(s)
- Megan Zhao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haig Aintablian
- Department of Emergency Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Robert L. Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roxana Daneshjou
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Mueller A, Petersen E, Carroll D, Lim RB, Wisbach GG. Space surgery: a SAGES' white paper. Surg Endosc 2024; 38:5160-5168. [PMID: 39039297 DOI: 10.1007/s00464-024-11094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Space travel is experiencing a renaissance with expanding commercial and international efforts. Space surgery will have growing relevance as mission frequency and distances increase beyond low Earth orbit. METHODS This white paper from the SAGES Space Surgery Task Force raises awareness among the SAGES membership regarding the challenges and opportunities surrounding this emerging field that anticipates surgical care in the most extreme, austere environments. RESULTS Innovation in technology and preventive medicine principles will enhance the effectiveness of space surgical care when the need arises. The impact of advancements in space and terrestrial medicine to support space exploration indicates the need for a surgeon to oversee medical/surgical invasive treatment to ensure astronaut health and mission success. Advanced technology, including semi- and autonomous robotic systems, may be a preferred way to deliver this care in the foreseeable future. There is currently a need to develop training curricula and flight-compatible supplies and technology for physicians that deliver surgical care to this special patient population. The protocols and technology developed to address the unique challenges of space travel will provide value for care in space as well as in extreme, austere terrestrial environments on Earth. CONCLUSION Space surgery will continue to evolve as commercial and government programs explore further into space. The SAGES Space Surgery Task Force is favorably positioned to significantly contribute to addressing some capability gaps in delivering surgical care in space.
Collapse
Affiliation(s)
| | - Eric Petersen
- University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Danielle Carroll
- University of Colorado Boulder, Boulder, CO, USA
- Space Surgery Association, Alexandria, VA, USA
| | - Robert B Lim
- Wake Forest University School of Medicine, Atrium Carolinas Health, Charlotte, NC, USA
| | - Gordon G Wisbach
- Navy Medicine Readiness & Training Command San Diego, San Diego, CA, USA.
| |
Collapse
|
21
|
Muhsen IN, Zubair AC, Niederwieser T, Hashmi SK. Space exploration and cancer: the risks of deeper space adventures. Leukemia 2024; 38:1872-1875. [PMID: 38969730 DOI: 10.1038/s41375-024-02298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Ibrahim N Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Jacksonville, FL, USA
- Sheikh Shakhbout Medical City-Mayo Clinic Joint Venture, Abu Dhabi, UAE
| | - Tobias Niederwieser
- University of Colorado Boulder, Ann and H.J. Smead Department of Aerospace Engineering Sciences, BioServe Space Technologies, 429 UCB, Boulder, CO, 80309, USA
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Sheikh Shakbout Medical City, Abu Dhabi, UAE.
- Medical and Clinical Affairs, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
22
|
Kuhlman BM, Diaz JH, Simon T, Reeves KD, Walker SJ, Atala A, Almeida-Porada G, Porada CD. Simulated microgravity impairs human NK cell cytotoxic activity against space radiation-relevant leukemic cells. NPJ Microgravity 2024; 10:85. [PMID: 39143086 PMCID: PMC11324864 DOI: 10.1038/s41526-024-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
Natural killer (NK) cells are an important first-line of defense against malignant cells. Because of the potential for increased cancer risk from astronaut exposure to space radiation, we determined whether microgravity present during spaceflight affects the body's defenses against leukemogenesis. Human NK cells were cultured for 48 h under normal gravity and simulated microgravity (sμG), and cytotoxicity against K-562 (CML) and MOLT-4 (T-ALL) cells was measured using standard methodology or under continuous sμG. This brief exposure to sμG markedly reduced NK cytotoxicity against both leukemias, and these deleterious effects were more pronounced in continuous sμG. RNA-seq performed on NK cells from two additional healthy donors provided insight into the mechanism(s) by which sμG reduced cytotoxicity. Given our prior report of space radiation-induced human T-ALL in vivo, the reduced cytotoxicity against MOLT-4 is striking and raises the possibility that μG may increase astronaut risk of leukemogenesis during prolonged missions beyond LEO.
Collapse
Affiliation(s)
| | - Jonathan H Diaz
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Trang Simon
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Kimberly D Reeves
- Wake Forest Center for Precision Medicine, Winston Salem, NC, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | | | | |
Collapse
|
23
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
24
|
Szalanczy AM, Sherrill C, Fanning KM, Hart B, Caudell D, Davis AW, Whitfield J, Kavanagh K. A Novel TGFβ Receptor Inhibitor, IPW-5371, Prevents Diet-induced Hepatic Steatosis and Insulin Resistance in Irradiated Mice. Radiat Res 2024; 202:1-10. [PMID: 38772553 DOI: 10.1667/rade-23-00202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
As the number of cancer survivors increases and the risk of accidental radiation exposure rises, there is a pressing need to characterize the delayed effects of radiation exposure and develop medical countermeasures. Radiation has been shown to damage adipose progenitor cells and increase liver fibrosis, such that it predisposes patients to developing metabolic-associated fatty liver disease (MAFLD) and insulin resistance. The risk of developing these conditions is compounded by the global rise of diets rich in carbohydrates and fats. Radiation persistently increases the signaling cascade of transforming growth factor β (TGFβ), leading to heightened fibrosis as characteristic of the delayed effects of radiation exposure. We investigate here a potential radiation medical countermeasure, IPW-5371, a small molecule inhibitor of TGFβRI kinase (ALK5). We found that mice exposed to sub-lethal whole-body irradiation and chronic Western diet consumption but treated with IPW-5371 had a similar body weight, food consumption, and fat mass compared to control mice exposed to radiation. The IPW-5371 treated mice maintained lower fibrosis and fat accumulation in the liver, were more responsive to insulin and had lower circulating triglycerides and better muscle endurance. Future studies are needed to verify the improvement by IPW-5371 on the structure and function of other metabolically active tissues such as adipose and skeletal muscle, but these data demonstrate that IPW-5371 protects liver and whole-body health in rodents exposed to radiation and a Western diet, and there may be promise in using IPW-5371 to prevent the development of MAFLD.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine M Fanning
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barry Hart
- Innovation Pathways, Palo Alto, California
| | - David Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashley W Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jordyn Whitfield
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- College of Health and Medicine, University o f Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
25
|
Chua CYX, Jimenez M, Mozneb M, Traverso G, Lugo R, Sharma A, Svendsen CN, Wagner WR, Langer R, Grattoni A. Advanced material technologies for space and terrestrial medicine. NATURE REVIEWS MATERIALS 2024; 9:808-821. [DOI: 10.1038/s41578-024-00691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 01/05/2025]
|
26
|
Porada C, Kuhlman B, Diaz J, Simon T, Reaves K, Walker S, Atala A, Almeida-Porada G. Simulated Microgravity Impairs Human NK Cell Cytotoxic Activity Against Space Radiation-Relevant Leukemic Cells. RESEARCH SQUARE 2024:rs.3.rs-3972868. [PMID: 38746365 PMCID: PMC11092860 DOI: 10.21203/rs.3.rs-3972868/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Natural killer (NK) cells are important effectors of the innate immune system. Unlike T cells, NK cells do not require antigen-priming, making them an important first-line of defense against malignant cells. Because of the potential for increased cancer risk as a result of astronaut exposure to space radiation, we performed studies to determine whether conditions of microgravity present during spaceflight affects the body's natural defenses against leukemogenesis. Human NK cells were cultured for 48 hours under normal gravity and simulated microgravity (sµG), and cytotoxicity against K-562 (CML) and MOLT-4 (T-ALL) cell lines was measured using standard methodology or under continuous conditions of sµG. Even this brief exposure to sµG markedly reduced NK cytotoxicity against both leukemic cells using standard assay procedures, and these deleterious effects were even more pronounced in continuous sµG. RNA-seq performed on NK cells from two healthy donors provided insight into the mechanism(s) by which sµG reduced cytotoxicity. Given our prior report that human HSC exposed to simulated space radiation gave rise to T-ALL in vivo , the reduced cytotoxicity against MOLT-4 is striking and raises the possibility that µG may add to astronaut risk of leukemogenesis during prolonged missions beyond LEO.
Collapse
|
27
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Zhang Y, Zhao L, Sun Y. Using single-sample networks to identify the contrasting patterns of gene interactions and reveal the radiation dose-dependent effects in multiple tissues of spaceflight mice. NPJ Microgravity 2024; 10:45. [PMID: 38575629 PMCID: PMC10995210 DOI: 10.1038/s41526-024-00383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Transcriptome profiles are sensitive to space stressors and serve as valuable indicators of the biological effects during spaceflight. Herein, we transformed the expression profiles into gene interaction patterns by single-sample networks (SSNs) and performed the integrated analysis on the 301 spaceflight and 290 ground control samples, which were obtained from the GeneLab platform. Specifically, an individual SSN was established for each sample. Based on the topological structures of 591 SSNs, the differentially interacted genes (DIGs) were identified between spaceflights and ground controls. The results showed that spaceflight disrupted the gene interaction patterns in mice and resulted in significant enrichment of biological processes such as protein/amino acid metabolism and nucleic acid (DNA/RNA) metabolism (P-value < 0.05). We observed that the mice exposed to radiation doses within the three intervals (4.66-7.14, 7.592-8.295, 8.49-22.099 mGy) exhibited similar gene interaction patterns. Low and medium doses resulted in changes to the circadian rhythm, while the damaging effects on genetic material became more pronounced in higher doses. The gene interaction patterns in response to space stressors varied among different tissues, with the spleen, lung, and skin being the most responsive to space radiation (P-value < 0.01). The changes observed in gene networks during spaceflight conditions might contribute to the development of various diseases, such as mental disorders, depression, and metabolic disorders, among others. Additionally, organisms activated specific gene networks in response to virus reactivation. We identified several hub genes that were associated with circadian rhythms, suggesting that spaceflight could lead to substantial circadian rhythm dysregulation.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, 116026, Dalian, Liaoning, China.
| |
Collapse
|
29
|
Zhao L, Li Z, Huang B, Mi D, Xu D, Sun Y. Integrating evolutionarily conserved mechanism of response to radiation for exploring novel Caenorhabditis elegans radiation-responsive genes for estimation of radiation dose associated with spaceflight. CHEMOSPHERE 2024; 351:141148. [PMID: 38211791 DOI: 10.1016/j.chemosphere.2024.141148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
During space exploration, space radiation is widely recognized as an inescapable perilous stressor, owing to its capacity to induce genomic DNA damage and escalate the likelihood of detrimental health outcomes. Rapid and reliable estimation of space radiation dose holds paramount significance in accurately assessing the health risks associated with spaceflight. However, the identification of space radiation-responsive genes, with their potential to serve as early indicators for diagnosing radiation dose associated with spaceflight, continues to pose a significant challenge. In this study, based on the evolutionarily conserved mechanism of radiation response, an in silico analysis method of homologous comparison was performed to identify the Caenorhabditis elegans orthologues of human radiation-responsive genes with possible roles in the major processes of response to radiation, and thereby to explore the potential C. elegans radiation-responsive genes for evaluating the levels of space radiation exposure. The results showed that there were 60 known C. elegans radiation-responsive genes and 211 C. elegans orthologues of human radiation-responsive genes implicated in the major processes of response to radiation. Through an investigation of all available transcriptomic datasets obtained from space-flown C. elegans, it was observed that the expression levels of the majority of these putative C. elegans radiation-responsive genes identified in this study were notably changed across various spaceflight conditions. Furthermore, this study indicated that within the identified genes, 19 known C. elegans radiation-responsive genes and 40 newly identified C. elegans orthologues of human radiation-responsive genes exhibited a remarkable positive correlation with the duration of spaceflight. Moreover, a noteworthy presence of substantial multi-collinearity among the majority of these identified genes was observed. This observation lends support to the possibility of treating each identified gene as an independent indicator of radiation dose in space. Ultimately, a subset of 15 potential radiation-responsive genes was identified, presenting the most promising indicators for estimation of radiation dose associated with spaceflight in C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Zejun Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
30
|
Mortazavi SMJ, Said-Salman I, Mortazavi AR, El Khatib S, Sihver L. How the adaptation of the human microbiome to harsh space environment can determine the chances of success for a space mission to Mars and beyond. Front Microbiol 2024; 14:1237564. [PMID: 38390219 PMCID: PMC10881706 DOI: 10.3389/fmicb.2023.1237564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 02/24/2024] Open
Abstract
The ability of human cells to adapt to space radiation is essential for the well-being of astronauts during long-distance space expeditions, such as voyages to Mars or other deep space destinations. However, the adaptation of the microbiomes should not be overlooked. Microorganisms inside an astronaut's body, or inside the space station or other spacecraft, will also be exposed to radiation, which may induce resistance to antibiotics, UV, heat, desiccation, and other life-threatening factors. Therefore, it is essential to consider the potential effects of radiation not only on humans but also on their microbiomes to develop effective risk reduction strategies for space missions. Studying the human microbiome in space missions can have several potential benefits, including but not limited to a better understanding of the major effects space travel has on human health, developing new technologies for monitoring health and developing new radiation therapies and treatments. While radioadaptive response in astronauts' cells can lead to resistance against high levels of space radiation, radioadaptive response in their microbiome can lead to resistance against UV, heat, desiccation, antibiotics, and radiation. As astronauts and their microbiomes compete to adapt to the space environment. The microorganisms may emerge as the winners, leading to life-threatening situations due to lethal infections. Therefore, understanding the magnitude of the adaptation of microorganisms before launching a space mission is crucial to be able to develop effective strategies to mitigate the risks associated with radiation exposure. Ensuring the safety and well-being of astronauts during long-duration space missions and minimizing the risks linked with radiation exposure can be achieved by adopting this approach.
Collapse
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and non-ionizing radiation protection research center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ilham Said-Salman
- Department of Biological and Chemical Sciences, School of Arts & Sciences, Lebanese International University, Saida, Lebanon
- Department of Biological and Chemical Sciences, International University of Beirut, Beirut, Lebanon
| | | | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB) at Gulf University for Science and Technology, Kuwait City, Kuwait
| | - Lembit Sihver
- Department of Radiation Dosimetry, Nuclear Physics Institute (NPI) of the Czech Academy of Sciences (CAS), Prague, Czechia
- Department of Radiation Physics, Technische Universität Wien Atominstitut, Vienna, Austria
| |
Collapse
|
31
|
Pfuhl T, Weber U, Horst F, Durante M, Schuy C. Ground-based passive generation of Solar Particle Event spectra: Planning and manufacturing of a 3D-printed modulator. Z Med Phys 2024; 34:153-165. [PMID: 37940400 PMCID: PMC11636792 DOI: 10.1016/j.zemedi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The generation of space radiation on Earth is essential to study and predict the effects of radiation on space travelers, electronics, or materials during future long-term space missions. Next to the heavy ions of the galactic cosmic rays, solar particle events play a major role concerning the radiation risk in space, which consist of intermediate-energy protons with broad spectra and energies up to a few hundred MeV. This work describes an approach for the ground-based generation of solar particle events. As a proof of principle, a passive beam modulator with a specific funnel-shaped periodic structure was designed and is used to convert a monoenergetic proton beam into a spectral proton energy distribution, mimicking a solar particle event from August 1972, which is known as one of the strongest recorded SPE events. The required proton beam of 220 MeV can be generated at many existing particle accelerators at research or particle therapy facilities. The planning, manufacturing and testing of the modulator is described step by step. Its correct manufacturing and the characteristics of the solar particle event simulator are tested experimentally and by means of Monte Carlo simulations. Future modulators will follow the same concept with minor adjustments such as a larger lateral extension. As of now, the presented beam modulator is available to the research community to conduct experiments at GSI for exposure under solar particle event conditions. In addition, researchers can use and apply the described concept to design and print their individualized modulator to reproduce any desired solar particle event spectrum or request the presented modulator geometry from the authors.
Collapse
Affiliation(s)
- Tabea Pfuhl
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; OncoRay - Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany(1)
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
32
|
Mehare A, Chakole S, Wandile B. Navigating the Unknown: A Comprehensive Review of Spaceflight-Associated Neuro-Ocular Syndrome. Cureus 2024; 16:e53380. [PMID: 38435236 PMCID: PMC10907968 DOI: 10.7759/cureus.53380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) is a complex and multifaceted condition that affects astronauts during and after their missions in space. This comprehensive review delves into the various aspects of SANS, providing a thorough understanding of its definition, historical context, clinical presentation, epidemiology, diagnostic techniques, preventive measures, and management strategies. Various ocular and neurological symptoms, including visual impairment, optic disc edema, choroidal folds, retinal changes, and increased intracranial pressure, characterize SANS. While microgravity is a primary driver of SANS, other factors like radiation exposure, genetic predisposition, and environmental conditions within spacecraft contribute to its development. The duration of space missions is a significant factor, with longer missions associated with a higher incidence of SANS. This review explores the diagnostic criteria and variability in SANS presentation, shedding light on early detection and management challenges. The epidemiology section provides insights into the occurrence frequency, affected astronauts' demographics, and differences between long-term and short-term missions. Diagnostic tools, including ophthalmological assessments and imaging techniques, are crucial in monitoring astronaut health during missions. Preventive measures are vital in mitigating the impact of SANS. Current strategies, ongoing research in prevention methods, lifestyle and behavioral factors, and the potential role of artificial gravity are discussed in detail. Additionally, the review delves into interventions, potential pharmacological treatments, rehabilitation, and long-term management considerations for astronauts with SANS. The conclusion underscores the importance of continued research in SANS, addressing ongoing challenges, and highlighting unanswered questions. With the expansion of human space exploration, understanding and managing SANS is imperative to ensure the health and well-being of astronauts during long-duration missions. This review is a valuable resource for researchers, healthcare professionals, and space agencies striving to enhance our knowledge and address the complexities of SANS.
Collapse
Affiliation(s)
- Abhidnya Mehare
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan Wandile
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
33
|
Vozenin MC, Alaghband Y, Drayson OGG, Piaget F, Leavitt R, Allen BD, Doan NL, Rostomyan T, Stabilini A, Reggiani D, Hajdas W, Yukihara EG, Norbury JW, Bailat C, Desorgher L, Baulch JE, Limoli CL. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat Res 2024; 201:93-103. [PMID: 38171489 DOI: 10.1667/rade-23-00241.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.
Collapse
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Filippo Piaget
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | | | | | | | | | | | | | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| |
Collapse
|
34
|
Shavers M, Semones E, Tomi L, Chen J, Straube U, Komiyama T, Shurshakov V, Li C, Rühm W. Space agency-specific standards for crew dose and risk assessment of ionising radiation exposures for the International Space Station. Z Med Phys 2024; 34:14-30. [PMID: 37507310 PMCID: PMC10919966 DOI: 10.1016/j.zemedi.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.
Collapse
Affiliation(s)
- Mark Shavers
- KBR Human Health and Performance, NASA Johnson Space Centre, Houston, TX, USA.
| | - Edward Semones
- NASA Space Radiation Analysis Group-Johnson Space Centre, Houston, TX, USA
| | - Leena Tomi
- Canadian Space Agency, Saint-Hubert, Quebec, Canada
| | - Jing Chen
- Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ulrich Straube
- European Space Agency ESA, European Astronaut Center EAC, Space Medicine HRE-OM, Cologne, Germany
| | - Tatsuto Komiyama
- Japan Aerospace Exploration Agency (JAXA), Tsukuba Space Center, Ibaraki, Japan
| | | | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Werner Rühm
- Federal Office of Radiation Protection, Munich, Germany
| |
Collapse
|
35
|
Nardi L, Davis NM, Sansolini S, Baratto de Albuquerque T, Laarraj M, Caputo D, de Cesare G, Shariati Pour SR, Zangheri M, Calabria D, Guardigli M, Balsamo M, Carrubba E, Carubia F, Ceccarelli M, Ghiozzi M, Popova L, Tenaglia A, Crisconio M, Donati A, Nascetti A, Mirasoli M. APHRODITE: A Compact Lab-on-Chip Biosensor for the Real-Time Analysis of Salivary Biomarkers in Space Missions. BIOSENSORS 2024; 14:72. [PMID: 38391991 PMCID: PMC10887022 DOI: 10.3390/bios14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).
Collapse
Affiliation(s)
- Lorenzo Nardi
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Serena Sansolini
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Thiago Baratto de Albuquerque
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mohcine Laarraj
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Michele Balsamo
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Elisa Carrubba
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Fabrizio Carubia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marco Ceccarelli
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Michele Ghiozzi
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Liyana Popova
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Andrea Tenaglia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marino Crisconio
- Agenzia Spaziale Italiana (ASI), Italian Space Agency, Via del Politecnico, I-00133 Rome, Italy;
| | - Alessandro Donati
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
36
|
Toto E, Lambertini L, Laurenzi S, Santonicola MG. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers (Basel) 2024; 16:382. [PMID: 38337271 DOI: 10.3390/polym16030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Space exploration requires the use of suitable materials to protect astronauts and structures from the hazardous effects of radiation, in particular, ionizing radiation, which is ubiquitous in the hostile space environment. In this scenario, polymer-based materials and composites play a crucial role in achieving effective radiation shielding while providing low-weight and tailored mechanical properties to spacecraft components. This work provides an overview of the latest developments and challenges in polymer-based materials designed for radiation-shielding applications in space. Recent advances in terms of both experimental and numerical studies are discussed. Different approaches to enhancing the radiation-shielding performance are reported, such as integrating various types of nanofillers within polymer matrices and optimizing the materials design. Furthermore, this review explores the challenges in developing multifunctional materials that are able to provide radiation protection. By summarizing the state-of-the-art research and identifying emerging trends, this review aims to contribute to the ongoing efforts to identify polymer materials and composites that are most useful to protect human health and spacecraft performance in the harsh radiation conditions that are typically found during missions in space.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy
| | - Lucia Lambertini
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy
| | - Susanna Laurenzi
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| |
Collapse
|
37
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Malatesta P, Kyriakidis K, Hada M, Ikeda H, Takahashi A, Saganti PB, Georgakilas AG, Michalopoulos I. Differential Gene Expression in Human Fibroblasts Simultaneously Exposed to Ionizing Radiation and Simulated Microgravity. Biomolecules 2024; 14:88. [PMID: 38254688 PMCID: PMC10812944 DOI: 10.3390/biom14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
During future space missions, astronauts will be exposed to cosmic radiation and microgravity (μG), which are known to be health risk factors. To examine the differentially expressed genes (DEG) and their prevalent biological processes and pathways as a response to these two risk factors simultaneously, 1BR-hTERT human fibroblast cells were cultured under 1 gravity (1G) or simulated μG for 48 h in total and collected at 0 (sham irradiated), 3 or 24 h after 1 Gy of X-ray or Carbon-ion (C-ion) irradiation. A three-dimensional clinostat was used for the simulation of μG and the simultaneous radiation exposure of the samples. The RNA-seq method was used to produce lists of differentially expressed genes between different environmental conditions. Over-representation analyses were performed and the enriched biological pathways and targeting transcription factors were identified. Comparing sham-irradiated cells under simulated μG and 1G conditions, terms related to response to oxygen levels and muscle contraction were identified. After irradiation with X-rays or C-ions under 1G, identified DEGs were found to be involved in DNA damage repair, signal transduction by p53 class mediator, cell cycle arrest and apoptosis pathways. The same enriched pathways emerged when cells were irradiated under simulated μG condition. Nevertheless, the combined effect attenuated the transcriptional response to irradiation which may pose a subtle risk in space flights.
Collapse
Affiliation(s)
- Polina Malatesta
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Konstantinos Kyriakidis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- UC Santa Cruz Genomics Institute, Santa Cruz, CA 95060, USA
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Hiroko Ikeda
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Premkumar B. Saganti
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (M.H.); (P.B.S.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (K.K.)
| |
Collapse
|
39
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
40
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|
41
|
Atiakshin D, Kostin A, Shishkina V, Burtseva A, Buravleva A, Volodkin A, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Space-Flight- and Microgravity-Dependent Alteration of Mast Cell Population and Protease Expression in Digestive Organs of Mongolian Gerbils. Int J Mol Sci 2023; 24:13604. [PMID: 37686410 PMCID: PMC10488096 DOI: 10.3390/ijms241713604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Mast cell (MC)-specific proteases are of particular interest for space biology and medicine due to their biological activity in regulating targets of a specific tissue microenvironment. MC tryptase and chymase obtain the ability to remodel connective tissue through direct and indirect mechanisms. Yet, MC-specific protease expression under space flight conditions has not been adequately investigated. Using immunohistochemical stainings, we analyzed in this study the protease profile of the jejunal, gastric, and hepatic MC populations in three groups of Mongolian gerbils-vivarium control, synchronous experiment, and 12-day orbital flight on the Foton-M3 spacecraft-and in two groups-vivarium control and anti-orthostatic suspension-included in the experiment simulating effects of weightlessness in the ground-based conditions. After a space flight, there was a decreased number of MCs in the studied organs combined with an increased proportion of chymase-positive MCs and MCs with a simultaneous content of tryptase and chymase; the secretion of specific proteases into the extracellular matrix increased. These changes in the expression of proteases were observed both in the mucosal and connective tissue MC subpopulations of the stomach and jejunum. Notably, the relative content of tryptase-positive MCs in the studied organs of the digestive system decreased. Space flight conditions simulated in the synchronous experiment caused no similar significant changes in the protease profile of MC populations. The space flight conditions resulted in an increased chymase expression combined with a decreased total number of protease-positive MCs, apparently due to participating in the processes of extracellular matrix remodeling and regulating the state of the cardiovascular system.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Alexandra Burtseva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Anastasia Buravleva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | |
Collapse
|
42
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
43
|
Pal Chowdhury R, Stegeman LA, Lund ML, Fry D, Madzunkov S, Bahadori AA. Hybrid methods of radiation shielding against deep-space radiation. LIFE SCIENCES IN SPACE RESEARCH 2023; 38:67-78. [PMID: 37481310 DOI: 10.1016/j.lssr.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 07/24/2023]
Abstract
In the last decade, NASA and other space exploration organizations have focused on making crewed missions to different locations in our solar system a priority. To ensure the crew members' safety in a harsh radiation environment outside the protection of the geomagnetic field and atmosphere, a robust radiation protection system needs to be in place. Passive shielding methods, which use mass shielding, are insufficient as a standalone means of radiation protection for long-term deep-space missions. Active shielding methods, which use electromagnetic fields to deflect charged particles, have the potential to be a solution that can be used along with passive shielding to make deep-space travel safer and more feasible. Past active shielding studies have demonstrated that substantial technological advances are required for active shielding to be a reality. However, active shielding has shown potential for near-future implementation when used to protect against solar energetic particles, which are less penetrating than galactic cosmic rays (GCRs). This study uses a novel approach to investigate the impacts of passive and active shielding for protection against extreme solar particle events (SPEs) and free-space GCR spectra under solar minimum and solar maximum conditions. Hybrid shielding configuration performance is assessed in terms of effective dose and radiobiological effectiveness (RBE)-weighted dose reduction. A novel electrostatic shielding configuration consisting of multiple charged planes and charged rods was chosen as the base active shielding configuration. After a rigorous optimization process, two hybrid shielding configurations were chosen based on their ability to reduce RBE-weighted dose and effective dose. For protection against the extreme SPE, a hybrid active-passive shielding configuration was chosen, where active shielding was placed outside of passive shielding. In the case of GCRs, to gain additional reduction compared to passive shielding, the passive shielding configuration was placed before the active shielding to intentionally fragment HZE ions to improve shielding performance.
Collapse
Affiliation(s)
- Rajarshi Pal Chowdhury
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America.
| | - Luke A Stegeman
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America
| | - Matthew L Lund
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Dan Fry
- Space Radiation Analysis Group, NASA Lyndon B. Johnson Space Center, Houston, TX, United States of America
| | - Stojan Madzunkov
- Earth and Planetary Sciences, Jet Propulsion Laboratory, Pasadena, CA, United States of America
| | - Amir A Bahadori
- Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States of America.
| |
Collapse
|
44
|
Liu M, Lan Y, Qin Y, Gao Y, Deng Y, Li N, Zhang C, Ma H. Interaction between astrocytes and neurons in simulated space radiation-induced CNS injury. Int J Radiat Biol 2023; 99:1830-1840. [PMID: 37436484 DOI: 10.1080/09553002.2023.2232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.
Collapse
Affiliation(s)
- Mengjin Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Lan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuhan Qin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Sharma SN, Meller LLT, Sharma AN, Amsterdam EA. Cardiovascular Adaptations of Space Travel: A Systematic Review. Cardiology 2023; 148:434-440. [PMID: 37302388 PMCID: PMC10614241 DOI: 10.1159/000531466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Space travel imposes significant gravitational and radiation stress on both cellular and systemic physiology, resulting in myriad cardiovascular changes that have not been fully characterized. METHODS We conducted a systematic review of the cellular and clinical adaptations of the cardiovascular system after exposure to real or simulated space travel in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The PubMed and Cochrane databases were searched in June 2021 for all peer-reviewed articles published since 1950 related to the following search terms entered in separate pairs: "cardiology and space" and "cardiology and astronaut." Only cellular and clinical studies in English concerning the investigation of cardiology and space were included. RESULTS Eighteen studies were identified, comprising 14 clinical and 4 cellular investigations. On the genetic level, pluripotent stem cells in humans and cardiomyocytes in mice displayed increased beat irregularity, with clinical studies revealing a persistent increase in heart rate after space travel. Further cardiovascular adaptations included a higher frequency of orthostatic tachycardia but no evidence of orthostatic hypotension, after return to sea level. Hemoglobin concentration was also consistently decreased after return to Earth. No consistent change in systolic or diastolic blood pressure or any clinically significant arrhythmias were observed during or after space travel. CONCLUSION Changes in oxygen carrying capacity, blood pressure, and post-flight orthostatic tachycardia may serve as reasons to further screen for pre-existing anemic and hypotensive conditions among astronauts.
Collapse
Affiliation(s)
| | - Leo L T Meller
- School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ajay Nair Sharma
- School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ezra A Amsterdam
- Division of Cardiology, Department of Internal Medicine, University of California, Davis, California, USA
| |
Collapse
|
46
|
Liddell LC, Gentry DM, Gilbert R, Marina D, Massaro Tieze S, Padgen MR, Akiyama K, Keenan K, Bhattacharya S, Santa Maria SR. BioSentinel: Validating Sensitivity of Yeast Biosensors to Deep Space Relevant Radiation. ASTROBIOLOGY 2023; 23:648-656. [PMID: 37052477 DOI: 10.1089/ast.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the imminent human exploration of deep space, it is more important than ever to understand the biological risks of deep space radiation exposure. The BioSentinel mission will be the first biological payload to study the effects of radiation beyond low Earth orbit in 50 years. This study is the last in a collection of articles about the BioSentinel biological CubeSat mission, where budding yeast cells will be used to investigate the response of a biological organism to long-term, low-dose deep space radiation. In this study, we define the methodology for detecting the biological response to space-like radiation using simulated deep space radiation and a metabolic indicator dye reduction assay. We show that there is a dose-dependent decrease in yeast cell growth and metabolism in response to space-like radiation, and this effect is significantly more pronounced in a strain of yeast that is deficient in DNA damage repair (rad51Δ) compared with a wild-type strain. Furthermore, we demonstrate the use of flight-like instrumentation after exposure to space-like ionizing radiation. Our findings will inform the development of novel and improved biosensors and technologies for future missions to deep space.
Collapse
Affiliation(s)
- Lauren C Liddell
- NASA Ames Research Center, Moffett Field, California, USA
- Logyx LLC, Mountain View, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | - Rachel Gilbert
- NASA Ames Research Center, Moffett Field, California, USA
- FILMSS/KBR, NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | | - Kylie Akiyama
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, California, USA
| | - Kyra Keenan
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Sergio R Santa Maria
- NASA Ames Research Center, Moffett Field, California, USA
- FILMSS/KBR, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
47
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
48
|
A Review of Magnetic Shielding Technology for Space Radiation. RADIATION 2023. [DOI: 10.3390/radiation3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The space radiation environment outside the protection of the Earth’s magnetosphere is severe and difficult to shield against. The cumulative effective dose to astronauts on a typical Mars mission would likely introduce risk exceeding permissible limits for carcinogenesis without innovative strategies for radiation shielding. Damaging cardiovascular and central nervous system effects are also expected in these space environments. There are many potential options for advanced shielding and risk mitigation, but magnetic shielding using superconductors offers several distinct advantages including using the conditions in space to help maintain the superconductor’s critical temperature and lower mass compared to equivalent passive shielding materials. Despite these advantages, the development of magnetic shielding technology has remained primarily in conceptual stages since the introduction of the idea in 1961. Over the last several decades, magnetic shielding has experienced periods of high and low attention by the human spaceflight community, leading to computational tools with single-use or other limitations and a non-uniform distribution of publications on the topic over time. Within the context of technology development and the surrounding space policy environment, this paper reviews and summarizes the available literature on the application of active magnetic shielding for space radiation protection, identifies challenges, and highlights areas for future research.
Collapse
|
49
|
Su SH, Levine HG, Masson PH. Brachypodium distachyon Seedlings Display Accession-Specific Morphological and Transcriptomic Responses to the Microgravity Environment of the International Space Station. Life (Basel) 2023; 13:life13030626. [PMID: 36983782 PMCID: PMC10058394 DOI: 10.3390/life13030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| | - Howard G. Levine
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| |
Collapse
|
50
|
Leung CN, Howell DM, de Toledo SM, Azzam EI, Howell RW. Late Effects of Heavy-Ion Space Radiation on Splenocyte Subpopulations and NK Cytotoxic Function. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2022; 9:949432. [PMID: 39554816 PMCID: PMC11566395 DOI: 10.3389/fspas.2022.949432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
With current goals of increased space exploration and travel to Mars, there has been great interest in understanding the long-term effects of high atomic number, high energy (HZE) ion exposure on various organ systems and the immune system. Little is known about late effects on the immune system after high-LET exposure. Therefore, our objective was to determine how natural killer (NK) cell populations were affected in geriatric mice that were exposed to HZE particles during middle-age, thereby representing elderly retired astronauts that undertook deep space missions. Methods 10 month old male CBA/CaJ mice were whole-body irradiated: sham (control); 150-cGy gamma-rays (delivered in 1 fraction); 40-cGy 1-GeV/nu 28Si14+ ions (delivered in 3 fractions); 40-cGy 1-GeV/nu 16O8+ ions (1 fraction); and 40-cGy 1-GeV/nu 16O8+ ions (3 fractions). The mice were sacrificed 1-1.5 yr post-exposure, and the spleens harvested. Splenocyte effector (E) cells were harvested and added to 51Cr-labeled Yac-1 target (T) cells in E:T ratios of 12:1, 25:1, 50:1, and 100:1. NK cytotoxicity was measured with 51Cr release. In addition, 2 million splenocytes were aliquoted and stained with a seven-antibody cocktail, and flow cytometry was used to determine the percentage of NK, B lymphocytes, and T lymphocytes in the splenocyte population. Results Mice exposed to either a single fraction of 150-cGy gamma rays or 40-cGy 16O8+ ions in 3 fractions were found to have significant decreases in NK cytotoxicity of approximately 30% and 25%, respectively. No significant differences were observed in NK cytotoxicity for 40-cGy 16O8+ ions delivered in 1 fraction, or 40-cGy 28Si14+ ions delivered in 3 fractions. No significant differences were observed in the percentage of spleen cells that were NK (%NK) amongst the groups. Conclusion Fractionated HZE ion exposure has the potential to affect the innate arm of the immune system long after exposure, leading to decreases in NK cell function. Therefore, protective countermeasures may need to be considered to decrease the risk of reduced long-term immune function in elderly retired astronauts that undertook deep space missions.
Collapse
Affiliation(s)
- Calvin N. Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Donna M. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Natural Sciences Department, Middlesex College, Edison, NJ, USA
| | - Sonia M. de Toledo
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Health Sciences, Canadian Nuclear Laboratories, Chalk River, OT, Canada
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|