1
|
Zhang Y, Zhang B, Ahmed I, Zhang H, He Y. Profiles and natural drivers of antibiotic resistome in multiple environmental media in penguin-colonized area in Antarctica. FUNDAMENTAL RESEARCH 2025; 5:269-281. [PMID: 40166126 PMCID: PMC11955065 DOI: 10.1016/j.fmre.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Profiles and driving mechanisms of antibiotic resistome in the polar region are important for exploring the natural evolution of antibiotic resistance genes (ARGs). Here, we evaluated the profiles of antibiotic resistome in multiple media on Inexpressible Island, Terra Nova Bay, Antarctica. Average concentrations of ARGs in intracellular DNA (iARGs) among water (3.98 × 106 copies/L), soil (3.41 × 107 copies/kg), and penguin guano (7.04 × 107 copies/kg) were higher than those of ARGs in extracellular DNA (eARGs) among water (1.99 × 104 copies/L), soil (1.75 × 106 copies/kg), and penguin guano (8.02 × 106 copies/kg). It was indicated that the transmission of ARGs across different media occurs with around 77.8% of iARGs from soil and 86.7% of iARGs from penguins observed in water, and 80.7% of iARGs and 56.7% of eARGs from penguins found in soil. Annual inputs of ARGs from Adélie penguins on Inexpressible Island have increased since 1983. Bacitracin, multidrug, and aminoglycoside resistance genes were the main ARGs among water, soil, and penguin guano. Primary medium-risk ARGs associated with human pathogenic bacteria were multidrug resistance genes, and main low-risk ARGs associated with mobile genetic elements (MGEs) were aminoglycoside resistance genes. Antibiotic-resistant bacteria (ARB) from soil and penguins were more phylogenetically related to aquatic antibiotic-resistant mesophiles than aquatic antibiotic-resistant psychrophiles. MGEs, ARB, bacterial diversities, antibiotics, and metals could explain total ARGs between water and soil. Intracellular MGEs were the most significant in-situ driver of iARGs in water, reflecting that horizontal gene transfer could facilitate the spread of ARGs in water. Penguins were important ex-situ drivers of environmental antibiotic resistome, which was linked with risky ARGs between water and soil. These findings highlight the major roles of natural drivers (e.g., MGEs and penguins) in shaping environmental antibiotic resistome in polar areas, improving our understanding of the evolution of environmental microbiome.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanshu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Mustafa A, Azim MK, Laraib Q, Rehman QMU. Hybrid constructed wetlands and filamentous fungi for treatment of mixed sewage and industrial effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44230-44243. [PMID: 38941051 DOI: 10.1007/s11356-024-34037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Developing countries face multifaceted problems of water pollution and futile measures to combat water pollution. This study was conducted to explore the potential application of sustainable nature-based solutions, hybrid constructed wetlands, and the application of filamentous fungi to treat polluted river water that receives sewage and industrial wastewater. A pilot-scale hybrid constructed wetland design comprising two types of floating plants in distinct tanks along with a floating wetland and a free-water surface wetland connected in series was commissioned and tested. The system successfully removed organic pollution (BOD 94% and COD 90%), nutrients (NH4-N and NO3-N 67% and PO4-P 81%), and heavy metals (Cr 75%, Ni 56%, and Fe 79%) in 40 h and showed a high buffering capacity to cope with the varying pollutant loads. Metagenomics analysis of treated and untreated samples of river water revealed a diversified spatial bacterial community with ~ 25% sequences related to sulfur-metabolizing bacteria, genus Sulfuricurvum. The application of an immobilized strain of A. niger as a mycoremediation technique was also tested. It successfully removed pollutants in the combined sewage and industrial wastewater present in river water: COD (96%), TSS (97%), NH4-N (65%), NO3-N (67%), and PO4-P (78%). This study demonstrated that hybrid constructed wetlands and mycoremediation can be used as sustainable wastewater treatment options in the local context and also in developing countries where most of the conventional wastewater treatment plants do not operate.
Collapse
Affiliation(s)
- Atif Mustafa
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan.
| | - Muhammad Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qandeel Laraib
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qazi Muneeb Ur Rehman
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| |
Collapse
|
3
|
Arora J, Chauhan A, Ranjan A, Rajput VD, Minkina T, Zhumbei AI, Kumari A, Jindal T, Prasad R. Degradation of SDS by psychrotolerant Staphylococcus saprophyticus and Bacillus pumilus isolated from Southern Ocean water samples. Braz J Microbiol 2024; 55:1507-1519. [PMID: 38468117 PMCID: PMC11153461 DOI: 10.1007/s42770-024-01294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.
Collapse
Affiliation(s)
- Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India.
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, Russia.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, Russia
| | - Anton Igorevich Zhumbei
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-On-Don, Russia
| | - Arpna Kumari
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo, Japan
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
4
|
Greco C, Andersen DT, Yallop ML, Barker G, Jungblut AD. Genome-resolved metagenomics reveals diverse taxa and metabolic complexity in Antarctic lake microbial structures. Environ Microbiol 2024; 26:e16663. [PMID: 38881221 DOI: 10.1111/1462-2920.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.
Collapse
Affiliation(s)
- Carla Greco
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Sciences, Natural History Museum, London, UK
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Marian L Yallop
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
5
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
6
|
Pushkareva E, Elster J, Becker B. Metagenomic Analysis of Antarctic Biocrusts Unveils a Rich Range of Cold-Shock Proteins. Microorganisms 2023; 11:1932. [PMID: 37630492 PMCID: PMC10459675 DOI: 10.3390/microorganisms11081932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Microorganisms inhabiting Antarctic biocrusts develop several strategies to survive extreme environmental conditions such as severe cold and drought. However, the knowledge about adaptations of biocrusts microorganisms are limited. Here, we applied metagenomic sequencing to study biocrusts from east Antarctica. Biocrusts were dominated by cyanobacteria, actinobacteria and proteobacteria. Furthermore, the results provided insights into the presence and abundance of cold shock proteins (Csp), cold shock domain A proteins (CsdA), and antifreeze proteins (AFP) in these extreme environments. The metagenomic analysis revealed a high number of CsdA across the samples. The majority of the Csp recorded in the studied biocrusts were Csp A, C, and E. In addition, CsdA, Csp, and AFP primarily originated from proteobacteria and actinobacteria.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany;
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelska 135, 37982 Trebon, Czech Republic;
- Centre for Polar Ecology, University of South Bohemia, Na Zlate Stoce 3, 37005 Ceske Budejovice, Czech Republic
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Zulpicher Str. 47B, 50674 Cologne, Germany;
| |
Collapse
|
7
|
Mashamaite L, Lebre PH, Varliero G, Maphosa S, Ortiz M, Hogg ID, Cowan DA. Microbial diversity in Antarctic Dry Valley soils across an altitudinal gradient. Front Microbiol 2023; 14:1203216. [PMID: 37555066 PMCID: PMC10406297 DOI: 10.3389/fmicb.2023.1203216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica. METHODS We analysed prokaryotic and lower eukaryotic diversity from soil samples across a 684 m altitudinal transect in the lower Taylor Valley, Antarctica and performed a phylogenic characterization of soil microbial communities using short-read sequencing of the 16S rRNA and ITS marker gene amplicons. RESULTS AND DISCUSSION Phylogenetic analysis showed clear altitudinal trends in soil microbial composition and structure. Cyanobacteria were more prevalent in higher altitude samples, while the highly stress resistant Chloroflexota and Deinococcota were more prevalent in lower altitude samples. We also detected a shift from Basidiomycota to Chytridiomycota with increasing altitude. Several genera associated with trace gas chemotrophy, including Rubrobacter and Ornithinicoccus, were widely distributed across the entire transect, suggesting that trace-gas chemotrophy may be an important trophic strategy for microbial survival in oligotrophic environments. The ratio of trace-gas chemotrophs to photoautotrophs was significantly higher in lower altitude samples. Co-occurrence network analysis of prokaryotic communities showed some significant differences in connectivity within the communities from different altitudinal zones, with cyanobacterial and trace-gas chemotrophy-associated taxa being identified as potential keystone taxa for soil communities at higher altitudes. By contrast, the prokaryotic network at low altitudes was dominated by heterotrophic keystone taxa, thus suggesting a clear trophic distinction between soil prokaryotic communities at different altitudes. Based on these results, we conclude that altitude is an important driver of microbial ecology in Antarctic ice-free soil habitats.
Collapse
Affiliation(s)
- Lefentse Mashamaite
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Pedro H. Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Silindile Maphosa
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Max Ortiz
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- Clemson University Genomics & Bioinformatics Facility, Clemson University, Clemson, SC, United States
| | - Ian D. Hogg
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - Don A. Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Thieringer PH, Boyd ES, Templeton AS, Spear JR. Metapangenomic investigation provides insight into niche differentiation of methanogenic populations from the subsurface serpentinizing environment, Samail Ophiolite, Oman. Front Microbiol 2023; 14:1205558. [PMID: 37465028 PMCID: PMC10350532 DOI: 10.3389/fmicb.2023.1205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
9
|
Tian C, Lv Y, Yang Z, Zhang R, Zhu Z, Ma H, Li J, Zhang Y. Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02116-3. [PMID: 36239777 DOI: 10.1007/s00248-022-02116-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities have been identified as the primary inhabitants of Arctic forefields. However, the metabolic potential of microbial communities in these newly exposed soils remains underexplored due to limited access. Here, we sampled the very edge of the glacial forefield in Svalbard and performed the 16S rRNA genes and metagenomic analysis to illustrate the ecosystem characteristics. Burkholderiales and Micrococcales were the dominant bacterial groups at the initial stage of soil development of glacial forefields. 214 metagenome-assembled genomes were recovered from glacier forefield microbiome datasets, including only 2 belonging to archaea. Analysis of these metagenome-assembled genomes revealed that 41% of assembled genomes had the genetic potential to use nitrate and nitrite as electron acceptors. Metabolic pathway reconstruction for these microbes suggested versatility for sulfide and thiosulfate oxidation, H2 and CO utilization, and CO2 fixation. Our results indicate the importance of anaerobic processes in elemental cycling in the glacial forefields. Besides, a range of genes related to adaption to low temperature and other stresses were detected, which revealed the presence of diverse mechanisms of adaption to the extreme environment of Svalbard. This research provides ecological insight into the initial stage of the soil developed during the retreating of glaciers.
Collapse
Affiliation(s)
- Chen Tian
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongxin Lv
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhifeng Yang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Zhuoyi Zhu
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Hongmei Ma
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Jing Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yu Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Benthic Microbial Communities in a Seasonally Ice-Covered Sub-Arctic River (Pasvik River, Norway) Are Shaped by Site-Specific Environmental Conditions. Microorganisms 2022; 10:microorganisms10051022. [PMID: 35630464 PMCID: PMC9147904 DOI: 10.3390/microorganisms10051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The Pasvik River experiences chemical, physical, and biological stressors due to the direct discharges of domestic sewage from settlements located within the catchment and runoff from smelter and mine wastes. Sediments, as a natural repository of organic matter and associated contaminants, are of global concern for the possible release of pollutants in the water column, with detrimental effects on aquatic organisms. The present study was aimed at characterizing the riverine benthic microbial community and evaluating its ecological role in relation to the contamination level. Sediments were sampled along the river during two contrasting environmental periods (i.e., beginning and ongoing phases of ice melting). Microbial enzymatic activities, cell abundance, and morphological traits were evaluated, along with the phylogenetic community composition. Amplified 16S rRNA genes from bacteria were sequenced using a next-generation approach. Sediments were also analyzed for a variety of chemical features, namely particulate material characteristics and concentration of polychlorobiphenyls, polycyclic aromatic hydrocarbons, and pesticides. Riverine and brackish sites did not affect the microbial community in terms of main phylogenetic diversity (at phylum level), morphometry, enzymatic activities, and abundance. Instead, bacterial diversity in the river sediments appeared to be influenced by the micro-niche conditions, with differences in the relative abundance of selected taxa. In particular, our results highlighted the occurrence of bacterial taxa directly involved in the C, Fe, and N cycles, as well as in the degradation of organic pollutants and toxic compounds.
Collapse
|
11
|
Roldán DM, Carrizo D, Sánchez-García L, Menes RJ. Diversity and Effect of Increasing Temperature on the Activity of Methanotrophs in Sediments of Fildes Peninsula Freshwater Lakes, King George Island, Antarctica. Front Microbiol 2022; 13:822552. [PMID: 35369426 PMCID: PMC8969513 DOI: 10.3389/fmicb.2022.822552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH4) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH4 oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 μmol CH4 gdw–1 day–1 and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and pmoA genes. A total of 4,836 ASVs were identified being Proteobacteria, Actinobacteriota, Acidobacteriota, and Bacteroidota the most abundant phyla. The analysis of the pmoA gene identified 200 ASVs of methanotrophs, being Methylobacter Clade 2 (Type I, family Methylococcaceae) the main responsible of the aerobic CH4 oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes Gammaproteobacteria (families Methylococcaceae and Crenotrichaceae), Alphaproteobacteria (family Methylocystaceae), Verrucomicrobia (family Methylacidiphilaceae), and the candidate phylum of anaerobic methanotrophs Methylomirabilota. In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate in situ CH4 emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH4 oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
Collapse
Affiliation(s)
- Diego M. Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel Carrizo
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Laura Sánchez-García
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rodolfo Javier Menes,
| |
Collapse
|
12
|
Parihar J, Parihar SP, Suravajhala P, Bagaria A. Spatial Metagenomic Analysis in Understanding the Microbial Diversity of Thar Desert. BIOLOGY 2022; 11:biology11030461. [PMID: 35336834 PMCID: PMC8945486 DOI: 10.3390/biology11030461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We present a systematic investigation of the distribution of microbial communities in arid and semi-arid regions of Thar Desert Rajasthan, India. Their responses in multiple environmental stresses, including surface soil, surface water and underground water were evaluated. We further assess the biotechnological potential of native microorganisms and discover functional species with results providing a detailed understanding of the abundance of microbial communities in these regions, associated with various stress-related biogeochemical and biotechnological processes. We hope our work will facilitate the development of effective future strategies for the use of extremophiles in complex environments. Abstract The arid and semi-arid regions of Rajasthan are one of the most extreme biomes of India, possessing diverse microbial communities that exhibit immense biotechnological potential for industries. Herein, we sampled study sites from arid and semi-arid regions of Thar Desert, Rajasthan, India and subjected them to chemical, physical and metagenomics analysis. The microbial diversity was studied using V3–V4 amplicon sequencing of 16S rRNA gene by Illumina MiSeq. Our metagenomic analyses revealed that the sampled sites consist mainly of Proteobacteria (19–31%) followed by unclassified bacteria (5–21%), Actinobacteria (3–25%), Planctomycetes (5–13%), Chloroflexi (2–14%), Bacteroidetes (3–12%), Firmicutes (3–7%), Acidobacteria (1–4%) and Patescibacteria (1–4%). We have found Proteobacteria in abundance which is associated with a range of activities involved in biogeochemical cycles such as carbon, nitrogen, and sulphur. Our study is perhaps the first of its kind to explore soil bacteria from arid and semi-arid regions of Rajasthan, India. We believe that the new microbial candidates found can be further explored for various industrial and biotechnological applications.
Collapse
Affiliation(s)
- Jagdish Parihar
- Department of Physics, Manipal University Jaipur, Jaipur 303007, India
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Prashanth Suravajhala
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad 500072, India
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Amritapuri Campus, Clappana P.O., Kollam 690525, India
| | - Ashima Bagaria
- Department of Physics, Manipal University Jaipur, Jaipur 303007, India
| |
Collapse
|
13
|
Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D'Acqui L, Mascalchi C, Ventura S, Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica). FEMS Microbiol Ecol 2021; 97:6307020. [PMID: 34151349 DOI: 10.1093/femsec/fiab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ice-free areas of Victoria Land, in Antarctica, are characterized by different terrestrial ecosystems, that are dominated by microorganisms supporting highly adapted communities. Despite the unique conditions of these ecosystems, reports on their bacterial diversity are still fragmentary. From this perspective, 60 samples from 14 localities were analyzed. These localities were distributed in coastal sites with differently developed biological soil crusts, inner sites in the McMurdo Dry Valleys with soils lacking of plant coverage, and a site called Icarus Camp, with a crust developed on a thin locally weathered substrate of the underlying parent granitic-rock. Bacterial diversity was studied through 16S rRNA metabarcoding sequencing. Communities diversity, composition and the abundance and composition of different taxonomic groups were correlated to soil physicochemical characteristics. Firmicutes, Bacteroidetes, Cyanobacteria and Proteobacteria dominated these communities. Most phyla were mainly driven by soil granulometry, an often disregarded parameter and other abiotic parameters. Bacterial composition differed greatly among the three macrohabitats, each having a distinct bacterial profile. Communities within the two main habitats (coastal and inner ones) were well differentiated from each other as well, therefore depending on site-specific physicochemical characteristics. A core community of the whole samples was observed, mainly represented by Firmicutes and Bacteroidetes.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Luigi Paolo D'Acqui
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cristina Mascalchi
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Stefano Ventura
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,The Italian Embassy in Israel, Trade Tower, 25 Hamered Street, 68125, Tel Aviv, Israel
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
14
|
Nisrina L, Effendi Y, Pancoro A. Revealing the role of Plant Growth Promoting Rhizobacteria in suppressive soils against Fusarium oxysporum f.sp. cubense based on metagenomic analysis. Heliyon 2021; 7:e07636. [PMID: 34401567 PMCID: PMC8353484 DOI: 10.1016/j.heliyon.2021.e07636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/23/2020] [Accepted: 07/19/2021] [Indexed: 02/04/2023] Open
Abstract
Fusarium oxysporum f.sp. cubense (Foc) is a soil-borne pathogen causing fusarium wilt banana disease. Management of soil-borne disease generally required the application of toxic pesticides or fungicides strongly affect the soil microbiomes ecosystem. Suppressive soil is a promising method for controlling soil-borne pathogens in which soil microbiomes may affect the suppressiveness. The comparative analysis of microbial diversity was conducted from suppressive and conducive soils by analyzing whole shotgun metagenomic DNA data. Two suppressive soil samples and two conducive soil samples were collected from a banana plantation in Sukabumi, West Java, Indonesia. Each soil sample was prepared by mixing the soil samples collected from three points sampling sites with 20 cm depth. Analysis of microbial abundance, diversity, co-occurrence network using Metagenome Analyzer 6 (MEGAN6) and functional analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Data showed the abundance of Actinobacteria, Betaproteobacteria, Rhizobiales, Burkholderiales, Bradyrhizobiaceae, Methylobacteriaceae, Rhodopseudomonas palustris, and Methylobacterium nodulans were higher in the suppressive than conducive soils. Interestingly, those bacteria groups are known functionally as members of Plant Growth Promoting Rhizobacteria (PGPR). The co-occurrence analysis showed Pseudomonas, Burkholderia, and Streptomyces were present in the suppressive soils, while Bacillus and more Streptomyces were found in the conducive soils. Furthermore, the relative abundance of Pseudomonas, Burkholderia, Bacillus, and Streptomyces was performed. The analysis showed that the relative abundance of Pseudomonas and Burkholderia was higher in the suppressive than conducive soils. Therefore, it assumed Pseudomonas and Burkholderia play a role in suppressing Foc based on co-occurrence and abundance analysis. Functional analysis of Pseudomonas and Burkholderia showed that the zinc/manganese transport system was higher in the suppressive than conducive soils. In contrast, the phosphate transport system was not found in conducive soils. Both functions are may be responsible for the synthesis of a siderophore and phosphate solubilization. In conclusion, this study provides information that PGPR may be contributing to Foc growth suppressing by releasing secondary metabolites.
Collapse
Affiliation(s)
- Lulu' Nisrina
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| | - Yunus Effendi
- Department of Biology, Al-Azhar Univerisity of Indonesia, Jalan Sisimangaraja 2, 12110, Jakarta, Indonesia
| | - Adi Pancoro
- School of Life Sciences and Technology, Bandung Institute of Technology, Jalan Ganesha 10, 40132, Bandung, Indonesia
| |
Collapse
|
15
|
Eight metagenome-assembled genomes provide evidence for microbial adaptation in 20,000 to 1,000,000-year-old Siberian permafrost. Appl Environ Microbiol 2021; 87:e0097221. [PMID: 34288700 DOI: 10.1128/aem.00972-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly-cored permafrost from the Siberia Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have previously been obtained from non-permafrost environments and have been suggested to show adaptations to long-term energy-starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had higher proportions of clusters of orthologous genes (COGs) from 'Energy production and conversion' and 'Carbohydrate transport and metabolism' than their non-permafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis and cellulose degradation that were less prevalent in non-permafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high ionic strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA in high enough quality to assemble MAGs from microorganisms with adaptations to subsist long-term freezing in this extreme environment. Importance Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture independent techniques can give a glimpse into how these microorganisms function in these extreme low temperature and energy conditions. This will aid understanding of how they will change with the environment. This study presents genomic data from this unique environment aged ∼20,000 to 1,000,000-years-old.
Collapse
|
16
|
Perez-Mon C, Qi W, Vikram S, Frossard A, Makhalanyane T, Cowan D, Frey B. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microb Genom 2021; 7:000558. [PMID: 33848236 PMCID: PMC8208683 DOI: 10.1099/mgen.0.000558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The warming-induced thawing of permafrost promotes microbial activity, often resulting in enhanced greenhouse gas emissions. The ability of permafrost microorganisms to survive the in situ sub-zero temperatures, their energetic strategies and their metabolic versatility in using soil organic materials determine their growth and functionality upon thawing. Hence, functional characterization of the permafrost microbiome, particularly in the underexplored mid-latitudinal alpine regions, is a crucial first step in predicting its responses to the changing climate, and the consequences for soil-climate feedbacks. In this study, for the first time, the functional potential and metabolic capabilities of a temperate mountain permafrost microbiome from central Europe has been analysed using shotgun metagenomics. Permafrost and active layers from the summit of Muot da Barba Peider (MBP) [Swiss Alps, 2979 m above sea level (a.s.l.)] revealed a strikingly high functional diversity in the permafrost (north-facing soils at a depth of 160 cm). Permafrost metagenomes were enriched in stress-response genes (e.g. cold-shock genes, chaperones), as well as in genes involved in cell defence and competition (e.g. antiviral proteins, antibiotics, motility, nutrient-uptake ABC transporters), compared with active-layer metagenomes. Permafrost also showed a higher potential for the synthesis of carbohydrate-active enzymes, and an overrepresentation of genes involved in fermentation, carbon fixation, denitrification and nitrogen reduction reactions. Collectively, these findings demonstrate the potential capabilities of permafrost microorganisms to thrive in cold and oligotrophic conditions, and highlight their metabolic versatility in carbon and nitrogen cycling. Our study provides a first insight into the high functional gene diversity of the central European mountain permafrost microbiome. Our findings extend our understanding of the microbial ecology of permafrost and represent a baseline for future investigations comparing the functional profiles of permafrost microbial communities at different latitudes.
Collapse
Affiliation(s)
- Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Carla Perez-Mon,
| | - Weihong Qi
- Functional Genomics Center of the University of Zurich and the ETH Zurich, Zurich, Switzerland
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Thulani Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- *Correspondence: Beat Frey,
| |
Collapse
|
17
|
Lo Giudice A, Poli A, Finore I, Rizzo C. Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 2020; 104:2923-2934. [PMID: 32076778 DOI: 10.1007/s00253-020-10448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- National Research Council (CNR-ISP), Institute of Polar Sciences, Spianata S. Raineri 86, 98122, Messina, Italy.
| | - Annarita Poli
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Ilaria Finore
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Carmen Rizzo
- Department BIOTECH, Stazione Zoologica Anton Dohrn,, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy
| |
Collapse
|
18
|
Environmental filtering of bacterial functional diversity along an aridity gradient. Sci Rep 2019; 9:866. [PMID: 30696918 PMCID: PMC6351613 DOI: 10.1038/s41598-018-37565-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022] Open
Abstract
Studying how metagenome composition and diversity varies along environmental gradients may improve understanding of the general principles of community and ecosystem structuring. We studied soil bacterial metagenomes along a precipitation gradient on the eastern Tibetan Plateau, varying between 500 mm and 60 mm mean annual precipitation (MAP). We found that lower MAP was strongly associated with reduced functional diversity of bacterial genes. It appears that extreme environmental conditions associated with aridity constrain the diversity of functional strategies present in soil biota – analogous to broad scale patterns found in plant functional diversity along environmental gradients. In terms of specific functions, more extreme arid conditions were also associated with increased relative abundance of genes related to dormancy and osmoprotectants. Decreased relative abundance of genes related to antibiotic resistance and virulence in more arid conditions suggests reduced intensity of biotic interaction under extreme physiological conditions. These trends parallel those seen in earlier, more preliminary comparisons of metagenomes across biomes.
Collapse
|