1
|
Yang Y, Wang Z, Bai J, Qiao H. Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? J Mol Evol 2025; 93:193-211. [PMID: 39992367 DOI: 10.1007/s00239-025-10237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Matange K, Marland E, Frenkel-Pinter M, Williams LD. Biological Polymers: Evolution, Function, and Significance. Acc Chem Res 2025; 58:659-672. [PMID: 39905926 PMCID: PMC11883738 DOI: 10.1021/acs.accounts.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
A holistic description of biopolymers and their evolutionary origins will contribute to our understanding of biochemistry, biology, the origins of life, and signatures of life outside our planet. While biopolymer sequences evolve through known Darwinian processes, the origins of the backbones of polypeptides, polynucleotides, and polyglycans are less certain. We frame this topic through two questions: (i) Do the characteristics of biopolymer backbones indicate evolutionary origins? (ii) Are there reasonable mechanistic models of such pre-Darwinian evolutionary processes? To address these questions, we have established criteria to distinguish chemical species produced by evolutionary mechanisms from those formed by nonevolutionary physical, chemical, or geological processes. We compile and evaluate properties shared by all biopolymer backbones rather than isolating a single type. Polypeptide, polynucleotide, and polyglycan backbones are kinetically trapped and thermodynamically unstable in aqueous media. Each biopolymer forms a variety of elaborate assemblies with diverse functions, a phenomenon we call polyfunction. Each backbone changes structure and function upon subtle chemical changes such as the reduction of ribose or a change in the linkage site or stereochemistry of polymerized glucose, a phenomenon we call function-switching. Biopolymers display homo- and heterocomplementarity, enabling atomic-level control of structure and function. Biopolymer backbones access recalcitrant states, where assembly modulates kinetics and thermodynamics of hydrolysis. Biopolymers are emergent; the properties of biological building blocks change significantly upon polymerization. In cells, biopolymers compose mutualistic networks; a cell is an Amazon Jungle of molecules. We conclude that biopolymer backbones exhibit hallmarks of evolution. Neither chemical, physical, nor geological processes can produce molecules consistent with observations. We are faced with the paradox that Darwinian evolution relies on evolved backbones but cannot alter biopolymer backbones. This Darwinian constraint is underlined by the observation that across the tree of life, ribosomes are everywhere and always have been composed of RNA and protein. Our data suggest that chemical species on the Hadean Earth underwent non-Darwinian coevolution driven in part by hydrolytic stress, ultimately leading to biopolymer backbones. We argue that highly evolved biopolymer backbones facilitated a seamless transition from chemical to Darwinian evolution. This model challenges convention, where backbones are products of direct prebiotic synthesis. In conventional models, biopolymer backbones retain vestiges of prebiotic chemistry. Our findings, however, align with models where chemical species underwent iterative and recursive sculpting, selection, and exaptation. This model supports Orgel's "gloomy" prediction that modern biochemistry has discarded vestiges of prebiotic chemistry. But there is hope. We believe an understanding of biopolymer origins will progress during the challenging and exciting integration of chemical sciences and evolutionary theory. These efforts can provide new perspectives on pre-Darwinian mechanisms and can deepen our understanding of evolution and of chemical sciences. Our working definition of chemical evolution is continuous chemical change with exploration of new chemical spaces and avoidance of equilibrium. In alignment with our model, we observe chemical evolution in complex mixtures undergoing wet-dry cycling, which does appear to undergo continuous chemical change and exploration of new chemical spaces while avoiding equilibrium.
Collapse
Affiliation(s)
- Kavita Matange
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
| | - Eliav Marland
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Moran Frenkel-Pinter
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Loren Dean Williams
- NASA
iCOOL (Center for the Integration of the Origins of Life), School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United
States
| |
Collapse
|
4
|
Gatenby RA, Gallaher J, Subramanian H, Hammarlund EU, Whelan CJ. On the Origin of Information Dynamics in Early Life. Life (Basel) 2025; 15:234. [PMID: 40003644 PMCID: PMC11856217 DOI: 10.3390/life15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
We hypothesize that predictable variations in environmental conditions caused by night/day cycles created opportunities and hazards that initiated information dynamics central to life's origin. Increased daytime temperatures accelerated key chemical reactions but also caused the separation of double-stranded polynucleotides, leading to hydrolysis, particularly of single-stranded RNA. Daytime solar UV radiation promoted the synthesis of organic molecules but caused broad damage to protocell macromolecules. We hypothesize that inter-related simultaneous adaptations to these hazards produced molecular dynamics necessary to store and use information. Self-replicating RNA heritably reduced the hydrolysis of single strands after separation during warmer daytime periods by promoting sequences that formed hairpin loops, generating precursors to transfer RNA (tRNA), and initiating tRNA-directed evolutionary dynamics. Protocell survival during daytime promoted sequences in self-replicating RNA within protocells that formed RNA-peptide hybrids capable of scavenging UV-induced free radicals or catalyzing melanin synthesis from tyrosine. The RNA-peptide hybrids are precursors to ribosomes and the triplet codes for RNA-directed protein synthesis. The protective effects of melanin production persist as melanosomes are found throughout the tree of life. Similarly, adaptations mitigating UV damage led to the replacement of Na+ by K+ as the dominant mobile cytoplasmic cation to promote diel vertical migration and selected for homochirality. We conclude that information dynamics emerged in early life through adaptations to predictably fluctuating opportunities and hazards during night/day cycles, and its legacy remains observable in extant life.
Collapse
Affiliation(s)
- Robert A. Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jill Gallaher
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Emma U. Hammarlund
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden;
| | - Christopher J. Whelan
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Metabolism and Physiology Department Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Ball R, Brindley J. Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces. J R Soc Interface 2025; 22:20240492. [PMID: 39907458 PMCID: PMC11796468 DOI: 10.1098/rsif.2024.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Abstract
A continuing frustration for origin of life scientists is that abiotic and, by extension, pre-biotic attempts to develop self-sustaining, evolving molecular systems tend to produce more dead-end substances than macromolecular products with the necessary potential for biostructure and function - the so-called 'tar problem'. Nevertheless primordial life somehow emerged despite that presumed handicap. A resolution of this problem is important in emergence-of-life science because it would provide valuable guidance in choosing subsequent paths of investigation, such as identifying pre-biotic patterns on Mars. To study the problem we set up a simple non-equilibrium flow dynamical model for the coupled temperature and mass dynamics of the decomposition of a polymeric carbohydrate adsorbed on a mineral surface, with incident stochastic thermal fluctuations. Results show that the model system behaves as a reciprocating thermochemical oscillator. The output fluctuation distribution is bimodal, with a right-weighted component that guarantees a bias towards detachment and desorption of monomeric species such as ribose, even while tar is formed concomitantly. This fluctuating thermochemical reciprocator may ensure that non-performing polymers can be fractionated into a refractory carbon reservoir and active monomers which may be reincorporated into better-performing polymers with less vulnerability towards adsorptive tarring.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute, Australian National University, Canberra2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
6
|
Tang S, Gao M. The Origin(s) of LUCA: Computer Simulation of a New Theory. Life (Basel) 2025; 15:75. [PMID: 39860015 PMCID: PMC11766493 DOI: 10.3390/life15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Carl Woese's thesis of cellular evolution emphasized that the last universal common/cellular ancestor (LUCA) must have evolved by drawing from "global inventions". Yet, existing theories regarding the origin(s) of LUCA have mostly centered upon scenarios that LUCA had evolved mostly independently. In an earlier paper, we advanced a new theory regarding the origin(s) of LUCA that extends Woese's original insights. Our theory centers upon the possibility that different vesicles and protocells can merge with and acquire each other as a form of variation, selection, and retention, driven by wet-and-dry cycles and other similar cyclical processes. In this paper, we use computer simulation to show that under a variety of simulated conditions, LUCA can indeed be produced by our proposed processes. We hope that our study can stimulate laboratory testing of some key hypotheses that vesicles' absorption, acquisition, and merger has indeed been a central force in driving the evolution of LUCA.
Collapse
Affiliation(s)
- Shiping Tang
- Center for Complex Decision Analysis, Fudan University, Shanghai 200433, China;
| | | |
Collapse
|
7
|
Lowe LA, Kaushik NK, Wang A. Natural Size Variation Amongst Protocells Leads to Survival and Growth Under Hypoosmotic Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406241. [PMID: 39629530 DOI: 10.1002/smll.202406241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/20/2024] [Indexed: 01/23/2025]
Abstract
Membrane growth is vital to the evolution of cellular life. For model protocells, this is typically achieved through competition between different protocell populations or by adding extra amphiphiles. This work demonstrates an alternative mechanism for protocell membrane growth: hypoosmotic shocks, which could have occurred naturally in the protocell environment, leading to the redistribution of lipids within a single population of vesicles. Here we report that, even without an additional lipid supply, nanoscale and giant fatty acid vesicles can withstand substantial osmotic pressures through membrane growth, whilst also retaining a significant portion of their contents. This stands in contrast to phospholipid systems, which burst and release their contents under the same conditions. Notably, the fatty acid giant vesicles retained contents following hypoosmotic shocks ten times higher than the predicted tolerance levels. The observed robustness is likely enabled by the membrane's incorporation of additional amphiphiles from smaller and less tense vesicles within the same population. The dynamic nature of these fatty acid-based model protocells not only supports membrane growth but also enables protocell survival in hypoosmotic environments.
Collapse
Affiliation(s)
- Lauren A Lowe
- School of Chemistry, Australian Centre for Astrobiology, ARC Centre of Excellence in Synthetic Biology, UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Natasha K Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, Australian Centre for Astrobiology, ARC Centre of Excellence in Synthetic Biology, UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Tutolo BM, Perrin R, Lauer R, Bossaer S, Tosca NJ, Hutchings A, Sevgen S, Nightingale M, Ilg D, Mott EB, Wilson T. Groundwater-Driven Evolution of Prebiotic Alkaline Lake Environments. Life (Basel) 2024; 14:1624. [PMID: 39768332 PMCID: PMC11678467 DOI: 10.3390/life14121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaline lakes are thought to have facilitated prebiotic synthesis reactions on the early Earth because their modern analogs accumulate vital chemical feedstocks such as phosphate through the evaporation of dilute groundwaters. Yet, the conditions required for some building block synthesis reactions are distinct from others, and these conditions are generally incompatible with those permissible for nascent cellular function. However, because current scenarios for prebiotic synthesis have not taken account of the physical processes that drive the chemical evolution of alkaline lakes, the potential for the co-occurrence of both prebiotic synthesis and the origins and early evolution of life in prebiotic alkaline lake environments remains poorly constrained. Here, we investigate the dynamics of active, prebiotically relevant alkaline lakes using near-surface geophysics, aqueous geochemistry, and hydrogeologic modeling. Due to their small size, representative range of chemistry, and contrasting evaporation behavior, the investigated, neighboring Last Chance and Goodenough Lakes in British Columbia, Canada offer a uniquely tractable environment for investigating the dynamics of alkaline lake behavior. The results show that the required, extreme phosphate enrichments in alkaline lake waters demand geomorphologically-driven vulnerability to evaporation, while the resultant contrast between evaporated brines and inflowing groundwaters yields Rayleigh-Taylor instabilities and vigorous surface-subsurface cycling and mixing of lake and groundwaters. These results provide a quantitative basis to reconcile conflicting prebiotic requirements of UV light, salinity, metal concentration, and pH in alkaline lake environments. The complex physical and chemical processing inherent to prebiotic alkaline lake environments thus may have not only facilitated prebiotic reaction networks, but also provided habitable environments for the earliest evolution of life.
Collapse
Affiliation(s)
- Benjamin M. Tutolo
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Robert Perrin
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rachel Lauer
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shane Bossaer
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Alec Hutchings
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Serhat Sevgen
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Nightingale
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniel Ilg
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Eric B. Mott
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas Wilson
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proc Natl Acad Sci U S A 2024; 121:e2412784121. [PMID: 39585974 PMCID: PMC11626162 DOI: 10.1073/pnas.2412784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life. It has long been known that dehydration at elevated temperatures can drive the synthesis of ester and peptide bonds, but this reaction has typically been carried out by incubating dry monomers at elevated temperatures. We report that single or multiple cycles of wetting and drying link mononucleotides by forming phosphodiester bonds. Mass spectrometric analysis reveals uridine monophosphate oligomers up to 53 nucleotides, with an abundance of 35 and 43 nt in length. Long-chain oligomers are also observed for thymidine monophosphate, adenosine monophosphate, and deoxyadenosine monophosphate after exposure to a few wet-dry cycles. Nanopore sequencing confirms that long linear chains are formed. Enzyme digestion shows that the linkage is the phosphodiester bond, which is further confirmed by 31P NMR and Fourier transform infrared spectroscopy. This suggests that nucleic acid oligomers were likely to be present on early Earth in a steady state of synthesis and hydrolysis.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Povilas Simonis
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, VilniusLT-01513, Lithuania
- State Research Institute Center for Physical Sciences and Technology, VilniusLT-02300, Lithuania
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
12
|
Moreno A, Bonduelle C. New Insights on the Chemical Origin of Life: The Role of Aqueous Polymerization of N-carboxyanhydrides (NCA). Chempluschem 2024; 89:e202300492. [PMID: 38264807 DOI: 10.1002/cplu.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 01/25/2024]
Abstract
At the origin, the emergence of proteins was based on crucial prebiotic stages in which simple amino acids-based building blocks spontaneously evolved from the prebiotic soup into random proto-polymers called protoproteins. Despite advances in modern peptide synthesis, these prebiotic chemical routes to protoproteins remain puzzling. We discuss in this perspective how polymer science and systems chemistry are reaching a point of convergence in which simple monomers called N-carboxyanhydrides would be able to form such protoproteins via the emergence of a protometabolic cycle involving aqueous polymerization and featuring macromolecular Darwinism behavior.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Quimica, UNAM, Ciudad Universitaria, Coyoacan, 04510, Mexico DF
| | - Colin Bonduelle
- CNRS, Bordeaux INP, LCPO UMR5629, Univ. Bordeaux, 33600, Pessac, France
| |
Collapse
|
13
|
Da Silva L, Eiby SHJ, Bjerrum MJ, Thulstrup PW, Deamer D, Hassenkam T. Visualizing ribonuclease digestion of RNA-like polymers produced by hot wet-dry cycles. Biochem Biophys Res Commun 2024; 712-713:149938. [PMID: 38640739 DOI: 10.1016/j.bbrc.2024.149938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Polymerization of nucleotides under prebiotic conditions simulating the early Earth has been extensively studied. Several independent methods have been used to verify that RNA-like polymers can be produced by hot wet-dry cycling of nucleotides. However, it has not been shown that these RNA-like polymers are similar to biological RNA with 3'-5' phosphodiester bonds. In the results described here, RNA-like polymers were generated from 5'-monophosphate nucleosides AMP and UMP. To confirm that the polymers resemble biological RNA, ribonuclease A should catalyze hydrolysis of the 3'-5' phosphodiester bonds between pyrimidine nucleotides to each other or to purine nucleotides, but not purine-purine nucleotide bonds. Here we show AFM images of specific polymers produced by hot wet-dry cycling of AMP, UMP and AMP/UMP (1:1) solutions on mica surfaces, before and after exposure to ribonuclease A. AMP polymers were unaffected by ribonuclease A but UMP polymers disappeared. This indicates that a major fraction of the bonds in the UMP polymers is indeed 3'-5' phosphodiester bonds. Some of the polymers generated from the AMP/UMP mixture also showed clear signs of cleavage. Because ribonuclease A recognizes the ester bonds in the polymers, we show for the first time that these prebiotically produced polymers are in fact similar to biological RNA but are likely to be linked by a mixture of 3'-5' and 2'-5' phosphodiester bonds.
Collapse
Affiliation(s)
- Laura Da Silva
- Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark
| | | | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Tue Hassenkam
- Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark.
| |
Collapse
|
14
|
Rezaeerod K, Heinzmann H, Torrence AV, Patel J, Forsythe JG. Qualitative Monitoring of Proto-Peptide Condensation by Differential FTIR Spectroscopy. ACS EARTH & SPACE CHEMISTRY 2024; 8:937-944. [PMID: 38774359 PMCID: PMC11103710 DOI: 10.1021/acsearthspacechem.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Condensation processes such as wet-dry cycling are thought to have played significant roles in the emergence of proto-peptides. Here, we describe a simple and low-cost method, differential Fourier transform infrared (FTIR) spectroscopy, for qualitative analysis of peptide condensation products in model primordial reactions. We optimize differential FTIR for depsipeptides and apply this method to investigate their polymerization in the presence of extraterrestrial dust simulants.
Collapse
Affiliation(s)
- Keon Rezaeerod
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Hanna Heinzmann
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
- Analytical
and Bioanalytical Chemistry, Aalen University, 73430 Aalen, Germany
| | - Alexis V. Torrence
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jui Patel
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jay G. Forsythe
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| |
Collapse
|
15
|
Lopez A, Vauchez A, Ajram G, Shvetsova A, Leveau G, Fiore M, Strazewski P. From the RNA-Peptide World: Prebiotic Reaction Conditions Compatible with Lipid Membranes for the Formation of Lipophilic Random Peptides in the Presence of Short Oligonucleotides, and More. Life (Basel) 2024; 14:108. [PMID: 38255723 PMCID: PMC10817532 DOI: 10.3390/life14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.
Collapse
Affiliation(s)
- Augustin Lopez
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Antoine Vauchez
- Centre Commun de la Spectrométrie de Masse (CCSM), ICBMS, Bâtiment Edgar Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France;
| | - Ghinwa Ajram
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Anastasiia Shvetsova
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Gabrielle Leveau
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Michele Fiore
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Peter Strazewski
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| |
Collapse
|
16
|
Toparlak Ö, Sebastianelli L, Egas Ortuno V, Karki M, Xing Y, Szostak JW, Krishnamurthy R, Mansy SS. Cyclophospholipids Enable a Protocellular Life Cycle. ACS NANO 2023; 17:23772-23783. [PMID: 38038709 PMCID: PMC10722605 DOI: 10.1021/acsnano.3c07706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
| | - Lorenzo Sebastianelli
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| | - Veronica Egas Ortuno
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megha Karki
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanfeng Xing
- Department
of Biochemistry and Molecular Biology, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
17
|
Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Lett 2023; 597:2879-2896. [PMID: 37884438 DOI: 10.1002/1873-3468.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization. We focus on the influence of molecular assembly on hydrolysis rates in aqueous media and suggest that assembly was crucial for biopolymer selection. In this model, incremental enrichment of some molecular species during chemical evolution was partially driven by the interplay of kinetics of synthesis and hydrolysis. We document a general attenuation of hydrolysis by assembly (i.e., recalcitrance) for all universal biopolymers and highlight the likely role of assembly in the survival of the 'fittest' molecules during chemical evolution.
Collapse
Affiliation(s)
- Rotem Edri
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Sarah Fisher
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Cesar Menor-Salvan
- Department of Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Moran Frenkel-Pinter
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
18
|
Boigenzahn H, Gagrani P, Yin J. Enhancement of Prebiotic Peptide Formation in Cyclic Environments. ORIGINS LIFE EVOL B 2023; 53:157-173. [PMID: 37897620 DOI: 10.1007/s11084-023-09641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/30/2023]
Abstract
The dynamic behaviors of prebiotic reaction networks may be critically important to understanding how larger biopolymers could emerge, despite being unfavorable to form in water. We focus on understanding the dynamics of simple systems, prior to the emergence of replication mechanisms, and what role they may have played in biopolymer formation. We specifically consider the dynamics in cyclic environments using both model and experimental data. Cyclic environmental conditions prevent a system from reaching thermodynamic equilibrium, improving the chance of observing interesting kinetic behaviors. We used an approximate kinetic model to simulate the dynamics of trimetaphosphate (TP)-activated peptide formation from glycine in cyclic wet-dry conditions. The model predicts that environmental cycling allows trimer and tetramer peptides to sustain concentrations above the predicted fixed points of the model due to overshoot, a dynamic phenomenon. Our experiments demonstrate that oscillatory environments can shift product distributions in favor of longer peptides. However, experimental validation of certain behaviors in the kinetic model is challenging, considering that open systems with cyclic environmental conditions break many of the common assumptions in classical chemical kinetics. Overall, our results suggest that the dynamics of simple peptide reaction networks in cyclic environments may have been important for the formation of longer polymers on the early Earth. Similar phenomena may have also contributed to the emergence of reaction networks with product distributions determined not by thermodynamics, but rather by kinetics.
Collapse
Affiliation(s)
- Hayley Boigenzahn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA.
| |
Collapse
|
19
|
Fisk M, Popa R. Decorated Vesicles as Prebiont Systems (a Hypothesis). ORIGINS LIFE EVOL B 2023; 53:187-203. [PMID: 38072914 DOI: 10.1007/s11084-023-09643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/31/2023]
Abstract
Decorated vesicles in deep, seafloor basalts form abiotically, but show at least four life-analogous features, which makes them a candidate for origin of life research. These features are a physical enclosure, carbon-assimilatory catalysts, semi-permeable boundaries, and a source of usable energy. The nanometer-to-micron-sized spherules on the inner walls of decorated vesicles are proposed to function as mineral proto-enzymes. Chemically, these structures resemble synthetic FeS clusters shown to convert CO2, CO and H2 into methane, formate, and acetate. Secondary phyllosilicate minerals line the vesicles' inner walls and can span openings in the vesicles and thus can act as molecular sieves between the vesicles' interior and the surrounding aquifer. Lastly, basalt glass in the vesicle walls takes up protons, which replace cations in the silicate framework. This results in an inward proton flux, reciprocal outward flux of metal cations, more alkaline pH inside the vesicle than outside, and production of more phyllosilicates. Such life-like features could have been exploited to move decorated vesicles toward protolife systems. Decorated vesicles are proposed as study models of prebiotic systems that are expected to have existed on the early Earth and Earth-like exoplanets. Their analysis can lead to better understanding of changes in planetary geocycles during the origin of life.
Collapse
Affiliation(s)
- Martin Fisk
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97330, USA.
| | - Radu Popa
- River Road Research, Tonawanda, NY, 14150, USA
| |
Collapse
|
20
|
Riggi VS, Watson EB, Steele A, Rogers KL. Mineral-Mediated Oligoribonucleotide Condensation: Broadening the Scope of Prebiotic Possibilities on the Early Earth. Life (Basel) 2023; 13:1899. [PMID: 37763303 PMCID: PMC10532843 DOI: 10.3390/life13091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.
Collapse
Affiliation(s)
- Vincent S. Riggi
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - E. Bruce Watson
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Steele
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd NW, Washington, DC 20015, USA
| | - Karyn L. Rogers
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
21
|
Ross D, Deamer D. Template-Directed Replication and Chiral Resolution during Wet-Dry Cycling in Hydrothermal Pools. Life (Basel) 2023; 13:1749. [PMID: 37629605 PMCID: PMC10456050 DOI: 10.3390/life13081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The commonly supposed template-based format for RNA self-replication requires both duplex assembly and disassembly. This requisite binary provision presents a challenge to the development of a serviceable self-replication model since chemical reactions are thermochemically unidirectional. We submit that a solution to this problem lies in volcanic landmasses that engage in continuous cycles of wetting and drying and thus uniquely provide the twofold state required for self-replication. Moreover, they offer conditions that initiate chain branching, and thus furnish a path to autocatalytic self-replication. The foundations of this dual thermochemical landscape arise from the broad differences in the properties of the bulk water phase on the one hand, and the air/water interfacial regions that emerge in the evaporative stages on the other. With this reaction system as a basis and employing recognized thermochemical and kinetic parameters, we present simulations displaying the spontaneous and autocatalyzed conversion of racemic and unactivated RNA monomers to necessarily homochiral duplex structures over characteristic periods of years.
Collapse
Affiliation(s)
- David Ross
- SRI International, Menlo Park, CA 94025, USA
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
22
|
Rapin W, Dromart G, Clark BC, Schieber J, Kite ES, Kah LC, Thompson LM, Gasnault O, Lasue J, Meslin PY, Gasda PJ, Lanza NL. Sustained wet-dry cycling on early Mars. Nature 2023; 620:299-302. [PMID: 37558847 DOI: 10.1038/s41586-023-06220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 08/11/2023]
Abstract
The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.
Collapse
Affiliation(s)
- W Rapin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
| | | | - B C Clark
- Space Science Institute, Boulder, CO, USA
| | - J Schieber
- Indiana University, Bloomington, IN, USA
| | - E S Kite
- University of Chicago, Chicago, IL, USA
| | - L C Kah
- University of Tennessee, Knoxville, TN, USA
| | - L M Thompson
- University of New Brunswick, Fredericton, NB, Canada
| | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - J Lasue
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - P-Y Meslin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - P J Gasda
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N L Lanza
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
23
|
Kauffman SA, Lehman N. Mixed anhydrides at the intersection between peptide and RNA autocatalytic sets: evolution of biological coding. Interface Focus 2023; 13:20230009. [PMID: 37213924 PMCID: PMC10198252 DOI: 10.1098/rsfs.2023.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 05/23/2023] Open
Abstract
We present a scenario for the origin of biological coding, a semiotic relationship between chemical information stored in one location that links to chemical information stored in a separate location. Coding originated from cooperation between two, originally separate, collectively autocatalytic sets (CASs), one for nucleic acids and one for peptides. Upon interaction, a series of RNA folding-directed processes led to their joint cooperativity. The aminoacyl adenylate was the first covalent association made by these two CASs and solidified their interdependence, and is a palimpsest of this era, a relic of the original semiotic relationship between RNA and proteins. Coding was driven by selection pressure to eliminate waste in CASs. Eventually a 1 : 1 relationship between single amino acids and short RNA pieces was established, i.e. the 'genetic code'. The two classes of aaRS enzymes are remnants of the complementary information in two RNA strands, as postulated by Rodin and Ohno. Every stage in the evolution of coding was driven by the downward selection on the components of a system to satisfy the Kantian whole. Coding was engendered because there were two chemically distinct classes of polymers needed for open-ended evolution; systems with only one polymer cannot exhibit this characteristic. Coding is thus synonymous with life as we know it.
Collapse
Affiliation(s)
- S A Kauffman
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - N Lehman
- EDAC Research, 11845 SE 26th Avenue, Milwaukie, OR 97222, USA
| |
Collapse
|
24
|
Dagar S, Sarkar S, Rajamani S. Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles. ORIGINS LIFE EVOL B 2023; 53:43-60. [PMID: 37243884 DOI: 10.1007/s11084-023-09636-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/15/2023] [Indexed: 05/29/2023]
Abstract
RNA World Hypothesis is centred around the idea of a period in the early history of life's origin, wherein nonenzymatic oligomerization and replication of RNA resulted in functional ribozymes. Previous studies in this endeavour have demonstrated template-directed primer extension using chemically modified nucleotides and primers. Nonetheless, similar studies that used non-activated nucleotides led to the formation of RNA only with abasic sites. In this study, we report template-directed primer extension with prebiotically relevant cyclic nucleotides, under dehydration-rehydration (DH-RH) cycles occurring at high temperature (90 °C) and alkaline conditions (pH 8). 2'-3' cyclic nucleoside monophosphates (cNMP) resulted in primer extension, while 3'-5' cNMP failed to do so. Intact extension of up to two nucleotide additions was observed with both canonical hydroxy-terminated (OH-primer) and activated amino-terminated (NH2-primer) primers. We demonstrate primer extension reactions using both purine and pyrimidine 2'-3' cNMPs, with higher product yield observed during cAMP additions. Further, the presence of lipid was observed to significantly enhance the extended product in cCMP reactions. In all, our study provides a proof-of-concept for nonenzymatic primer extension of RNA, using intrinsically activated prebiotically relevant cyclic nucleotides as monomers.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
25
|
de Herrera AG, Markert T, Trixler F. Temporal nanofluid environments induce prebiotic condensation in water. Commun Chem 2023; 6:69. [PMID: 37059805 PMCID: PMC10104841 DOI: 10.1038/s42004-023-00872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Water is a problem in understanding chemical evolution towards life's origins on Earth. Although all known life is being based on water key prebiotic reactions are inhibited by it. The prebiotic plausibility of current strategies to circumvent this paradox is questionable regarding the principle that evolution builds on existing pathways. Here, we report a straightforward way to overcome the water paradox in line with evolutionary conservatism. By utilising a molecular deposition method as a physicochemical probe, we uncovered a synergy between biomolecule assembly and temporal nanofluid conditions that emerge within transient nanoconfinements of water between suspended particles. Results from fluorometry, quantitative PCR, melting curve analysis, gel electrophoresis and computational modelling reveal that such conditions induce nonenzymatic polymerisation of nucleotides and promote basic cooperation between nucleotides and amino acids for RNA formation. Aqueous particle suspensions are a geochemical ubiquitous and thus prebiotic highly plausible setting. Harnessing nanofluid conditions in this setting for prebiotic syntheses is consistent with evolutionary conservatism, as living cells also work with temporal nanoconfined water for biosynthesis. Our findings add key insights required to understand the transition from geochemistry to biochemistry and open up systematic pathways to water-based green chemistry approaches in materials science and nanotechnology.
Collapse
Affiliation(s)
- Andrea Greiner de Herrera
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333, Munich, Germany
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- School of Education, Technical University of Munich and Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany
| | - Thomas Markert
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Trixler
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333, Munich, Germany.
- School of Education, Technical University of Munich and Deutsches Museum, Museumsinsel 1, 80538, Munich, Germany.
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingtr. 4, 80799, Munich, Germany.
| |
Collapse
|
26
|
Dujardin A, Himbert S, Pudritz R, Rheinstädter MC. The Formation of RNA Pre-Polymers in the Presence of Different Prebiotic Mineral Surfaces Studied by Molecular Dynamics Simulations. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010112. [PMID: 36676060 PMCID: PMC9860743 DOI: 10.3390/life13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
We used all-atom Molecular Dynamics (MD) computer simulations to study the formation of pre-polymers between the four nucleotides in RNA (AMP, UMP, CMP, GMP) in the presence of different substrates that could have been present in a prebiotic environment. Pre-polymers are C3'-C5' hydrogen-bonded nucleotides that have been suggested to be the precursors of phosphodiester-bonded RNA polymers. We simulated wet-dry cycles by successively removing water molecules from the simulations, from ~60 to 3 water molecules per nucleotide. The nine substrates in this study include three clay minerals, one mica, one phosphate mineral, one silica, and two metal oxides. The substrates differ in their surface charge and ability to form hydrogen bonds with the nucleotides. From the MD simulations, we quantify the interactions between different nucleotides, and between nucleotides and substrates. For comparison, we included graphite as an inert substrate, which is not charged and cannot form hydrogen bonds. We also simulated the dehydration of a nucleotide-only system, which mimics the drying of small droplets. The number of hydrogen bonds between nucleotides and nucleotides and substrates was found to increase significantly when water molecules were removed from the systems. The largest number of C3'-C5' hydrogen bonds between nucleotides occurred in the graphite and nucleotide-only systems. While the surface of the substrates led to an organization and periodic arrangement of the nucleotides, none of the substrates was found to be a catalyst for pre-polymer formation, neither at full hydration, nor when dehydrated. While confinement and dehydration seem to be the main drivers for hydrogen bond formation, substrate interactions reduced the interactions between nucleotides in all cases. Our findings suggest that small supersaturated water droplets that could have been produced by geysers or springs on the primitive Earth may play an important role in non-enzymatic RNA polymerization.
Collapse
Affiliation(s)
- Alix Dujardin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Ralph Pudritz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
- Correspondence: ; Tel.: +1-(905)-525-9140-23134; Fax: +1-(905)-546-1252
| |
Collapse
|
27
|
Boigenzahn H, Yin J. Glycine to Oligoglycine via Sequential Trimetaphosphate Activation Steps in Drying Environments. ORIGINS LIFE EVOL B 2022; 52:249-261. [DOI: 10.1007/s11084-022-09634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
|
28
|
Sugawara T, Matsuo M, Suzuki K. Construction of Artificial Cell as an Autonomous Supramolecular Machine. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Science for Life, Hiroshima University
| | | |
Collapse
|
29
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
30
|
Origins of Life Research: The Conundrum between Laboratory and Field Simulations of Messy Environments. Life (Basel) 2022; 12:life12091429. [PMID: 36143465 PMCID: PMC9504664 DOI: 10.3390/life12091429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Most experimental results that guide research related to the origin of life are from laboratory simulations of the early Earth conditions. In the laboratory, emphasis is placed on the purity of reagents and carefully controlled conditions, so there is a natural tendency to reject impurities and lack of control. However, life did not originate in laboratory conditions; therefore, we should take into consideration multiple factors that are likely to have contributed to the environmental complexity of the early Earth. This essay describes eight physical and biophysical factors that spontaneously resolve aqueous dispersions of ionic and organic solutes mixed with mineral particles and thereby promote specific chemical reactions required for life to begin.
Collapse
|
31
|
Roy S, Sengupta S. The Effect of Environment on the Evolution and Proliferation of Protocells of Increasing Complexity. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081227. [PMID: 36013406 PMCID: PMC9410160 DOI: 10.3390/life12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
The formation, growth, division and proliferation of protocells containing RNA strands is an important step in ensuring the viability of a mixed RNA-lipid world. Experiments and computer simulations indicate that RNA encapsulated inside protocells can favor the protocell, promoting its growth while protecting the system from being over-run by selfish RNA sequences. Recent work has also shown that the rolling-circle replication mechanism can be harnessed to ensure the rapid growth of RNA strands and the probabilistic emergence and proliferation of protocells with functionally diverse ribozymes. Despite these advances in our understanding of a primordial RNA-lipid world, key questions remain about the ideal environment for the formation of protocells and its role in regulating the proliferation of functionally complex protocells. The hot spring hypothesis suggests that mineral-rich regions near hot springs, subject to dry-wet cycles, provide an ideal environment for the origin of primitive protocells. We develop a computational model to study protocellular evolution in such environments that are distinguished by the occurrence of three distinct phases, a wet phase, followed by a gel phase, and subsequently by a dry phase. We determine the conditions under which protocells containing multiple types of ribozymes can evolve and proliferate in such regions. We find that diffusion in the gel phase can inhibit the proliferation of complex protocells with the extent of inhibition being most significant when a small fraction of protocells is eliminated during environmental cycling. Our work clarifies how the environment can shape the evolution and proliferation of complex protocells.
Collapse
|
32
|
Hassenkam T, Deamer D. Visualizing RNA polymers produced by hot wet-dry cycling. Sci Rep 2022; 12:10098. [PMID: 35739144 PMCID: PMC9226162 DOI: 10.1038/s41598-022-14238-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
It is possible that the transition from abiotic systems to life relied on RNA polymers that served as ribozyme-like catalysts and for storing genetic information. The source of such polymers is uncertain, but previous investigations reported that wet-dry cycles simulating prebiotic hot springs provide sufficient energy to drive condensation reactions of mononucleotides to form oligomers and polymers. The aim of the study reported here was to verify this claim and visualize the products prepared from solutions composed of single mononucleotides and 1:1 mixture of two mononucleotides. Therefore, we designed experiments that allowed comparisons of all such mixtures representing six combinations of the four mononucleotides of RNA. We observed irregular stringy patches and crystal strands when wet-dry cycling was performed at room temperature (20 °C). However, when the same solutions were exposed to wet-dry cycles at 80 °C, we observed what appeared to be true polymers. Their thickness was consistent with RNA-like products composed of covalently bonded monomers, while irregular strings and crystal segments of mononucleotides dried or cycled at room temperature were consistent with structures assembled and stabilized by weak hydrogen bonds. In a few instances we observed rings with short polymer attachments. These observations are consistent with previous claims of polymerization during wet-dry cycling. We conclude that RNA-like polymers and rings could have been synthesized non-enzymatically in freshwater hot springs on the prebiotic Earth with sizes sufficient to fold into ribozymes and genetic molecules required for life to begin.
Collapse
Affiliation(s)
- Tue Hassenkam
- Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark.
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
33
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|
34
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
35
|
Frenkel-Pinter M, Jacobson KC, Eskew-Martin J, Forsythe JG, Grover MA, Williams LD, Hud NV. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life (Basel) 2022; 12:265. [PMID: 35207553 PMCID: PMC8876357 DOI: 10.3390/life12020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
The origin of biopolymers is a central question in origins of life research. In extant life, proteins are coded linear polymers made of a fixed set of twenty alpha-L-amino acids. It is likely that the prebiotic forerunners of proteins, or protopeptides, were more heterogenous polymers with a greater diversity of building blocks and linkage stereochemistry. To investigate a possible chemical selection for alpha versus beta amino acids in abiotic polymerization reactions, we subjected mixtures of alpha and beta hydroxy and amino acids to single-step dry-down or wet-dry cycling conditions. The resulting model protopeptide mixtures were analyzed by a variety of analytical techniques, including mass spectrometry and NMR spectroscopy. We observed that amino acids typically exhibited a higher extent of polymerization in reactions that also contained alpha hydroxy acids over beta hydroxy acids, whereas the extent of polymerization by beta amino acids was higher compared to their alpha amino acid analogs. Our results suggest that a variety of heterogenous protopeptide backbones existed during the prebiotic epoch, and that selection towards alpha backbones occurred later as a result of polymer evolution.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kaitlin C. Jacobson
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jonathan Eskew-Martin
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Jay G. Forsythe
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA
| | - Martha A. Grover
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nicholas V. Hud
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA; (M.F.-P.); (K.C.J.); (J.E.-M.); (J.G.F.); (M.A.G.)
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
36
|
Abstract
The roots of biological homochirality remain unknown despite decades of study. A commonly proposed path includes an initial small enantiomeric excess that was amplified over time, but a satisfactory source of the excess and a plausible amplification process have yet to be described. We propose here a route to oligonucleotide homochirality from unactivated racemic sources based upon the facts that duplex structures are inherently homochiral and their synthesis from strands of complementary string nucleotide subunits is both uncommonly rapid and exergonic. Simulations employing available kinetic and thermochemical data in an iterated sequence of three equilibria in dry/wet cycles running from unactivated and racemic RNA monomers through oligonucleotides to duplex structures have shown that the exceptional association rate distorts the otherwise simple equilibrium string and overcomes the severe kinetic and stoichiometric barriers to the pairing of the statistically scant homochiral fractions. The simulations reveal widespread deracemization and the full conversion of racemic monomers to populations of L- and D-duplexes in a succession of growth in which the initially formed duplexes are replaced over time with increasingly larger descendants. This claim is open to experimental testing.
Collapse
Affiliation(s)
- David Ross
- Retired, formerly SRI International, Menlo Park, California, USA
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| |
Collapse
|
37
|
Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 2021; 5:870-878. [PMID: 37117387 DOI: 10.1038/s41570-021-00329-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Protocells at life's origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
Collapse
|
38
|
Matsuo M, Kurihara K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 2021; 12:5487. [PMID: 34561428 PMCID: PMC8463549 DOI: 10.1038/s41467-021-25530-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid-liquid phase separation in water. The droplets underwent a steady growth-division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kensuke Kurihara
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
- Faculty of Education, Utsunomiya University, Utsumomiya, Tochigi, Japan.
- Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
| |
Collapse
|
39
|
Walton CR, Shorttle O. Scum of the Earth: A Hypothesis for Prebiotic Multi-Compartmentalised Environments. Life (Basel) 2021; 11:life11090976. [PMID: 34575124 PMCID: PMC8472051 DOI: 10.3390/life11090976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.
Collapse
Affiliation(s)
- Craig Robert Walton
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Correspondence:
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK;
| |
Collapse
|
40
|
Ying J, Ding R, Liu Y, Zhao Y. Prebiotic Chemistry in Aqueous Environment: A Review of Peptide Synthesis and Its Relationship with Genetic Code. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianxi Ying
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Ruiwen Ding
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| | - Yufen Zhao
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| |
Collapse
|
41
|
Chu XY, Chen SM, Zhao KW, Tian T, Gao J, Zhang HY. Plausibility of Early Life in a Relatively Wide Temperature Range: Clues from Simulated Metabolic Network Expansion. Life (Basel) 2021; 11:738. [PMID: 34440482 PMCID: PMC8398716 DOI: 10.3390/life11080738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
The debate on the temperature of the environment where life originated is still inconclusive. Metabolic reactions constitute the basis of life, and may be a window to the world where early life was born. Temperature is an important parameter of reaction thermodynamics, which determines whether metabolic reactions can proceed. In this study, the scale of the prebiotic metabolic network at different temperatures was examined by a thermodynamically constrained network expansion simulation. It was found that temperature has limited influence on the scale of the simulated metabolic networks, implying that early life may have occurred in a relatively wide temperature range.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (X.-Y.C.); (S.-M.C.); (K.-W.Z.); (T.T.); (J.G.)
| |
Collapse
|
42
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
43
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
44
|
Sarkar S, Dagar S, Rajamani S. Influence of Wet–Dry Cycling on the Self‐Assembly and Physicochemical Properties of Model Protocellular Membrane Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susovan Sarkar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Shikha Dagar
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| | - Sudha Rajamani
- Department of Biology Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
45
|
Stolar T, Grubešić S, Cindro N, Meštrović E, Užarević K, Hernández JG. Mechanochemical Prebiotic Peptide Bond Formation*. Angew Chem Int Ed Engl 2021; 60:12727-12731. [PMID: 33769680 DOI: 10.1002/anie.202100806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
The presence of amino acids on the prebiotic Earth, either stemming from endogenous chemical routes or delivered by meteorites, is consensually accepted. Prebiotically plausible pathways to peptides from inactivated amino acids are still unclear as most oligomerization approaches rely on thermodynamically disfavored reactions in solution. Now, a combination of prebiotically plausible minerals and mechanochemical activation enables the oligomerization of glycine at ambient temperature in the absence of water. Raising the reaction temperature increases the degree of oligomerization concomitantly with the formation of a commonly unwanted cyclic glycine dimer (DKP). However, DKP is a productive intermediate in the mechanochemical oligomerization of glycine. The findings of this research show that mechanochemical peptide bond formation is a dynamic process that provides alternative routes towards oligopeptides and establishes new synthetic approaches for prebiotic chemistry.
Collapse
Affiliation(s)
- Tomislav Stolar
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - Saša Grubešić
- Xellia Pharmaceuticals, Slavonska avenija 24/6, 10000, Zagreb, Croatia
| | - Nikola Cindro
- Department of Organic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Ernest Meštrović
- Xellia Pharmaceuticals, Slavonska avenija 24/6, 10000, Zagreb, Croatia
| | - Krunoslav Užarević
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
46
|
Stolar T, Grubešić S, Cindro N, Meštrović E, Užarević K, Hernández JG. Mechanochemical Prebiotic Peptide Bond Formation**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomislav Stolar
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Saša Grubešić
- Xellia Pharmaceuticals Slavonska avenija 24/6 10000 Zagreb Croatia
| | - Nikola Cindro
- Department of Organic Chemistry Faculty of Science University of Zagreb Horvatovac 102a 10000 Zagreb Croatia
| | - Ernest Meštrović
- Xellia Pharmaceuticals Slavonska avenija 24/6 10000 Zagreb Croatia
| | - Krunoslav Užarević
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - José G. Hernández
- Division of Physical Chemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| |
Collapse
|
47
|
To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? PHILOSOPHIES 2021. [DOI: 10.3390/philosophies6020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The question concerning the meaning of life is important, but it immediately confronts the present authors with insurmountable obstacles from a philosophical standpoint, as it would require us to define not only what we hold to be life, but what we hold to be meaning in addition, requiring us to do both in a properly researched context. We unconditionally surrender to that challenge. Instead, we offer a vernacular, armchair approach to life’s origin and meaning, with some layman’s thoughts on the meaning of origins as viewed from the biologist’s standpoint. One can observe that biologists generally approach the concept of biological meaning in the context of evolution. This is the basis for the broad resonance behind Dobzhansky’s appraisal that “Nothing in biology makes sense except in the light of evolution”. Biologists try to understand living things in the historical context of how they arose, without giving much thought to the definition of what life or living things are, which for a biologist is usually not an interesting question in the practical context of daily dealings with organisms. Do humans generally understand life’s meaning in the context of history? If we consider the problem of life’s origin, the question of what constitutes a living thing becomes somewhat more acute for the biologist, though not more answerable, because it is inescapable that there was a time when there were no organisms on Earth, followed by a time when there were, the latter time having persisted in continuity to the present. This raises the question of where, in that transition, chemicals on Earth became alive, requiring, in turn, a set of premises for how life arose in order to conceptualize the problem in relation to organisms we know today, including ourselves, which brings us to the point of this paper: In the same way that cultural narratives for origins always start with a setting, scientific narratives for origins also always start with a setting, a place on Earth or elsewhere where we can imagine what happened for the sake of structuring both the problem and the narrative for its solution. This raises the question of whether scientific origins settings convey meaning to humans in that they suggest to us from what kind of place and what kinds of chemicals we are descended, that is, to which inanimate things we are most closely related.
Collapse
|
48
|
Jia TZ, Bapat NV, Verma A, Mamajanov I, Cleaves HJ, Chandru K. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation. Biomacromolecules 2021; 22:1484-1493. [PMID: 33663210 DOI: 10.1021/acs.biomac.0c01697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid segregation and compartmentalization were likely essential functions that primitive compartment systems resolved during evolution. Recently, polyester microdroplets generated from dehydration synthesis of various α-hydroxy acids (αHA) were suggested as potential primitive compartments. Some of these droplets can differentially segregate and compartmentalize organic dyes, proteins, and nucleic acids. However, the previously studied polyester microdroplets included limited αHA chemical diversity, which may not reflect the chemical diversity available in the primitive Earth environment. Here, we increased the chemical diversity of polyester microdroplet systems by combinatorially adding an αHA monomer with a basic side chain, 4-amino-2-hydroxybutyric acid (4a2h), which was incorporated with different ratios of other αHAs containing uncharged side chains to form combinatorial heteropolyesters via dehydration synthesis. Incorporation of 4a2h in the polymers resulted in the assembly of some polyester microdroplets able to segregate fluorescent RNA or potentially acquire intrinsic fluorescent character, suggesting that minor modifications of polyester composition can significantly impact the functional properties of primitive compartments. This study suggests one process by which primitive chemical systems can increase diversity of compartment "phenotype" through simple modifications in their chemical composition.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States
| | - Niraja V Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Ajay Verma
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154, United States.,Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, United States
| | - Kuhan Chandru
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6 - Dejvice, Czech Republic.,Space Science Centre (ANGKASA), Institute of Climate Change, National University of Malaysia, UKM, Bangi, Selangor Darul Ehsan 43650, Malaysia
| |
Collapse
|
49
|
Frenkel-Pinter M, Rajaei V, Glass JB, Hud NV, Williams LD. Water and Life: The Medium is the Message. J Mol Evol 2021; 89:2-11. [PMID: 33427903 PMCID: PMC7884305 DOI: 10.1007/s00239-020-09978-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Water, the most abundant compound on the surface of the Earth and probably in the universe, is the medium of biology, but is much more than that. Water is the most frequent actor in the chemistry of metabolism. Our quantitation here reveals that water accounts for 99.4% of metabolites in Escherichia coli by molar concentration. Between a third and a half of known biochemical reactions involve consumption or production of water. We calculated the chemical flux of water and observed that in the life of a cell, a given water molecule frequently and repeatedly serves as a reaction substrate, intermediate, cofactor, and product. Our results show that as an E. coli cell replicates in the presence of molecular oxygen, an average in vivo water molecule is chemically transformed or is mechanistically involved in catalysis ~ 3.7 times. We conclude that, for biological water, there is no distinction between medium and chemical participant. Chemical transformations of water provide a basis for understanding not only extant biochemistry, but the origins of life. Because the chemistry of water dominates metabolism and also drives biological synthesis and degradation, it seems likely that metabolism co-evolved with biopolymers, which helps to reconcile polymer-first versus metabolism-first theories for the origins of life.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NASA Center for the Origins of Life, Atlanta, GA, USA
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332-0400, USA
| | - Vahab Rajaei
- NASA Center for the Origins of Life, Atlanta, GA, USA
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332-0400, USA
| | - Jennifer B Glass
- NASA Center for the Origins of Life, Atlanta, GA, USA
- School of Earth and Atmospheric Science, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332-0340, USA
| | - Nicholas V Hud
- NASA Center for the Origins of Life, Atlanta, GA, USA
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332-0400, USA
| | - Loren Dean Williams
- NASA Center for the Origins of Life, Atlanta, GA, USA.
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
50
|
Zhou L, Ding D, Szostak JW. The virtual circular genome model for primordial RNA replication. RNA (NEW YORK, N.Y.) 2021; 27:1-11. [PMID: 33028653 PMCID: PMC7749632 DOI: 10.1261/rna.077693.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
We propose a model for the replication of primordial protocell genomes that builds upon recent advances in the nonenzymatic copying of RNA. We suggest that the original genomes consisted of collections of oligonucleotides beginning and ending at all possible positions on both strands of one or more virtual circular sequences. Replication is driven by feeding with activated monomers and by the activation of monomers and oligonucleotides in situ. A fraction of the annealed configurations of the protocellular oligonucleotides would allow for template-directed oligonucleotide growth by primer extension or ligation. Rearrangements of these annealed configurations, driven either by environmental fluctuations or occurring spontaneously, would allow for continued oligonucleotide elongation. Assuming that shorter oligonucleotides were more abundant than longer ones, replication of the entire genome could occur by the growth of all oligonucleotides by as little as one nucleotide on average. We consider possible scenarios that could have given rise to such protocell genomes, as well as potential routes to the emergence of catalytically active ribozymes and thus the more complex cells of the RNA World.
Collapse
Affiliation(s)
- Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|