1
|
Staplevan MJ, Ansari AJ, Ahmed A, Hai FI. Impact of bioplastic contamination on the mechanical recycling of conventional plastics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 185:1-9. [PMID: 38815529 DOI: 10.1016/j.wasman.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Quality assurance of a recycled product is currently one of the biggest issues that the plastic recycling industry faces. The purity of the input plastic waste stream has significant influence over the quality of the recycled product. This research evaluated the impact of polylactic acid (PLA) contamination within the input waste stream of high-density polyethylene (HDPE) recycling. The ultimate tensile strength was noted to reduce by 50% when PLA contamination was at 10%. An investigation into the effect that UVA radiation (simulating solar radiation) has on HDPE contaminated with PLA was also performed to determine the long-term effect of the bioplastic contamination. After UVA treatment, the ultimate tensile strength was reported to reduce by 51% when PLA contamination was only at 2.5%. A water contact angle analysis indicated the PLA contamination increased the hydrophilic nature of the HDPE sheets, potentially creating issues if the intended use of the recycled product was to store liquids. Microscopic analysis of the HDPE sheets contaminated with PLA showed deformations, ridges, cracks, and holes appear on the surface due to the immiscibility of the two polymers that was confirmed by FTIR analysis. Colour changes were visibly noted, with UVA exposure increasing the rate of colour change. Based on the findings in this study, PLA contamination of even 1% in a HDPE waste stream would significantly reduce the quality of the recycled product.
Collapse
Affiliation(s)
- Michael J Staplevan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Aziz Ahmed
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
2
|
Kumar M, Bhujbal SK, Kohli K, Prajapati R, Sharma BK, Sawarkar AD, Abhishek K, Bolan S, Ghosh P, Kirkham MB, Padhye LP, Pandey A, Vithanage M, Bolan N. A review on value-addition to plastic waste towards achieving a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171106. [PMID: 38387564 DOI: 10.1016/j.scitotenv.2024.171106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Plastic and mixed plastic waste (PW) has received increased worldwide attention owing to its huge rate of production, high persistency in the environment, and unsustainable waste management practices. Therefore, sustainable PW management and upcycling approaches are imperative to achieve the objectives of the United Nations Sustainable Development Goals. Numerous recent studies have shown the application and feasibility of various PW conversion techniques to produce materials with better economic value. Within this framework, the current review provides an in-depth analysis of cutting-edge thermochemical technologies such as pyrolysis, gasification, carbonization, and photocatalysis that can be used to value plastic and mixed PW in order to produce energy and industrial chemicals. Additionally, a thorough examination of the environmental impacts of contemporary PW upcycling techniques and their commercial feasibility through life cycle assessment (LCA) and techno-economical assessment are provided in this review. Finally, this review emphasizes the opportunities and challenges accompanying with existing PW upcycling techniques and deliver recommendations for future research works.
Collapse
Affiliation(s)
- Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India.
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kirtika Kohli
- Distillate and Heavy Oil Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Ravindra Prajapati
- Prairie Research Institute-Illinois Sustainable Technology Center, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Brajendra K Sharma
- Prairie Research Institute-Illinois Sustainable Technology Center, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA; United States Department of Agriculture, Agricultural Research Service Eastern Regional Research Center Sustainable Biofuels and Co-Products Research Unit, 600 E. Mermaid Ln., Wyndmoor, PA 19038, USA
| | - Ankush D Sawarkar
- Department of Information Technology, Shri Guru Gobind Singhji Institute of Engineering and Technology (SGGSIET), Nanded, Maharashtra 431 606, India
| | - Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, India
| | - Meththika Vithanage
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
3
|
Makryniotis K, Nikolaivits E, Taxeidis G, Nikodinovic-Runic J, Topakas E. Exploring the substrate spectrum of phylogenetically distinct bacterial polyesterases. Biotechnol J 2024; 19:e2400053. [PMID: 38593303 DOI: 10.1002/biot.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The rapid escalation of plastic waste accumulation presents a significant threat of the modern world, demanding an immediate solution. Over the last years, utilization of the enzymatic machinery of various microorganisms has emerged as an environmentally friendly asset in tackling this pressing global challenge. Thus, various hydrolases have been demonstrated to effectively degrade polyesters. Plastic waste streams often consist of a variety of different polyesters, as impurities, mainly due to wrong disposal practices, rendering recycling process challenging. The elucidation of the selective degradation of polyesters by hydrolases could offer a proper solution to this problem, enhancing the recyclability performance. Towards this, our study focused on the investigation of four bacterial polyesterases, including DaPUase, IsPETase, PfPHOase, and Se1JFR, a novel PETase-like lipase. The enzymes, which were biochemically characterized and structurally analyzed, demonstrated degradation ability of synthetic plastics. While a consistent pattern of polyesters' degradation was observed across all enzymes, Se1JFR stood out in the degradation of PBS, PLA, and polyether PU. Additionally, it exhibited comparable results to IsPETase, a benchmark mesophilic PETase, in the degradation of PCL and semi-crystalline PET. Our results point out the wide substrate spectrum of bacterial hydrolases and underscore the significant potential of PETase-like enzymes in polyesters degradation.
Collapse
Affiliation(s)
- Konstantinos Makryniotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
4
|
Ben Amor I, Klinkova O, Baklouti M, Elleuch R, Tawfiq I. Mechanical Recycling and Its Effects on the Physical and Mechanical Properties of Polyamides. Polymers (Basel) 2023; 15:4561. [PMID: 38231968 PMCID: PMC10708457 DOI: 10.3390/polym15234561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The aim of this study is to investigate the impact of mechanical recycling on the physical and mechanical properties of recycled polyamide 6 (PA6) and polyamide 66 (PA66) in relation to their microstructures. Both PA6 and PA66 raw materials were reprocessed six times, and the changes in their properties were investigated as a function of recycling number. Until the sixth round of recycling, slight changes in the mechanical properties were detected, except for the percentage of elongation. For the physical properties, the change in both flexural strength and Young's modulus followed a decreasing trend, while the trend in terms of elongation showed an increase. Microscopic analysis was performed on virgin and recycled specimens, showing that imperfections in the crystalline regions of polyamide 6 increased as the number of cycles increased.
Collapse
Affiliation(s)
- Ichrak Ben Amor
- Laboratoire QUARTZ EA7393, ISAE-Supméca Institut Supérieur de Mécanique de Paris, 93400 Saint-Ouen, France; (I.B.A.); (I.T.)
- Laboratoire des Systèmes Electromécaniques (LASEM), Ecole Nationale d’ingénieurs de Sfax, Sfax 3038, Tunisia; (M.B.); (R.E.)
| | - Olga Klinkova
- Laboratoire QUARTZ EA7393, ISAE-Supméca Institut Supérieur de Mécanique de Paris, 93400 Saint-Ouen, France; (I.B.A.); (I.T.)
| | - Mouna Baklouti
- Laboratoire des Systèmes Electromécaniques (LASEM), Ecole Nationale d’ingénieurs de Sfax, Sfax 3038, Tunisia; (M.B.); (R.E.)
- Faculté des Sciences de Gafsa, Université de Gafsa, Gafsa 2112, Tunisia
| | - Riadh Elleuch
- Laboratoire des Systèmes Electromécaniques (LASEM), Ecole Nationale d’ingénieurs de Sfax, Sfax 3038, Tunisia; (M.B.); (R.E.)
| | - Imad Tawfiq
- Laboratoire QUARTZ EA7393, ISAE-Supméca Institut Supérieur de Mécanique de Paris, 93400 Saint-Ouen, France; (I.B.A.); (I.T.)
| |
Collapse
|
5
|
Gadaleta G, De Gisi S, Sorrentino A, Sorrentino L, Notarnicola M, Kuchta K, Picuno C, Oliviero M. Effect of Cellulose-Based Bioplastics on Current LDPE Recycling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4869. [PMID: 37445182 DOI: 10.3390/ma16134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The increased use of bioplastics in the market has led to their presence in municipal solid waste streams alongside traditional fossil-based polymers, particularly low-density polyethylene (LDPE), which bioplastics often end up mixed with. This study aimed to assess the impact of cellulose acetate plasticized with triacetin (CAT) on the mechanical recycling of LDPE. LDPE-CAT blends with varying CAT content (0%, 1%, 5%, 7.5%, and 10% by weight) were prepared by melt extrusion and analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, thermal analysis (thermogravimetric and differential scanning calorimetry), dynamic rheological measurements, and tensile tests. The results indicate that the presence of CAT does not significantly affect the chemical, thermal, and rheological properties of LDPE, and the addition of CAT at different levels does not promote LDPE degradation under typical processing conditions. However, the addition of CAT negatively impacts the processability and mechanical behavior of LDPE, resulting in the reduced quality of the recycled material. Thus, the presence of cellulose-based bioplastics in LDPE recycling streams should be avoided, and a specific sorting stream for bioplastics should be established.
Collapse
Affiliation(s)
- Giovanni Gadaleta
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Andrea Sorrentino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| | - Luigi Sorrentino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Politecnico di Bari, Via E. Orabona n. 4, I-70125 Bari, Italy
| | - Kerstin Kuchta
- Circular Resource Engineering and Management, Hamburg University of Technology, Blohmstraße n. 15, D-21079 Hamburg, Germany
| | | | - Maria Oliviero
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), P.le E. Fermi n. 1, I-80055 Portici, Italy
| |
Collapse
|
6
|
Eissenberger K, Ballesteros A, De Bisschop R, Bugnicourt E, Cinelli P, Defoin M, Demeyer E, Fürtauer S, Gioia C, Gómez L, Hornberger R, Ißbrücker C, Mennella M, von Pogrell H, Rodriguez-Turienzo L, Romano A, Rosato A, Saile N, Schulz C, Schwede K, Sisti L, Spinelli D, Sturm M, Uyttendaele W, Verstichel S, Schmid M. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers (Basel) 2023; 15:1184. [PMID: 36904425 PMCID: PMC10007551 DOI: 10.3390/polym15051184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Arantxa Ballesteros
- Centro Tecnológico ITENE, Parque Tecnológico, Carrer d’Albert Einstein 1, 46980 Paterna, Spain
| | - Robbe De Bisschop
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Elodie Bugnicourt
- Graphic Packaging International, Fountain Plaza, Belgicastraat 7, 1930 Zaventem, Belgium
| | - Patrizia Cinelli
- Planet Bioplastics S.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Marc Defoin
- Bostik SA, 420 rue d’Estienne d’Orves, 92700 Colombes, France
| | - Elke Demeyer
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Siegfried Fürtauer
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Lola Gómez
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | - Ramona Hornberger
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Mara Mennella
- KNEIA S.L., Carrer d’Aribau 168-170, 08036 Barcelona, Spain
| | - Hasso von Pogrell
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | | | - Angela Romano
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Antonella Rosato
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadja Saile
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Christian Schulz
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Katrin Schwede
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Chemical Division, Via del Gelso 13, 59100 Prato, Italy
| | - Max Sturm
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Willem Uyttendaele
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | | | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
7
|
Agüero Á, Corral Perianes E, Abarca de las Muelas SS, Lascano D, de la Fuente García-Soto MDM, Peltzer MA, Balart R, Arrieta MP. Plasticized Mechanical Recycled PLA Films Reinforced with Microbial Cellulose Particles Obtained from Kombucha Fermented in Yerba Mate Waste. Polymers (Basel) 2023; 15:285. [PMID: 36679165 PMCID: PMC9864610 DOI: 10.3390/polym15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, yerba mate waste (YMW) was used to produce a kombucha beverage, and the obtained microbial cellulose produced as a byproduct (KMW) was used to reinforce a mechanically recycled poly(lactic acid) (r-PLA) matrix. Microbial cellulosic particles were also produced in pristine yerba mate for comparison (KMN). To simulate the revalorization of the industrial PLA products rejected during the production line, PLA was subjected to three extrusion cycles, and the resultant pellets (r3-PLA) were then plasticized with 15 wt.% of acetyl tributyl citrate ester (ATBC) to obtain optically transparent and flexible films by the solvent casting method. The plasticized r3-PLA-ATBC matrix was then loaded with KMW and KMN in 1 and 3 wt.%. The use of plasticizer allowed a good dispersion of microbial cellulose particles into the r3-PLA matrix, allowing us to obtain flexible and transparent films which showed good structural and mechanical performance. Additionally, the obtained films showed antioxidant properties, as was proven by release analyses conducted in direct contact with a fatty food simulant. The results suggest the potential interest of these recycled and biobased materials, which are obtained from the revalorization of food waste, for their industrial application in food packaging and agricultural films.
Collapse
Affiliation(s)
- Ángel Agüero
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Esther Corral Perianes
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sara Soledad Abarca de las Muelas
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Diego Lascano
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - María del Mar de la Fuente García-Soto
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
| | - Mercedes Ana Peltzer
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rafael Balart
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
8
|
Achukwu EO, Owen MM, Danladi A, Dauda BM, Romli AZ, Ishiaku US, Akil HM. Effect of glass fiber loading and reprocessing cycles on the mechanical, thermal, and morphological properties of isotactic polypropylene composites. J Appl Polym Sci 2023. [DOI: 10.1002/app.53588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Emmanuel O. Achukwu
- Department of Polymer and Textile Engineering Ahmadu Bello University Zaria Zaria Nigeria
| | - Macaulay M. Owen
- Department of Polymer and Textile Technology Yaba College of Technology Lagos Lokoja Nigeria
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Penang Penang Malaysia
| | - Abdullahi Danladi
- Department of Polymer and Textile Engineering Ahmadu Bello University Zaria Zaria Nigeria
| | - Benjamin M. Dauda
- Department of Industrial Chemistry Federal University Lokoja Nigeria
| | - Ahmad Z. Romli
- Centre of Chemical Synthesis and Polymer Technology Institute of Science, Universiti Teknologi MARA, UiTM Selangor Malaysia
- Faculty of Applied Science Universiti Teknologi MARA (UiTM) Selangor Malaysia
| | - Umaru S. Ishiaku
- Department of Polymer and Textile Engineering Ahmadu Bello University Zaria Zaria Nigeria
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Penang Penang Malaysia
| |
Collapse
|
9
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|
11
|
Manić N, Janković B, Stojiljković D, Angelopoulos P, Radojević M. Thermal characteristics and combustion reactivity of coronavirus face masks using TG-DTG-MS analysis. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2022; 147:10131-10143. [PMID: 35528133 PMCID: PMC9062285 DOI: 10.1007/s10973-022-11358-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The presented paper deals with the influence of the heating rate on combustion characteristics (reactivity and reactivity evaluation, ignition index (D i), burnout index (D f), the combustion performance index (S), and the combustion stability index (R W)) of the protective coronavirus face masks. Two types of commonly used face masks in different state (new and exploited) were investigated by TG-DTG analysis in an air atmosphere, directly coupled with mass spectrometry (MS). Based on the experimental results, the impact of ultimate and proximate analysis data on the evolved gas analysis (EGA) was discussed. Also, the derived values from thermo-analytical (TA) data were compared with the literature reports, related to individual constitutive face mask materials. According to the performed research, it was established that different maximal reaction rate values at various heating rates indicate the complex nature of coronavirus face mask thermo-oxidative degradation, which is stimulated with carbon oxidation reactions and volatile matter (VM) release. By detailed analysis of obtained TG-DTG profiles, it was established that process takes place through the multiple-step reaction pathways, due to many vigorous radical reactions, causes by polymers degradation. The performed research was done to evaluate the possible utilization of coronavirus waste to energy production and sustainable pandemic environmental risk reduction.
Collapse
Affiliation(s)
- Nebojša Manić
- Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Belgrade, Serbia
| | - Bojan Janković
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences - National Institute of The Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragoslava Stojiljković
- Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Belgrade, Serbia
| | - Panagiotis Angelopoulos
- School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
| | - Miloš Radojević
- Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Bai F, Dong T, Chen W, Wang J, Li X. Nanocellulose Hybrid Lignin Complex Reinforces Cellulose to Form a Strong, Water-Stable Lignin-Cellulose Composite Usable as a Plastic Replacement. NANOMATERIALS 2021; 11:nano11123426. [PMID: 34947777 PMCID: PMC8708557 DOI: 10.3390/nano11123426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The significant challenges in the use of cellulose as a replacement for plastic are its mechanical properties' degradation and uncontrolled deformation during the rewetting process. Herein, inspired by the reinforcement of cellulose by lignin in natural plant tissue, a strong and water-stable lignin-cellulose composite (LCC) was developed. A nanocellulose hybrid lignin complex (CHLC) created from bagasse residue after enzymatic hydrolysis was added into a pulp of bleached fibre extracted from pine to produce a lignin-cellulose sheet. The lignin as a water-stable reinforcing matrix, via the hydrogen bonding of the nanocellulose in the CHLC with the fibre was efficiently introduced onto the fibres and the fibre network voids. Compared with a typical lignin-free cellulose sheet, the dry strength and wet strength of the LCC were 218% and 2233% higher, respectively. The developed LCC is an eco-friendly and biodegradable alternative to plastic.
Collapse
Affiliation(s)
- Feitian Bai
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (F.B.); (T.D.); (W.C.); (J.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Tengteng Dong
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (F.B.); (T.D.); (W.C.); (J.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Wei Chen
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (F.B.); (T.D.); (W.C.); (J.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Jinlong Wang
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (F.B.); (T.D.); (W.C.); (J.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Xusheng Li
- School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (F.B.); (T.D.); (W.C.); (J.W.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- Correspondence: ; Tel.: +86-0771-3237-301
| |
Collapse
|
13
|
Roy PS, Garnier G, Allais F, Saito K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. CHEMSUSCHEM 2021; 14:4007-4027. [PMID: 34132056 DOI: 10.1002/cssc.202100904] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Plastic waste, which is one of the major sources of pollution in the landfills and oceans, has raised global concern, primarily due to the huge production rate, high durability, and the lack of utilization of the available waste management techniques. Recycling methods are preferable to reduce the impact of plastic pollution to some extent. However, most of the recycling techniques are associated with different drawbacks, high cost and downgrading of product quality being among the notable ones. The sustainable option here is to upcycle the plastic waste to create high-value materials to compensate for the cost of production. Several upcycling techniques are constantly being investigated and explored, which is currently the only economical option to resolve the plastic waste issue. This Review provides a comprehensive insight on the promising chemical routes available for upcycling of the most widely used plastic and mixed plastic wastes. The challenges inherent to these processes, the recent advances, and the significant role of the science and research community in resolving these issues are further emphasized.
Collapse
Affiliation(s)
- Pallabi Sinha Roy
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Florent Allais
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Kei Saito
- School of Chemistry, Monash University, Clayton, 3800, VIC, Australia
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton, 3800, VIC, Australia
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan
| |
Collapse
|
14
|
Beltrán FR, Arrieta MP, Elena Antón D, Lozano-Pérez AA, Cenis JL, Gaspar G, de la Orden MU, Martínez Urreaga J. Effect of Yerba Mate and Silk Fibroin Nanoparticles on the Migration Properties in Ethanolic Food Simulants and Composting Disintegrability of Recycled PLA Nanocomposites. Polymers (Basel) 2021; 13:polym13121925. [PMID: 34200571 PMCID: PMC8230047 DOI: 10.3390/polym13121925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022] Open
Abstract
The main objective of the present research is to study the effect of the incorporation of low amounts of silk fibroin nanoparticles (SFNs) and yerba mate nanoparticles (YMNs) on the migration phenomenon into ethanolic food simulants as well as on the disintegrability under composting conditions of mechanically recycled polylactic acid (PLA). Recycled PLA was obtained under simulated recycling conditions by melt processing virgin PLA into films and further subjecting them to an accelerated aging process, which involved photochemical, thermal, and hydrothermal aging steps followed by an intense washing step. SFNs were extracted from Bombyx mori cocoons and YMNs from yerba mate waste. Then, recycled PLA was melted, reprocessed, and reinforced with either 1%wt. of SFNs or YMNs, by melt extrusion, and further processed into films by compression molding. The obtained nanocomposites were exposed to ethanolic food simulants (ethanol 10% v/v, simulant A and ethanol 50% v/v, simulant D1) and the structural, thermal, and mechanical properties were studied before and after the exposure to the food simulants. The migration levels in both food simulants were below the overall migration limits required for food contact materials. The materials were disintegrated under simulated composting conditions at the laboratory scale level and it was observed that the nanoparticles delayed the disintegration rate of the recycled PLA matrix, but nanocomposites were fully disintegrated in less than one month.
Collapse
Affiliation(s)
- Freddys R. Beltrán
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Correspondence: ; Tel.: +34-910-677-301
| | - Diego Elena Antón
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
| | - Antonio A. Lozano-Pérez
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - José L. Cenis
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - Gerald Gaspar
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - María U. de la Orden
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Deparamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Joaquín Martínez Urreaga
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| |
Collapse
|
15
|
Burgada F, Fages E, Quiles-Carrillo L, Lascano D, Ivorra-Martinez J, Arrieta MP, Fenollar O. Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber. Polymers (Basel) 2021; 13:polym13081248. [PMID: 33921403 PMCID: PMC8070082 DOI: 10.3390/polym13081248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
This research reports the manufacturing and characterization of green composites made from recycled polypropylene obtained from the remnants of polypropylene non-woven fabrics used in the textile industry and further reinforced with short hemp fibers (SHFs). To improve the interaction of the reinforcing fibers with the recycled polymeric matrix, two types of compatibilizing agents (maleic anhydride grafted, PP-g-MA, and maleinized linseed oil, MLO) were added during melt-processing, the percentage of which had to remain constant concerning the amount of fiber loading to ensure complete reactivity. Standardized test specimens were obtained by injection molding. The composites were characterized by mechanical (tensile, impact, and hardness), thermal (DSC, TGA), thermomechanical, FTIR, and FESEM microscopy tests. In addition, color and water uptake properties were also analyzed. The results show that the addition of PP-g-MA to rPP was satisfactory, thus improving the fiber-matrix interaction, resulting in a marked reinforcing effect of the hemp fibers in the recycled PP matrix, which can be reflected in the increased stiffness of the samples. In parallel to the compatibilizing effect, a plasticizing effect was obtained by incorporating MLO, causing a decrease in the glass transition temperature of the composites by approximately 6 °C and an increase in ductility compared to the unfilled recycled polypropylene samples.
Collapse
Affiliation(s)
- Francisco Burgada
- Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (F.B.); (E.F.)
| | - Eduardo Fages
- Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (F.B.); (E.F.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
| | - Diego Lascano
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
- Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Octavio Fenollar
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
- Correspondence: ; Tel.: +34-966-528-433
| |
Collapse
|
16
|
A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers (Basel) 2021; 13:polym13081229. [PMID: 33920269 PMCID: PMC8069747 DOI: 10.3390/polym13081229] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
The European Union is working towards the 2050 net-zero emissions goal and tackling the ever-growing environmental and sustainability crisis by implementing the European Green Deal. The shift towards a more sustainable society is intertwined with the production, use, and disposal of plastic in the European economy. Emissions generated by plastic production, plastic waste, littering and leakage in nature, insufficient recycling, are some of the issues addressed by the European Commission. Adoption of bioplastics–plastics that are biodegradable, bio-based, or both–is under assessment as one way to decouple society from the use of fossil resources, and to mitigate specific environmental risks related to plastic waste. In this work, we aim at reviewing the field of bioplastics, including standards and life cycle assessment studies, and discuss some of the challenges that can be currently identified with the adoption of these materials.
Collapse
|
17
|
End-of-Life Options for (Bio)degradable Polymers in the Circular Economy. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/6695140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
End-of-life options for plastics include recycling and energy recovery (incineration). Taking into account the polymeric waste, recycling is the intentional action that is aimed at reducing the amount of waste deposited in landfills by industrial use of this waste to obtain raw materials and energy. The incineration of waste leads to recovery of the energy only. Recycling methods divide on mechanical (reuse of waste as a full-valuable raw material for further processing), chemical (feedstock recycling), and organic (composting and anaerobic digestion). The type of recycling is selected in terms of the polymeric material, origin of the waste, possible toxicity of the waste, and its flammability. The (bio)degradable polymers show the suitability for every recycling methods. But recycling method should be used in such a form that it is economically justified in a given case. Organic recycling in a circular economy is considered to be the most appropriate technology for the disposal of compostable waste. It is addressed for plastics capable for industrial composting such as cellulose films, starch blends, and polyesters. The biological treatment of organic waste leads also to a decrease of landfills and thereby reducing methane emissions from them. If we add to their biodegradability the absence of toxicity, we have a biotechnological product of great industrial interest. The paper presents the overview on end-of-life options useful for the (bio)degradable polymers. The principles of the circular economy and its today development were also discussed.
Collapse
|
18
|
Selvaranjan K, Navaratnam S, Rajeev P, Ravintherakumaran N. Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 3:100039. [PMID: 38620606 PMCID: PMC7873601 DOI: 10.1016/j.envc.2021.100039] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 04/15/2023]
Abstract
The ongoing COVID-19 disease significantly affects not only human health, it also affects the wealth of country' economy and everyday routine of human life. To control the spread of the virus, face mask is used as primary personal protective equipment (PPE). Thus, the production and usage of face masks significantly increase as the COVID-19 pandemic still escalating. Further, most of these masks contain plastics or other derivatives of plastics. Therefore, this extensive usage of face masks generates million tons of plastic wastes to the environments in a short span of time. This study aims to investigate the environmental impact induced by face mask wastes and sustainable solution to reduce this waste. An online survey was carried out to identify the types of face mask and number of masks used per week by an individual from 1033 people. Based on this survey and available literature, this study quantifies the amount of plastics waste generated by face masks. However, this survey was limited with certain ages, country and durations (July-August 2020). Thus, the prediction of plastic waste generation, only provide fundamental knowledge about the mask wastes. Results revealed that there is a huge plastic waste remained in land and marine environment in the form of mask waste, which will contribute to micro-plastic pollution. Therefore, this paper also highlights the sustainable approach to the mask production by integrating the use of natural plant fiber in the woven face mask technology to reduce the plastic waste induced by masks. Further, upcycling the mask waste and producing construction materials also discussed.
Collapse
Affiliation(s)
| | | | - Pathmanathan Rajeev
- Department of Civil and Construction Engineering, Swinburne University of Technology, Australia
| | | |
Collapse
|
19
|
From Disposal to Technological Potential: Reuse of Polypropylene Waste from Industrial Containers as a Polystyrene Impact Modifier. SUSTAINABILITY 2020. [DOI: 10.3390/su12135272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The practice of recycling over the years has been increasingly encouraged, with the aim being the manufacturing of materials that contribute to sustainable development. In light of this, the present work evaluated the potential of mixtures of polystyrene (PS)/recycled copolymer polypropylene (PPr), using styrene-(ethylene/butylene)-styrene (SEBS) as a compatibilizing agent. Initially, the mixtures were prepared in a co-rotational twin-screw extruder, and, afterwards, the extruded granules were molded by injection. The properties of torque rheometry, impact strength, tensile properties, differential scanning calorimetry (DSC), heat deflection temperature (HDT), and scanning electron microscopy (SEM) were evaluated. The formulation PS/PPr/SEBS (70/20/10 %wt.) demonstrated an increase in viscosity, corroborating with an increase of 123% and 227% in the elongation at break and impact strength, respectively, compared to neat PS. Though the elastic modulus and tensile strength suffered losses, the reduction was not drastic. Furthermore, the addition of a semi-crystalline recycled material in the amorphous matrix (PS) contributed to an increase in thermomechanical strength, as seen in the HDT. The morphology revealed that SEBS is effective in making PS/PPr mixtures compatible because the dispersed phase is well adhered to the PS matrix and promotes greater morphological stability. Thus, it is possible to add value to discarded material and reduce the costs of the final product, which can reduce pollution.
Collapse
|
20
|
Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers (Basel) 2020; 12:polym12061344. [PMID: 32545882 PMCID: PMC7361870 DOI: 10.3390/polym12061344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/05/2022] Open
Abstract
In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend.
Collapse
|
21
|
Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072561] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), disproportionated gum rosin (dehydroabietic acid, RD), maleic anhydride modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The TPS–resin blend formulations were processed by melt extrusion and further by injection moulding to simulate the industrial conditions. The obtained materials were characterized in terms of mechanical, thermal and structural properties. The results showed that all gum rosin-based additives were able to improve the thermal stability of TPS, increasing the degradation onset temperature. The carbonyl groups of gum rosin derivatives were able to interact with the hydroxyl groups of starch and glycerol by means of hydrogen bond interactions producing a significant increase of the glass transition temperature with a consequent stiffening effect, which in turn improve the overall mechanical performance of the TPS-resin injected moulded blends. The developed TPS–resin blends are of interest for rigid packaging applications.
Collapse
|
22
|
Analysis of Thermomechanical Properties of Selected Class of Recycled Thermoplastic Materials Based on Their Applications. RECYCLING 2019. [DOI: 10.3390/recycling4030033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polypropylene and polystyrene are petroleum-based thermoplastics which are commonly used and disposed of in the environment after their service life, leading to environmental degradation. There is a need to recycle polypropylene and polystyrene, but the effect of recycling on thermo-mechanical properties is not well understood. This study aims to determine thermo-mechanical properties of the recycled polypropylene and recycled polystyrene and compare them with corresponding virgin polypropylene and newly produced polystyrene (general purpose polystyrene 1540 and high impact polystyrene 7240). The study was carried out by preparing bar-shaped samples of recycled polypropylene, recycled polystyrene, general purpose polystyrene 1540, and high impact polystyrene 7240 by compression molding using a hot press and thermally characterizing them to determine glass transition temperature and melting temperature using differential scanning calorimetry. The changes in Young’s modulus, tensile strength, hardness, and toughness due to recycling activities were determined at room temperature (24 °C), 40 °C, 60 °C, and 80 °C. The thermo-mechanical properties of recycled polystyrene (PS) were found to be comparable to those of high impact polystyrene (HIPS) 7240. The study revealed that the hardness and toughness for the recycled polymers were higher than those of corresponding virgin polymers. On the other hand, tensile strength and Young’s modulus for the recycled polymers were lower than those of the virgin polymers. Understanding the thermo-mechanical properties of the recycled polymers will contribute to more industrial applications hence increase the rate of recycling, resulting in a reduction in environmental pollution.
Collapse
|
23
|
Zargar MRH, Shoushtari AM. Fabrication of Polypropylene (PP)/Poly Trimethylene Terephthalate (PTT)/Nanoclay Nanocomposite Fibers with Tailored Properties. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2019.1577543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Ahmad Mousavi Shoushtari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
24
|
Aldas M, Ferri JM, Lopez‐Martinez J, Samper MD, Arrieta MP. Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. J Appl Polym Sci 2019. [DOI: 10.1002/app.48236] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. Aldas
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y AgroindustriaEscuela Politécnica Nacional 170517 Quito Ecuador
- Instituto de Tecnología de Materiales, Universitat Politècnica de València 03801 Alcoy‐Alicante Spain
| | - J. M. Ferri
- Instituto de Tecnología de Materiales, Universitat Politècnica de València 03801 Alcoy‐Alicante Spain
| | - J. Lopez‐Martinez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València 03801 Alcoy‐Alicante Spain
| | - M. D. Samper
- Instituto de Tecnología de Materiales, Universitat Politècnica de València 03801 Alcoy‐Alicante Spain
| | - M. P. Arrieta
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad Complutense de Madrid, Avenida Complutense s/n, Ciudad Universitaria 28040 Madrid Spain
| |
Collapse
|
25
|
Galve JE, Elduque D, Pina C, Clavería I, Acero R, Fernández Á, Javierre C. Dimensional Stability and Process Capability of an Industrial Component Injected with Recycled Polypropylene. Polymers (Basel) 2019; 11:polym11061063. [PMID: 31226737 PMCID: PMC6630893 DOI: 10.3390/polym11061063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022] Open
Abstract
The usage of recycled polymers for industrial purposes arises as one of the most promising methods of reducing environmental impact and costs associated with scrapping parts. This paper presents a systematic study of the dimensional stability of a raw and 100% recycled polypropylene subjected to realistic environmental conditions occurring along its working life. The component studied is an internal part of an induction hob assembly. Industrial samples manufactured with both materials, in the same mold, and in the same injection machine, are subjected to ejection conditions, storage conditions (50 °C), and extreme performance conditions (80 °C). Induced dimensional changes are registered and analyzed using a coordinate measuring machine, and a tactile sensing probe. To verify the process capability of the samples manufacturing, Cp and Cpk values are calculated to evaluate the suitability of the recycled material as an alternative. Results conclude that, although the use of recycled material implies slight differences in terms of dimensional stability due to the changes induced in the polymer structure, these differences are not significant enough to affect the injection process capability. Therefore, recycling arises as one effective method to reduce both overruns associated with the consumption of raw polypropylene material and its environmental impact.
Collapse
Affiliation(s)
- José Eduardo Galve
- BSH Electrodomésticos España, S.A., Avda. de la Industria, 49, 50016 Zaragoza, Spain.
| | - Daniel Elduque
- i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Carmelo Pina
- BSH Electrodomésticos España, S.A., Avda. de la Industria, 49, 50016 Zaragoza, Spain.
| | - Isabel Clavería
- i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Raquel Acero
- Department of Design and Manufacturing Engineering, University of Zaragoza EINA, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Ángel Fernández
- i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Carlos Javierre
- i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, Maria de Luna 3, 50018 Zaragoza, Spain.
| |
Collapse
|
26
|
Polymeric Materials: Surfaces, Interfaces and Bioapplications. MATERIALS 2019; 12:ma12081312. [PMID: 31013649 PMCID: PMC6515436 DOI: 10.3390/ma12081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/02/2023]
Abstract
This special issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications” was proposed to cover all the aspects related to recent innovations on surfaces, interfaces and bioapplications of polymeric materials. The collected articles show the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems and tissue engineering. We hope that readers will be able to enjoy highly relevant topics that are related to polymers. Therefore, we hope to prove that plastics can be a solution and not a problem.
Collapse
|
27
|
|