1
|
Manikandan M, Nicolini P, Hapala P. Computational Design of Photosensitive Polymer Templates To Drive Molecular Nanofabrication. ACS NANO 2024; 18:9969-9979. [PMID: 38545921 PMCID: PMC11008366 DOI: 10.1021/acsnano.3c10575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Molecular electronics promises the ultimate level of miniaturization of computers and other machines as organic molecules are the smallest known physical objects with nontrivial structure and function. But despite the plethora of molecular switches, memories, and motors developed during the almost 50-years long history of molecular electronics, mass production of molecular computers is still an elusive goal. This is mostly due to the lack of scalable nanofabrication methods capable of rapidly producing complex structures (similar to silicon chips or living cells) with atomic precision and a small number of defects. Living nature solves this problem by using linear polymer templates encoding large volumes of structural information into sequence of hydrogen bonded end groups which can be efficiently replicated and which can drive assembly of other molecular components into complex supramolecular structures. In this paper, we propose a nanofabrication method based on a class of photosensitive polymers inspired by these natural principles, which can operate in concert with UV photolithography used for fabrication of current microelectronic processors. We believe that such a method will enable a smooth transition from silicon toward molecular nanoelectronics and photonics. To demonstrate its feasibility, we performed a computational screening of candidate molecules that can selectively bind and therefore allow the deterministic assembly of molecular components. In the process, we unearthed trends and design principles applicable beyond the immediate scope of our proposed nanofabrication method, e.g., to biologically relevant DNA analogues and molecular recognition within hydrogen-bonded systems.
Collapse
Affiliation(s)
- Mithun Manikandan
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Paolo Nicolini
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Prokop Hapala
- Institute of Physics (FZU), Czech
Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| |
Collapse
|
2
|
Zhong Q, Jung J, Kohrs D, Kaczmarek LA, Ebeling D, Mollenhauer D, Wegner HA, Schirmeisen A. Deciphering the Mechanism of On-Surface Dehydrogenative C-C Coupling Reactions. J Am Chem Soc 2024; 146:1849-1859. [PMID: 38226612 DOI: 10.1021/jacs.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
On-surface synthesis has proven to be a powerful approach for fabricating various low-dimensional covalent nanostructures with atomic precision that could be challenging for conventional solution chemistry. Dehydrogenative Caryl-Caryl coupling is one of the most popular on-surface reactions, of which the mechanisms, however, have not been well understood due to the lack of microscopic insights into the intermediates that are fleetingly existing under harsh reaction conditions. Here, we bypass the most energy-demanding initiation step to generate and capture some of the intermediates at room temperature (RT) via the cyclodehydrobromination of 1-bromo-8-phenylnaphthalene on a Cu(111) surface. Bond-level scanning probe imaging and manipulation in combination with DFT calculations allow for the identification of chemisorbed radicals, cyclized intermediates, and dehydrogenated products. These intermediates correspond to three main reaction steps, namely, debromination, cyclization (radical addition), and H elimination. H elimination is the rate-determining step as evidenced by the predominant cyclized intermediates. Furthermore, we reveal a long-overlooked pathway of dehydrogenation, namely, atomic hydrogen-catalyzed H shift and elimination, based on the observation of intermediates for H shift and superhydrogenation and the proof of a self-amplifying effect of the reaction. This pathway is further corroborated by comprehensive theoretical analysis on the reaction thermodynamics and kinetics.
Collapse
Affiliation(s)
- Qigang Zhong
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jannis Jung
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Kohrs
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - L Alix Kaczmarek
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Ebeling
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Doreen Mollenhauer
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Hermann A Wegner
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
3
|
Xu X, Wang B, Shen J, Kang J, Zhao S, Yan P, Chen Z. Characteristics and disinfection by-product formation potential of dissolved organic matter in reservoir water in cold area. CHEMOSPHERE 2022; 301:134769. [PMID: 35500634 DOI: 10.1016/j.chemosphere.2022.134769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The severe cold in winter with harsh natural conditions in Northeastern China seriously affect the water quality of the reservoir, showing the increased content and more complex types of organic matter, which brings severe challenges to the control of disinfection by-products (DBPs) in drinking water treatment with reservoir water as the water source. In this study, the fractions of dissolved organic matter (DOM) in source water at before ice formation period (P1), ice-age period (P2), and ice begin to melt period (P3) were separated by membrane separation technology. Subsequently, the contributions of DOM fractions with different molecular weights (MW) to DOC, UV254, and SUVA254, and their disinfection by-product formation potential (DBPFP) were evaluated. Although DOM with high MW (5-10 kDa) contributed the most to dissolved organic carbon (DOC) and UV254, but the contribution of DOM with low MW (0-1 kDa) to DBPs formation could not be ignored, especially during ice-age period. There was no significant difference in the total numbers of DOM formula belonged to low MW fraction at these three periods, mainly including lignin, followed by N-containing saturated compounds and tannins. Additionally, redundancy analysis revealed that DOC and UV254 as the predictors had good correlation with DBPFP, while SUVA254 could not be used as a single indicator to predict the generation potential of DBPs, and could be used as the prediction factors together with AImodwa parameter closely related to DBPFP. The study provided key information for controlling the DBPs formation of DOM in water, especially in the ice-age period, and provided the theoretical basis for water plant production.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Goll FD, Taubmann G, Ziener U. Static Scanning Tunneling Microscopy Images Reveal the Mechanism of Supramolecular Polymerization of an Oligopyridine on Graphite. Angew Chem Int Ed Engl 2022; 61:e202117580. [PMID: 35138691 PMCID: PMC9307023 DOI: 10.1002/anie.202117580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Supramolecular polymerization of a donor-acceptor bisterpyridine (BTP) equipped with an electron-rich carbazole unit is observed by scanning tunneling microscopy (STM) at the highly oriented pyrolytic graphite (HOPG)|solution interface. It is shown that two-dimensional crystals of supramolecular (co)polymers are formed by chain growth polymerization, which in turn can be described by copolymerization statistics. From concentration-dependent measurements, derived copolymerization parameters and DFT calculations, a mechanism for self-assembly is developed that suggests a kinetically driven polymerization process in combination with thermodynamically controlled crystallization.
Collapse
Affiliation(s)
- Felix D. Goll
- Ulm UniversityInstitute of Organic Chemistry IIIAlbert-Einstein-Allee 1189081UlmGermany
| | - Gerhard Taubmann
- Ulm UniversityInstitute of Theoretical ChemistryAlbert-Einstein-Allee 1189081UlmGermany
| | - Ulrich Ziener
- Ulm UniversityInstitute of Organic Chemistry IIIAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
5
|
Goll FD, Taubmann G, Ziener U. Statische Rastertunnelmikroskopie‐Bilder enthüllen den Mechanismus der supramolekularen Polymerisation eines Oligopyridins auf Graphit. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Felix D. Goll
- Universität Ulm Institut für Organische Chemie III Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Gerhard Taubmann
- Universität Ulm Institut für Theoretische Chemie Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Ulrich Ziener
- Universität Ulm Institut für Organische Chemie III Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
6
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Bettini S, Valli L, Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020; 25:molecules25163742. [PMID: 32824375 PMCID: PMC7463501 DOI: 10.3390/molecules25163742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the description of several examples of supramolecular assemblies of phthalocyanine derivatives differently functionalized and interfaced with diverse kinds of chemical species for photo-induced phenomena applications. In fact, the role of different substituents was investigated in order to tune peculiar aggregates formation as well as, with the same aim, the possibility to interface these derivatives with other molecular species, as electron donor and acceptor, carbon allotropes, cyclodextrins, protein cages, drugs. Phthalocyanine photo-physical features are indeed really interesting and appealing but need to be preserved and optimized. Here, we highlight that the supramolecular approach is a versatile method to build up very complex and functional architectures. Further, the possibility to minimize the organization energy and to facilitate the spontaneous assembly of the molecules, in numerous examples, has been demonstrated to be more useful and performing than the covalent approach.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering of Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Correspondence:
| | - Gabriele Giancane
- National Interuniversity Consortium for Materials Science and Technology, INSTM, Via Giuseppe Giusti, 9, 50121 Florence, Italy;
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, 73100 Lecce, Italy
| |
Collapse
|
8
|
Paolino M, Reale A, Magrini G, Razzano V, Giuliani G, Donati A, Giorgi G, Samperi F, Canetti M, Mauro M, Villafiorita-Monteleone F, Fois E, Botta C, Cappelli A. UV-light-induced polymerization in the amorphous solid-state of a spontaneously non-polymerizing 3-phenylbenzofulvene monomer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Xing S, Zhang Z, Liang H, Sun B, Xu H, Fan J, Ma YQ, Shi Z. On-Surface Cascade Reaction Based on Successive Debromination via Metal-Organic Coordination Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6286-6291. [PMID: 32407120 DOI: 10.1021/acs.langmuir.0c00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise control over on-surface covalent reaction pathways is crucial for engineering organic nanostructures with the single-atom precision. Herein, we demonstrate a step-by-step control of an on-surface cascade covalent reaction based on a successive debromination templated by noncovalent metal-organic coordination motifs. The molecular precursor is predesigned with different reactive sites and functional ligands, allowing for both chemical and structural tuning during on-surface reactions. Through the Fe-terpyridine template effect, we are able to direct the reaction to proceed in a three-step cascade pathway and finally to achieve a porous polyarylene nanoribbon structure. The approach opens new opportunities for construction of on-surface organic nanostructures in a predictable manner.
Collapse
Affiliation(s)
- Shuaipeng Xing
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhe Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huifang Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu-Qiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Jaroch T, Maranda-Niedbała A, Krzyżewska K, Kotwica K, Bujak P, Skórka Ł, Zagórska M, Proń A, Nowakowski R. Self-Assembly Properties of Solution Processable, Electroactive Alkoxy, and Alkylthienylene Derivatives of Fused Benzoacridines: A Scanning Tunneling Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5417-5427. [PMID: 32340450 PMCID: PMC7588136 DOI: 10.1021/acs.langmuir.9b03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Self-organization in mono- and bilayers on HOPG of two groups of benz[5,6]acridino[2,1,9,8-klmna]acridine derivatives, namely, 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines with an increasing alkoxy substituent length and 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, i.e., three positional isomers of the same benzoacridine, is investigated by scanning tunneling microscopy. The layers were deposited from a solution of the adsorbate (in hexane or dichloromethane) and imaged ex situ at molecular resolution. In all cases, the resulting two-dimensional (2D) supramolecular organization is governed by the interactions between large, fused heteroaromatic cores that form densely packed rows separated by areas covered by substituents. In 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, the alkoxy substituents, separating the rows of densely packed cores, are interdigitated. An increasing substituent length leads to an intuitively expected increase in this 2D unit cell parameter that corresponds to the orientation of the substituent in the monolayer. In the case of 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine positional isomers, the self-assembly processes are more complex. Although the determined 2D unit cell is in all cases essentially the same, the role of alkylthienylene substituents in layer formation is distinctly different. Thus, the formation of monolayers and bilayers is very sensitive to isomerism. 8,16-Bis(5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine is capable of forming the most stable monolayer and the most labile bilayer. In the case of 8,16-bis(3-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine, an inverse phenomenon is observed leading to the most labile monolayer and the most stable bilayer. These differences are rationalized in terms of dissimilar molecular geometries of the studied isomers and different interdigitation patterns in their 2D supramolecular structures.
Collapse
Affiliation(s)
- Tomasz Jaroch
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | | | - Klaudyna Krzyżewska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Kamil Kotwica
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Piotr Bujak
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Łukasz Skórka
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Małgorzata Zagórska
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Adam Proń
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Robert Nowakowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
11
|
Zhang Z, Liu H, Sun Q, Shao F, Pan Q, Zhuang T, Zhao Y. Interfacial Synthesis of a Monolayered Fluorescent Two-Dimensional Polymer through Dynamic Imine Chemistry. ChemistryOpen 2020; 9:381-385. [PMID: 32215235 PMCID: PMC7092776 DOI: 10.1002/open.202000041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
A fluorescent monolayered two-dimensional polymer (2DP) containing both tetraphenylethylene (TPE) and imine linkages is synthesized at air-water interface using the Langmuir-Blodgett method. We designed TPE-based monomers with long distances between the TPE and the imine linkages to avoid the charge transfer and therefore keep the fluorescence. A monolayered 2DP provided with more than 104 μm2 in domain size and around 0.8 nm thickness was obtained through a successive Schiff base reaction at air-water interface. The nanostructures and fluorescent property of 2DP films were characterized by optical microscopy, SEM, TEM, AFM and fluorescence spectrum. Most importantly, the tip-enhanced Raman spectroscopy (TERS) was utilized here to confirm the success of the polycondensation of monolayered 2DP.
Collapse
Affiliation(s)
- Zhaohui Zhang
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Hui Liu
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Qingzhu Sun
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Feng Shao
- Department of Chemistry, Faculty of ScienceNational University of Singapore3 Science Drive 3Singapore117543.
| | - Qingyan Pan
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Tao Zhuang
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Yingjie Zhao
- College of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| |
Collapse
|
12
|
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Yu X, Cai L, Bao M, Sun Q, Ma H, Yuan C, Xu W. On-surface synthesis of graphyne nanowires through stepwise reactions. Chem Commun (Camb) 2020; 56:1685-1688. [DOI: 10.1039/c9cc07421j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have achieved on-surface synthesis of graphyne nanowires through stepwise reactions involving two different types of dehalogenative homocoupling reactions (i.e., C(sp3)–Br and C(sp2)–Br).
Collapse
Affiliation(s)
- Xin Yu
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Liangliang Cai
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Meiling Bao
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Qiang Sun
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| |
Collapse
|
14
|
Merino-Díez N, Pérez Paz A, Li J, Vilas-Varela M, Lawrence J, Mohammed MSG, Berdonces-Layunta A, Barragán A, Pascual JI, Lobo-Checa J, Peña D, de Oteyza DG. Hierarchy in the Halogen Activation During Surface-Promoted Ullmann Coupling. Chemphyschem 2019; 20:2305-2310. [PMID: 31328365 DOI: 10.1002/cphc.201900633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/07/2022]
Abstract
Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.
Collapse
Affiliation(s)
- Néstor Merino-Díez
- Donostia International Physics Center (DIPC), 20018, San Sebastián, Spain
- CIC nanoGUNE, Nanoscience Cooperative Research Center, 20018, San Sebastián, Spain
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
| | - Alejandro Pérez Paz
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuqui, Ecuador
| | - Jingcheng Li
- CIC nanoGUNE, Nanoscience Cooperative Research Center, 20018, San Sebastián, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - James Lawrence
- Donostia International Physics Center (DIPC), 20018, San Sebastián, Spain
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center (DIPC), 20018, San Sebastián, Spain
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center (DIPC), 20018, San Sebastián, Spain
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
| | - Ana Barragán
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), 20018, San Sebastián, Spain
| | - Jose Ignacio Pascual
- CIC nanoGUNE, Nanoscience Cooperative Research Center, 20018, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jorge Lobo-Checa
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009, Zaragoza
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center (DIPC), 20018, San Sebastián, Spain
- Centro de Física de Materiales - MPC, CISC-UPV/EHU, 20018, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|