1
|
Vieira GM, Almeida TCS, Oliveira FP, Azzi PC, Rodrigues CF, Souza RL, Lacerda SMSN, Lages FS, Martins MD. Comparative Study of Acid Etching and SLA Surface Modification for Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1632. [PMID: 40271856 PMCID: PMC11990087 DOI: 10.3390/ma18071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 04/25/2025]
Abstract
The dust generated during the sandblasting process of the sandblasted and acid-etched (SLA) method, commonly used to treat the surface of Ti dental implants, poses significant challenges in maintaining a clean manufacturing environment and ensuring safe working conditions. Nevertheless, surface modification remains crucial for improved performance of Ti dental implants. To address this problem and propose a clean and simple surface modification process to potentially replace SLA modification, this study aimed to characterize the surfaces of commercially pure Ti (cp-Ti) samples treated by acid etching and compare them with SLA-treated samples in terms of surface roughness (Rq), wettability (assessed through contact angle measurements), mineralized matrix deposition (evaluated through simulated body fluid [SBF] soaking), cell viability, cell differentiation (assessed based on alkaline phosphatase activity), and mineralization (assessed using MTT assay). Acid-etched surfaces exhibited nano- and micro-roughness and higher hydrophilicity than SLA surfaces, which is conducive to forming a highly bioactive TiO2 surface. Moreover, acid-etched samples exhibited earlier hydroxyapatite deposition after SBF soaking than SLA samples. Furthermore, the acid-etched surfaces were nontoxic and displayed significantly higher cell viability and differentiation after seven days than SLA surfaces. These findings suggest that acid etching is a viable alternative to the SLA method, likely offering superior surface bioactivity and biocompatibility.
Collapse
Affiliation(s)
- Gabriel M. Vieira
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| | - Tatiane C. S. Almeida
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| | - Fernanda P. Oliveira
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| | - Patrícia C. Azzi
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| | - Caio F. Rodrigues
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| | - Rafael L. Souza
- Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Janaúba 39440-000, MG, Brazil;
| | - Samyra Maria S. N. Lacerda
- Departamento de Odontologia Restauradora, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Frederico S. Lages
- Departamento de Morfologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Maximiliano D. Martins
- Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte 31270-901, MG, Brazil; (T.C.S.A.); (F.P.O.); (P.C.A.); (C.F.R.)
| |
Collapse
|
2
|
Son YT, Son K, Cho H, Lee JM, Saleah SA, Hwang J, Lee J, Kim H, Jin MU, Kim J, Jeon M, Lee KB. Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model. J Adv Prosthodont 2025; 17:101-114. [PMID: 40351864 PMCID: PMC12059371 DOI: 10.4047/jap.2025.17.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
PURPOSE The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser. MATERIALS AND METHODS A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants' surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05). RESULTS No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05). CONCLUSION Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
Collapse
Affiliation(s)
- Young-Tak Son
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - KeunBaDa Son
- Advanced Dental Device Development Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hoseong Cho
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sm Abu Saleah
- ICT Convergence Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - JunHo Hwang
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu, Republic of Korea
| | - JongHoon Lee
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu, Republic of Korea
| | - HyunDeok Kim
- Institute of Advanced Convergence Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Myoung-Uk Jin
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Bok Lee
- Advanced Dental Device Development Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Prosthodontics, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Sarvaiya BB, Kumar S, Pathan MSH, Patel S, Gupta V, Haque M. The Impact of Implant Surface Modifications on the Osseointegration Process: An Overview. Cureus 2025; 17:e81576. [PMID: 40177230 PMCID: PMC11961139 DOI: 10.7759/cureus.81576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025] Open
Abstract
Osseointegration is critical to the long-term success of endosseous dental implants. Surface factors such as roughness, topography, energy, and composition considerably impact this process. Several ways have been used to optimize surface roughness, increase surface area, and improve osseointegration. Subtractive processes such as alumina and titanium dioxide blasting, acid treatment, anodization, and laser peeling are widely utilized. Many additive techniques change implant surfaces, including plasma-sprayed hydroxyapatite, vacuum deposition, sol-gel, dip coating, electrolytic procedures, and nano-hydroxyapatite coating. Recently, biomimetic implant surfaces with calcium phosphate coatings have been created under physiological settings. These coatings can transport osteogenic agents such as bone morphogenetic proteins, growth differentiation factors, and bioactive medications, including bisphosphonates, gentamicin, and tetracycline. Advances in technology have considerably broadened the methods for surface modification of endosseous dental implants. This article provides a comprehensive overview of various surface modification techniques and current trends in oral implantology.
Collapse
Affiliation(s)
- Bansi B Sarvaiya
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shirishkumar Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Vineeta Gupta
- Department of Periodontology and Implantology, Government Dental College, Chhattisgarh, Raipur, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
4
|
Zhang R, Jo JI, Tsuda S, Li R, Nishiura A, Honda Y, Hashimoto Y, Matsumoto N. Sustained Fisetin Release Prevents Orthodontic Ti-6Al-4V Screw Failure by Suppressing Peri-Implantitis and Alveolar Bone Resorption. ACS Biomater Sci Eng 2025; 11:1472-1485. [PMID: 39928042 DOI: 10.1021/acsbiomaterials.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In clinical practice, mini-screws of titanium-6-aluminum-4-vanadium alloy with an extra low interstitial (ELI) grade (Ti-6Al-4V ELI) are widely used as orthodontic anchorages. However, in orthodontic treatment, Ti-6Al-4V mini-screw failure because of peri-implantitis is a major challenge. To prevent damage caused by peri-implantitis, we developed a novel Ti-6Al-4V disc/screw coated with poly(lactide-co-glycolide) incorporating fisetin, a naturally occurring flavonoid with anti-inflammatory and antiosteoclastogenic/osteogenic properties. Sustained fisetin release from the Ti-6Al-4V disc and its anti-inflammatory and antiosteoclastogenic/osteogenic differentiation properties were demonstrated using in vitro cell culture experiment. In addition, in a rat model of peri-implantitis, sustained fisetin release from the Ti-6Al-4V screw suppressed inflammation progression, reduced alveolar bone resorption, and stabilized screw movement. These findings highlight sustained fisetin-release Ti-6Al-4V screws as a promising strategy for enhancing orthodontic mini-screw stability and success through peri-implantitis prevention.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Susumu Tsuda
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Runbo Li
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan
| |
Collapse
|
5
|
Phogat D, Awasthi S. Material and technique fundamentals of nano-hydroxyapatite coatings towards biofunctionalization: a review. Biomed Mater 2025; 20:022004. [PMID: 39837087 DOI: 10.1088/1748-605x/adac97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Hydroxyapatite (HAp) nanocoatings on titanium alloys (e.g. Ti6Al4V) have been used for prosthetic orthopaedic implants in recent decades because of their osseointegration, bioactivity, and biocompatibility. HAp is brittle with low mechanical strength and poor adhesion to metallic surfaces, which limits its durability and bioactivity. Surface modification techniques have alleviated the imperfections in biomaterials by coating the substrate. Several methods for improving the characteristics of implants, such as physical vapour deposition, the thermal spray method, the sol-gel method, microarc oxidation, and electrochemical deposition methods, have been discussed in this review. These processes provide mechanical strength without sacrificing biocompatibility and may lead to the development of new ideas for future research. This review discusses various selective additives, including carbon allotropes, ceramic materials, metallic materials, and multiple materials, to enhance tribological characteristics, biocompatibility, wear resistance, and mechanical strength. This review focuses on the fabrication of nano-HAps as coatings using selective deposition methods with controlled deposition parameters, paying special attention to recent developments in bone tissue engineering. This report is organized in such a way that it may inspire further research on surface modifications during medical treatment. The present review may help prospective investigators understand the importance of surface modifications for obtaining excellent implantation performance.
Collapse
Affiliation(s)
- Durgesh Phogat
- Department of Chemistry, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Shikha Awasthi
- Department of Chemistry, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| |
Collapse
|
6
|
Yin IX, Udduttulla A, Xu VW, Chen KJ, Zhang MY, Chu CH. Use of Antimicrobial Nanoparticles for the Management of Dental Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:209. [PMID: 39940185 PMCID: PMC11820271 DOI: 10.3390/nano15030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Dental diseases represent a significant global health concern, with traditional treatment methods often proving costly and lacking in long-term efficacy. Emerging research highlights nanoparticles as a promising, cost-effective therapeutic alternative, owing to their unique properties. This review aims to provide a comprehensive overview of the application of antimicrobial and antioxidant nanoparticles in the management of dental diseases. Silver and gold nanoparticles have shown great potential for inhibiting biofilm formation and thus preventing dental caries, gingivitis, and periodontitis. Various dental products can integrate copper nanoparticles, known for their antimicrobial properties, to combat oral infections. Similarly, zinc oxide nanoparticles enhance the antimicrobial performance of dental materials, including adhesives and cements. Titanium dioxide and cerium oxide nanoparticles possess antimicrobial and photocatalytic properties, rendering them advantageous for dental materials and oral hygiene products. Chitosan nanoparticles are effective in inhibiting oral pathogens and reducing inflammation in periodontal tissues. Additionally, curcumin nanoparticles, with their antimicrobial, anti-inflammatory, and antioxidant properties, can enhance the overall performance of dental materials and oral care products. Incorporating these diverse nanoparticles into dental materials and oral care products holds the potential to significantly reduce the risk of infection, control biofilm formation, and improve overall oral health. This review underscores the importance of continued research and development in this promising field to realize the full potential of nanoparticles in dental care.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China; (I.X.Y.); (A.U.); (V.W.X.); (K.J.C.); (M.Y.Z.)
| |
Collapse
|
7
|
Jeon HJ, Seo S, Jung A, Kang KM, Lee J, Gweon B, Lim Y. Comparative Investigation of Vortex and Direct Plasma Discharge for Treating Titanium Surface. Biomimetics (Basel) 2024; 10:7. [PMID: 39851723 PMCID: PMC11759839 DOI: 10.3390/biomimetics10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Numerous studies have investigated the surface treatment of implants using various types of plasma, including atmospheric pressure plasma and vacuum plasma, to remove impurities and increase surface energy, thereby enhancing osseointegration. Most previous studies have focused on generating plasma directly on the implant surface by using the implant as an electrode for plasma discharge. However, plasmas generated under atmospheric and moderate vacuum conditions often have a limited plasma volume, meaning the shape of the electrodes significantly influences the local electric field characteristics, which in turn affects plasma behavior. Consequently, to ensure consistent performance across implants of different sizes and shapes, it is essential to develop a plasma source with discharge characteristics that are unaffected by the treatment target, ensuring uniform exposure. To address this challenge, we developed a novel plasma source, termed "vortex plasma", which generates uniform plasma using a magnetic field within a controlled space. We then compared the surface treatment efficiency of the vortex plasma to that of conventional direct plasma discharge by evaluating hydrophilicity, surface chemistry, and surface morphology. In addition, to assess the biological outcomes, we examined osteoblast cell activity on both the vortex and direct plasma-treated surfaces. Our results demonstrate that vortex plasma improved hydrophilicity, reduced carbon content, and enhanced osteoblast adhesion and activity to a level comparable to direct plasma, all while maintaining the physical surface structure and morphology.
Collapse
Affiliation(s)
- Hyun-Jeong Jeon
- Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.J.); (S.S.); (K.-m.K.); (J.L.)
| | - Subin Seo
- Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.J.); (S.S.); (K.-m.K.); (J.L.)
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| | - Kyeong-mok Kang
- Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.J.); (S.S.); (K.-m.K.); (J.L.)
| | - Jeonghoon Lee
- Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.J.); (S.S.); (K.-m.K.); (J.L.)
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| | - Youbong Lim
- Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.J.); (S.S.); (K.-m.K.); (J.L.)
| |
Collapse
|
8
|
Lee SY, Daher R, Jung J, Han K, Sailer I, Lee J. Risk of Late Implant Loss and Peri-Implantitis Based on Dental Implant Surfaces and Abutment Types: A Nationwide Cohort Study in the Elderly. J Clin Periodontol 2024; 51:1574-1585. [PMID: 39406495 PMCID: PMC11651715 DOI: 10.1111/jcpe.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
AIM This nationwide population-based cohort study aimed to assess the incidence of implant complication treatments, including implant removal procedures and peri-implantitis treatments, in relation to implant surfaces and abutment types. METHODS Data from the National Health Insurance Service, covering approximately 50 million individuals, were used. Implants and abutments were categorized by codes, including surfaces such as resorbable blasting media, sandblasted large grit and acid-etched (SA) and hydroxyapatite coating, along with abutment structures (one-piece straight, two-piece straight, angled). The incidence of implant complication treatments was analysed using Kaplan-Meier curves and Cox proportional hazards regression (α = 0.05). RESULTS The study included 2,354,706 implants. The SA group had the lowest hazard ratio for implant removal procedures (p < 0.0001). No significant differences were found in the risk of peri-implantitis treatments between implant surfaces (p = 0.0587). The risk of implant complication treatments did not differ significantly by the abutment type (p = 0.9542). The incidence rate of implant complication treatments was < 3.9 per 1000 implant-years across all groups. CONCLUSIONS The SA group showed a slightly lower risk of late implant loss, whereas no significant association was found for the abutment type groups. All implant and abutment type groups showed an incidence rate of < 3.9 per 1000 implant-years for complication treatments.
Collapse
Affiliation(s)
- Su Young Lee
- Department of Prosthodontics, Seoul St. Mary's Dental Hospital, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - René Daher
- Division of Cariology and Endodontology, University Clinics of Dental MedicineUniversity of GenevaGenevaSwitzerland
| | - Jin‐Hyung Jung
- Department of Biostatistics, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Irena Sailer
- Division of Fixed Prosthodontics, University Clinics of Dental MedicineUniversity of GenevaGenevaSwitzerland
| | - Jae‐Hyun Lee
- Department of ProsthodonticsSeoul National University School of DentistrySeoulRepublic of Korea
- Dental Research InstituteSeoul National University School of DentistrySeoulRepublic of Korea
| |
Collapse
|
9
|
Wei X, Lei L, Luo L, Zhou Y, Zheng Z, Chen W. Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity. J Mater Chem B 2024; 12:11089-11104. [PMID: 39387541 DOI: 10.1039/d4tb01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective-surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
Collapse
Affiliation(s)
- Xinpeng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linshan Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
11
|
Özcan EC, Aydin MA, Dundar S, Tanrisever M, Bal A, Karasu N, Kirtay M. Biomechanical Investigation of the Osseointegration of Titanium Implants With Different Surfaces Placed With Allogeneic Bone Transfer. J Craniofac Surg 2024; 35:2184-2188. [PMID: 38781429 DOI: 10.1097/scs.0000000000010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Allogeneic grafts can be preferred to autogenous grafts in plastic and oral-maxillofacial surgery for vertical and horizontal bone deficiencies. Implant surface properties are an important factor in osseointegration. This study aims to evaluate the osseointegration levels of titanium implants with machined, sand-blasted, and acid-etched (SLA) and resorbable blast material (RBM) surfaces placed together with allogeneic bone tissue transplantations obtained from the tibia bone using biomechanical method. Twenty-five female Sprague-Dawley rats were included in the study. The rats were divided into groups in which machined (n=7), SLA (n=7), and RBM (n=7) surface implants were placed with the transplantation of bone taken from the tibia. Four rats (both left and right tibias) were used as donors. Grafts and implants were surgically placed in the corticocancellous part of the metaphyseal area of the tibia bones of rats. At the end of the 4-week experimental setup, all rats were killed, and the implants and surrounding bone tissue were subjected to biomechanical reverse torque analysis (N/cm). Sand-blasted acid-etched surface implants were observed to have higher biomechanical osseointegration levels than RBM and machined surface implants ( P <0.05). No statistical difference could be detected between the RBM and machined surface implants ( P >0.05). On the basis of the limited results of this study, it can be concluded that the osseointegration levels of SLA surface implants placed with allogeneic bone transplantation may be better than those of machined and RBM surface implants.
Collapse
Affiliation(s)
- Erhan Cahit Özcan
- Department of Esthetic, Plastic and Reconstructive Surgery, Faculty of Medicine
| | | | | | - Murat Tanrisever
- Department of Surgery, Faculty of Veterinary Medicine, Firat University, Elazig
| | - Ali Bal
- Department of Esthetic, Plastic and Reconstructive Surgery, Private Practice, Istanbul
| | - Necmettin Karasu
- Department of Esthetic, Plastic and Reconstructive Surgery, Private Practice, Afyon Karahisar, Turkiye
| | - Mustafa Kirtay
- Department of Oral and Maxillofacial Surgery, Private Practice, London, Ontario, Canada
| |
Collapse
|
12
|
Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous Titanium Implant Surface Accelerates Osteogenesis via the Piezo1/Acetyl-CoA/β-Catenin Pathway. NANO LETTERS 2024; 24:8257-8267. [PMID: 38920296 PMCID: PMC11247543 DOI: 10.1021/acs.nanolett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
Collapse
Affiliation(s)
- Qian Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Run-Long Pan
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Hui Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Jun-Jun Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Song-He Lu
- Scientific
Research Department, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
13
|
Yu X, Xu R, Huang X, Chen H, Zhang Z, Wong I, Chen Z, Deng F. Size-Dependent Effect of Titania Nanotubes on Endoplasmic Reticulum Stress to Re-establish Diabetic Macrophages Homeostasis. ACS Biomater Sci Eng 2024; 10:4323-4335. [PMID: 38860558 DOI: 10.1021/acsbiomaterials.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.
Collapse
Affiliation(s)
- Xiaoran Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Hongcheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Iohong Wong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| |
Collapse
|
14
|
Vidhyasankari N, John RR, Senthilmurugan PR, Vishnupriya V. Comparative evaluation on surface nanohardness, surface microhardness, surface roughness, and wettability of plant-based organic nanoparticle reinforced polyetheretherketone as an implant material - An in vitro study. J Indian Prosthodont Soc 2024; 24:245-251. [PMID: 38946507 PMCID: PMC11321480 DOI: 10.4103/jips.jips_511_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 07/02/2024] Open
Abstract
AIM Synthetic inorganic materials are commonly used as reinforcing agents in polyetheretherketone (PEEK) composite, whereas natural organic plant-based reinforcing agents are negligible. Surface hardness, roughness, and wettability are indicative factors of osseointegration behavior to be used as an implant material. This study evaluated micro surface hardness (MSH), nano surface hardness (NSH), surface roughness (SR), and contact angle (CA) of PEEK-Azadirachta indica reinforced at 10 wt%, 20 wt%, and 30 wt%. SETTINGS AND DESIGN This was an in vitro study. MATERIALS AND METHODS Neem (A. indica) leaf nanoparticles were prepared and reinforced with PEEK powder at 10%, 20%, and 30% weight ratios by injection molding. Sixty specimens underwent the microhardness and CA testing using a digital microhardness tester, and CA goniometer, respectively, and later nanoindentation test to analyze the nanohardness and SR. STATISTICAL ANALYSIS USED A one-way ANOVA test with a 95% confidence interval for MSH and NSH, SR, and CA was performed on the samples. A post hoc Bonferroni test was conducted (α = 0.05) to compare the groups. RESULTS There was a significant increase in nanohardness (P = 0.000) with zero difference in microhardness (P = 0.514). The addition of 10 wt%, 20 wt%, and 30 wt% nanoparticles increased the SR value of the pure PEEK from 273.19 nm to 284.10 (3.99%), 296.91 (8.68%), and 287.54 (5.24%), respectively. In the analysis of the CA, CA 20% shows the lowest angle (63.69) with the highest for control specimens (82.39). There is an increase in the PEEK composite SR with a decrease in CA. CONCLUSIONS The addition of plant-derived nanoparticles into the PEEK matrix has a significant impact on the hardness and hydrophobicity enhancing cell growth and osteoblastic differentiation during osseointegration of dental implants.
Collapse
Affiliation(s)
- N. Vidhyasankari
- Department of Prosthodontics and Crown and Bridge, KSR Institute of Dental Science and Research, Tiruchengode, India
| | - Reena Rachel John
- Department of Oral and Maxillofacial Surgery, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - P. R. Senthilmurugan
- Department of Mechatronics, K.S. Rangasamy College of Technology, Tiruchengode, India
| | - V. Vishnupriya
- Department of Prosthodontics and Crown and Bridge, KSR Institute of Dental Science and Research, Tiruchengode, India
| |
Collapse
|
15
|
Bokobza L. On the Use of Nanoparticles in Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3191. [PMID: 38998274 PMCID: PMC11242106 DOI: 10.3390/ma17133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone-implant interfacial area. Surface coatings via the sol-gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
16
|
Rodrigues F, Pereira HF, Pinto J, Padrão J, Zille A, Silva FS, Carvalho Ó, Madeira S. Zirconia Dental Implants Surface Electric Stimulation Impact on Staphylococcus aureus. Int J Mol Sci 2024; 25:5719. [PMID: 38891904 PMCID: PMC11171956 DOI: 10.3390/ijms25115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Tooth loss during the lifetime of an individual is common. A strategy to treat partial or complete edentulous patients is the placement of dental implants. However, dental implants are subject to bacterial colonization and biofilm formation, which cause an infection named peri-implantitis. The existing long-term treatments for peri-implantitis are generally inefficient. Thus, an electrical circuit was produced with zirconia (Zr) samples using a hot-pressing technique to impregnate silver (Ag) through channels and holes to create a path by LASER texturing. The obtained specimens were characterized according to vitro cytotoxicity, to ensure ZrAg non-toxicity. Furthermore, samples were inoculated with Staphylococcus aureus using 6.5 mA of alternating current (AC). The current was delivered using a potentiostat and the influence on the bacterial concentration was assessed. Using AC, the specimens displayed no bacterial adhesion (Log 7 reduction). The in vitro results presented in this study suggest that this kind of treatment can be an alternative and promising strategy to treat and overcome bacterial adhesion around dental implants that can evolve to biofilm.
Collapse
Affiliation(s)
- Flávio Rodrigues
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Helena F. Pereira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
- MIT Portugal Program, School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João Pinto
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Jorge Padrão
- Center for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Andrea Zille
- Center for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| | - Sara Madeira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (F.R.); (H.F.P.); (J.P.); (F.S.S.); (Ó.C.); (S.M.)
- Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems (LABBELS), 4800-058 Guimarães, Portugal
| |
Collapse
|
17
|
Lakshmi Mounika K, Lanke RB, Mudaliyar MC, Khandelwal S, Gaddam B, Boyapati R. Comprehensive Evaluation of Novel Biomaterials for Dental Implant Surfaces: An In Vitro Comparative Study. Cureus 2024; 16:e61175. [PMID: 38933613 PMCID: PMC11200310 DOI: 10.7759/cureus.61175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Dental implantology is continually evolving in its quest to discover new biomaterials to improve dental implant success rates. The study explored the potential of innovative biomaterials for dental implant surfaces, including titanium-zirconium (Ti-Zr) alloy, hydroxyapatite-coated titanium (HA-Ti), and porous polyetheretherketone (PEEK), in comparison to conventional commercially pure titanium (CP Ti). MATERIALS AND METHODS A total of 186 samples were harvested for the analysis. Biomaterials were thoroughly evaluated in terms of surface topography, chemical composition, biocompatibility, mechanical properties, osseointegration performance, and bacterial adhesion. Study methods and techniques included scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cell culture variants, tensile tests, hardness measurements, histological analysis, and microbiological testing. RESULTS Surface topography examination showed significant disparities between the biomaterials: Ti-Zr had a better roughness of 1.23 μm, while HA-Ti demonstrated a smoother surface at 0.98 μm. Chemical composition evaluation indicated the presence of a Ti-Zr alloy in Ti-Zr, calcium-phosphorus richness in HA-Ti, and high titanium amounts in CP Ti. The mechanical properties assessment showed that Ti-Zr and CP Ti had good tensile strengths of 750 MPa and 320 HV. In addition, bacterial adhesion tests showed low propensities for Ti-Zr and HA-Ti at 1200 and 800 cfu/cm2, respectively. CONCLUSION Ti-Zr and HA-Ti performed better than the other biomaterials in surface topography and mechanical properties and against bacterial adhesion. This study emphasizes that multi-parameter analysis is critical for clinical decision-making, allowing for the selection of the currently available biomaterial, which could be conducive to the long-term success of the implant.
Collapse
Affiliation(s)
- Kalluri Lakshmi Mounika
- Department of Prosthodontics and Crown and Bridge, Sibar Institute of Dental Sciences, Guntur, IND
| | | | | | - Sourabh Khandelwal
- Department of Prosthodontics and Crown and Bridge, Index Institute of Dental Sciences, Indore, IND
| | - Bhavyasri Gaddam
- Department of Periodontology, Mamata Dental College, Khammam, IND
| | | |
Collapse
|
18
|
Xailani KK, Hamad SA. Effect of photobiomodulation therapy of overprepared dental implant bed on torque removal and implant stability quotient: an experimental study in sheep. Minerva Dent Oral Sci 2024; 73:96-101. [PMID: 37326505 DOI: 10.23736/s2724-6329.23.04788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Primary stability of dental implant is an important prerequisite for achieving osseointegration. This study was conducted to evaluate the effects of photobiomodulation therapy on bone formation-around implants by measuring the implant removal torque and implant stability quotient. METHODS This study was conducted in six adult male sheep. Four implants were placed on each side of the lower border of the mandible. The implant beds were prepared to a size of 10 mm in length and 4.8 mm in width, to receive an implant of 8 mm in length and 4 mm in width. Laser application to the socket was performed just before implant placement, and was immediately administered to the surface of the implant and the peri-implant bone before suturing of the wound. The therapy was continued twice daily for the next seven consecutive days. The animals were sacrificed at 4, 8, and 12 weeks, with two animals per time point. The implant-removal torque was determined with an electronic wrench, and the implant stability quotient (ISQ) was assessed with an Ostell device. RESULTS The laser treated sides showed significantly higher removal torque and ISQ, at the three-time points (P<0.05). At 4 weeks, the ISQ was 61.44 (±10.4) in the laser group and 48.2 (±16.7) in the control group. At 8 weeks, the ISQ increased to 62.2 (±5.5) in the laser group and 56.1 (±4.3) in the control group. At 12 weeks, the ISQ was 67 (±4.5) in the laser group and 61.875 (±6.3) in the control group. The removal torque at 4 weeks was 218.6 (±62.6) in the laser group and 147.6 (±40.9) in the control group. At 8 weeks, the removal torque increased to 370.5 (±33.3) in the laser group and 250.2 (±25.0) in the control group. At 12 weeks, the removal torque increased to 912.6 (±177.2) in the laser group and 512.1 (±122.6) in the control group. CONCLUSIONS Photobiomodulation enhances bone formation and improves implant stability in implants with overzealously prepared oversized implant beds.
Collapse
Affiliation(s)
| | - Shehab A Hamad
- Kurdistan Higher Council of Medical Specialties, Erbil, Iraq -
| |
Collapse
|
19
|
Verma M, Faraz F, Bhardwaj S, Sood A. Evaluation of safety and efficacy of locally developed dental implants: A noninferiority randomized controlled trial. J Prosthet Dent 2024; 131:443-449. [PMID: 35279301 DOI: 10.1016/j.prosdent.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 10/18/2022]
Abstract
STATEMENT OF PROBLEM Various dental implants are available in India, but imported devices are expensive; an affordable locally produced dental implant system would be beneficial. PURPOSE The purpose of this noninferiority randomized controlled trial was to compare the safety and efficacy of a locally developed dental implant system to those of an established imported dental implant system with similar microsurface characteristics. MATERIAL AND METHODS A total of 136 participants with 201 partially edentulous sites, aged 18 to 65 years, were enrolled in the trial, with 134 sites receiving test implants and 67 sites control implants (n ratio, 2:1). The implants received a delayed submerged healing protocol and were loaded 3 to 6 months after surgery. Maximum insertion torque (IT) was recorded during the implant surgery, and the implant stability quotient (ISQ) was evaluated on the day of surgery and at the second-stage procedure. The mean crestal bone loss (MCBL) was measured on periapical radiographs at prosthetic placement (baseline) and at 6 months and 12 months after loading. The primary measure of outcome was the implant survival rate, and the secondary measure of evaluation was the intergroup difference in MCBL at baseline, 6 months, and 12 months. RESULTS A total of 127 test and 61 control implant sites were available for follow-up 1 year after prosthesis placement. At the end of 12 months, the test and control implant groups demonstrated a survival rate of 97% and 100%, respectively. The MCBL difference was significant between the 2 groups at baseline (P<.05). However, at 6 and 12 months, the difference between the test and control groups was not significantly different (P>.05). CONCLUSIONS The survival rate of the test group fell within the previously assumed 10% noninferiority margin. Therefore, the null hypothesis was accepted for the trial, and the locally developed implants were noninferior to the imported implants at a sample allocation ratio of 2:1.
Collapse
Affiliation(s)
- Mahesh Verma
- Professor Emeritus, Department of Prosthodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India; Vice Chancellor, G.G.S.I.P.U., Delhi, India
| | - Farrukh Faraz
- Professor, Department of Periodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Smiti Bhardwaj
- Project Scientist II- Periodontics, Dental Implant Development Project, Maulana Azad Institute of Dental Sciences, New Delhi, India.
| | - Abhinav Sood
- Consultant, Prosthodontics, The Atelier Dental Practice, New Delhi, India
| |
Collapse
|
20
|
Uesugi T, Shimoo Y, Munakata M, Kataoka Y, Sato D, Yamaguchi K, Sanda M, Fujimaki M, Nakayama K, Watanabe T, Malo P. A Study of the Associated Risk Factors for Early Failure and the Effect of Photofunctionalisation in Full-Arch Immediate Loading Treatment Based on the All-on-Four Concept. Bioengineering (Basel) 2024; 11:223. [PMID: 38534497 DOI: 10.3390/bioengineering11030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Early implant failure occurring within 1 year after implantation has been attributed to various factors. Particularly, early failure can lead to challenges in maintaining a full-arch prosthetic device, necessitating prompt intervention, including reoperation. This study aimed to retrospectively examine implant- and patient-related factors and the effects of photofunctionalisation associated with early failure in patients who underwent treatment using the all-on-four concept in both the maxilla and mandible. We conducted this retrospective study comprising 561 patients with 2364 implants who underwent implant-supported immediate loading with fixed full-arch rehabilitation using the all-on-four concept. We aimed to assess the survival rate within 1 year after implantation and determine the risk factors influencing early failure. The 1-year survival rates after implantation were 97.1% (patient level) and 98.9% (implant level) for the maxilla and 98.5% (patient level) and 99.6% (implant level) for the mandible. There was a significant difference in the implant-level survival rates between the maxilla and mandible, with a lower rate in the maxilla (p = 0.043). The risk factors associated with early implant failure according to the all-on-four concept included the maxilla (implant level) and smoking (patient level). We could not find a significant effect of photofunctionalisation on early failure (p = 0.25) following this treatment protocol.
Collapse
Affiliation(s)
- Takashi Uesugi
- Malo Dental & Medical Tokyo, Tokyo 104-0061, Japan
- Department of Implant Dentistry, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Yoshiaki Shimoo
- Malo Dental & Medical Tokyo, Tokyo 104-0061, Japan
- Department of Implant Dentistry, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Motohiro Munakata
- Department of Implant Dentistry, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Yu Kataoka
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Daisuke Sato
- Department of Implant Dentistry, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Kikue Yamaguchi
- Department of Implant Dentistry, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | - Minoru Sanda
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | | | | | - Tae Watanabe
- Malo Dental & Medical Tokyo, Tokyo 104-0061, Japan
| | - Paulo Malo
- Malo Dental & Medical Tokyo, Tokyo 104-0061, Japan
| |
Collapse
|
21
|
Lima JHCD, Robbs PCM, Tude EMO, De Aza PN, Costa EMD, Scarano A, Prados-Frutos JC, Fernandes GVO, Gehrke SA. Fibroblasts and osteoblasts behavior after contact with different titanium surfaces used as implant abutment: An in vitro experimental study. Heliyon 2024; 10:e25038. [PMID: 38322837 PMCID: PMC10844044 DOI: 10.1016/j.heliyon.2024.e25038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background The goal of this in vitro study was to compare three different surfaces: two types of implant surfaces commercially available ([a] smooth/machined and [b] acid-treated surface) versus (c) anodized surface. Discs were manufactured with commercially pure titanium (CP) grade IV, which were subsequently analyzed by scanning microscopy and fibroblastic and osteoblastic cell cultures. Methods Ninety-nine discs (5 × 2 mm) were manufactured in titanium grade IV and received different surface treatments: (i) Mach group: machined; (ii) AA group: double acid etch; and (iii) AN group: anodizing treatment. Three discs from each group were analyzed by Scanning Electron Microscopy (SEM) to obtain surface topography images and qualitatively analyzed by EDS. Balb/c 3T3 fibroblasts and pre-osteoblastic cells (MC3T3-E1 lineage) were used to investigate each group's biological response (n = 10/cellular type). The data were compared statistically using the ANOVA one-way test, considered as a statistically significant difference p < 0.05. Results The AA group had numerous micropores with diameters between 5 and 10 μm, while nanopores between 1 and 5 nm were measured in the AN group. The EDX spectrum showed a high titanium concentration in all the analyzed samples. The contact angle and wetting tension were higher in the AA, whereas similar results were observed for the other groups. A lower result was observed for base width in the AA, which was higher in the other two groups. The AN showed the best values in the fibroblast cells, followed by Mach and AA; whereas, in the culture of the MC3T3 cells, the result was precisely the opposite (AA > Mach > AN). There was similar behavior for cell adhesion for the test groups (Mach and AN), with greater adhesion of Balb/c 3T3 fibroblasts compared to MC3T3 cells; in the AA group, there was greater adherence for MC3T3 cells compared to Balb/c 3T3 fibroblasts. Conclusions The findings suggest that different surface characteristics can produce different biological responses, possibly cell-line dependent. These findings have important implications for the design of implantable medical devices, where the surface characteristics can significantly impact its biocompatibility.
Collapse
Affiliation(s)
| | | | | | - Piedad N. De Aza
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Eleani Maria da Costa
- Department of Materials Engineering, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Juan Carlos Prados-Frutos
- Department of Medicine and Surgery, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | - Sergio Alexandre Gehrke
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche, Alicante, Spain
- Department of Materials Engineering, Pontificial Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biotechnology, Universidad Católica de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
22
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
23
|
Civantos A, Mesa-Restrepo A, Torres Y, Shetty AR, Cheng MK, Jaramillo-Correa C, Aditya T, Allain JP. Nanotextured porous titanium scaffolds by argon ion irradiation: Toward conformal nanopatterning and improved implant osseointegration. J Biomed Mater Res A 2023; 111:1850-1865. [PMID: 37334879 DOI: 10.1002/jbm.a.37582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yadir Torres
- Department of Engineering and Materials Science and Transport, University of Seville, Seville, Spain
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Camilo Jaramillo-Correa
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
24
|
Mostafa D, Kassem YM, Omar SS, Shalaby Y. Nano-topographical surface engineering for enhancing bioactivity of PEEK implants (in vitro-histomorphometric study). Clin Oral Investig 2023; 27:6789-6799. [PMID: 37847259 PMCID: PMC10630241 DOI: 10.1007/s00784-023-05291-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES Dental implants are currently becoming a routine treatment decision in dentistry. Synthetic polyetheretherketone (PEEK) polymer is a prevalent component of dental implantology field. The current study aimed to assess the influence of Nd:YAG laser nano-topographical surface engineering combined with ultraviolet light or platelet rich fibrin on the bioactivity and osseointegration of PEEK implants in laboratory and animal testing model. MATERIALS AND METHODS Computer Aided Design-Computer Aided Manufacturing (CAD CAM) discs of PEEK were used to fabricate PEEK discs (8 mm × 3 mm) N = 36 and implant cylinders (3 mm × 6 mm) N = 72. Specimens were exposed to Nd:YAG laser at wavelength 1064 nm, and surface roughness topography/Ra parameter was recorded in nanometer using atomic force microscopy. Laser modified specimens were divided into three groups: Nd:YAG laser engineered surfaces (control), Nd:YAG laser/UV engineered surfaces and Nd:YAG laser/PRF engineered surfaces (N = 12 discs-N = 24 implants). In vitro bioactivity test was performed, and precipitated apatite minerals were assessed with X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). In vivo histomorphometric analysis was performed in rabbits with BIC% calculation. RESULTS Ra mean value of PEEK laser engineered surfaces was 125.179 nm. For the studied groups, XRD patterns revealed distinctive peaks of different apatite minerals that were demonstrated by SEM as dispersed surface aggregations. There was a significant increase in the BIC% from control group 56.43 (0.97) to laser/UV surfaces 77.30 (0.78) to laser/PRF 84.80 (1.29) (< 0.0001). CONCLUSIONS Successful engineered nano-topographical biomimetic PEEK implant could be achieved by Nd:YAG laser technique associated with improving bioactivity. The combination with UV or PRF could be simple and economic methods to gain more significant improvement of PEEK implant surface bioactivity with superior osteointegration.
Collapse
Affiliation(s)
- Dawlat Mostafa
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- College of Dentistry, The Arab Academy for Science and Technology and Maritime Transport (AASTMT), El-Alamein, Egypt.
| | - Youssef M Kassem
- Prosthodontic Department, LSUHSC School of Dentistry, LSU Health Science Center, New Orleans, LA, USA
| | | | | |
Collapse
|
25
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
26
|
Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: The future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev 2023; 199:114900. [PMID: 37263543 DOI: 10.1016/j.addr.2023.114900] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Unlike orthopedic implants, dental implants require the orchestration of both osseointegration at the bone-implant interface and soft-tissue integration at the transmucosal region in a complex oral micro-environment with ubiquitous pathogenic bacteria. This represents a very challenging environment for early acceptance and long-term survival of dental implants, especially in compromised patient conditions, including aged, smoking and diabetic patients. Enabling advanced local therapy from the surface of titanium-based dental implants via novel nano-engineering strategies is emerging. This includes anodized nano-engineered implants eluting growth factors, antibiotics, therapeutic nanoparticles and biopolymers to achieve maximum localized therapeutic action. An important criterion is balancing bioactivity enhancement and therapy (like bactericidal efficacy) without causing cytotoxicity. Critical research gaps still need to be addressed to enable the clinical translation of these therapeutic dental implants. This review informs the latest developments, challenges and future directions in this domain to enable the successful fabrication of clinically-translatable therapeutic dental implants that would allow for long-term success, even in compromised patient conditions.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak-Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, 34116 Istanbul, Turkey
| | - Elise Verron
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| |
Collapse
|
27
|
Teixeira JFL, de Souza JAC, Magalhães FAC, de Oliveira GJPL, de Santis JB, de Souza Costa CA, de Souza PPC. Laser-Modified Ti Surface Improves Paracrine Osteogenesis by Modulating the Expression of DKK1 in Osteoblasts. J Funct Biomater 2023; 14:jfb14040224. [PMID: 37103314 PMCID: PMC10145280 DOI: 10.3390/jfb14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.
Collapse
Affiliation(s)
- Jorge Felipe Lima Teixeira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | | | | | | | - José Bernardo de Santis
- Department of Basic and Oral Biology, Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | - Pedro Paulo Chaves de Souza
- Innovation in Biomaterials Laboratory (iBioM), School of Dentistry, Federal University of Goiás, Goiânia 74605-020, Brazil
| |
Collapse
|
28
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
29
|
Lee H, Jeon HJ, Jung A, Kim J, Kim JY, Lee SH, Kim H, Yeom MS, Choe W, Gweon B, Lim Y. Improvement of osseointegration efficacy of titanium implant through plasma surface treatment. Biomed Eng Lett 2022; 12:421-432. [PMID: 36238369 PMCID: PMC9551159 DOI: 10.1007/s13534-022-00245-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
A novel plasma treatment source for generating cylindrical plasma on the surface of titanium dental implants is developed herein. Using the titanium implant as an electrode and the packaging wall as a dielectric barrier, a dielectric barrier discharge (DBD) plasma was generated, allowing the implant to remain sterile. Numerical and experimental investigations were conducted to determine the optimal discharge conditions for eliminating hydrocarbon impurities, which are known to degrade the bioactivity of the implant. XPS measurement confirmed that plasma treatment reduced the amount of carbon impurities on the implant surface by approximately 60%. Additionally, in vitro experiments demonstrated that the surface treatment significantly improved cell adhesion, proliferation, and differentiation. Collectively, we proposed a plasma treatment source for dental implants that successfully removes carbon impurities and facilitate the osseointegration of SLA implants.
Collapse
Affiliation(s)
- Hyungyu Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Hyun Jeong Jeon
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, 05006 Seoul, Republic of Korea
| | - Jinwoo Kim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Jun Young Kim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Seung Hun Lee
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Hosu Kim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| | - Moon Seop Yeom
- Seoul Top Dental Clinic, 345 Omok-ro, Yangchun-gu, 07999 Seoul, Republic of Korea
| | - Wonho Choe
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, 05006 Seoul, Republic of Korea
| | - Youbong Lim
- Plasmapp Co., Ltd, 372 Dongbu-daero, 18151 Osan-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
30
|
Zhang Q, Yu S, Hu M, Liu Z, Yu P, Li C, Zhang X. Antibacterial and Anti-Inflammatory Properties of Peptide KN-17. Microorganisms 2022; 10:2114. [PMID: 36363705 PMCID: PMC9699635 DOI: 10.3390/microorganisms10112114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 08/02/2023] Open
Abstract
Peri-implantitis, an infectious disease originating from dental biofilm that forms around dental implants, which causes the loss of both osseointegration and bone tissue. KN-17, a truncated cecropin B peptide, demonstrated efficacy against certain bacterial strains associated with peri-implantitis. This study aimed to assess the antibacterial and anti-inflammatory properties and mechanisms of KN-17. The effects of KN-17 on oral pathogenic bacteria were assessed by measuring its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Moreover, the cytotoxicity and anti-inflammatory effects of KN-17 were evaluated. KN-17 inhibited the growth of Streptococcus gordonii and Fusobacterium nucleatum during in vitro biofilm formation and possessed low toxicity to hBMSCs cells. KN-17 also caused RAW264.7 macrophages to transform from M1 to M2 by downregulating pro-inflammatory and upregulating anti-inflammatory factors. It inhibited the NF-κB signaling pathway by reducing IκBα and P65 protein phosphorylation while promoting IκBα degradation and nuclear P65 translocation. KN-17 might be an efficacious prophylaxis against peri-implant inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Shuipeng Yu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Meilin Hu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Zhiyang Liu
- College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Pei Yu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, 39 Huangsha Avenue, Guangzhou 510150, China
| | - Changyi Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
31
|
Abstract
Surface characteristics are an important factor for long-term clinical success of dental implants. Alterations of implant surface characteristics accelerate or improve osseointegration by interacting with the physiology of bone healing. Dental implant surfaces have been traditionally modified at the microlevel. Recently, researchers have actively investigated nano-modifications in dental implants. This review explores implant surface modifications that enhance biological response at the interface between a bone and the implant.
Collapse
Affiliation(s)
- In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
32
|
Chang LC. Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review. J Clin Med 2022; 11:jcm11195823. [PMID: 36233693 PMCID: PMC9571244 DOI: 10.3390/jcm11195823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental implant therapy is a common clinical procedure for the restoration of missing teeth. Many methods have been used to promote osseointegration for successful implant therapy, including photofunctionalization (PhF), which is defined as the modification of titanium surfaces after ultraviolet treatment. It includes the alteration of the physicochemical properties and the enhancement of biological capabilities, which can alter the surface wettability and eliminate hydrocarbons from the implant surface by a biological aging process. PhF can also enhance cellular migration, attachment, and proliferation, thereby promoting osseointegration and coronal soft tissue seal. However, PhF did not overcome the dental implant challenge of oral cancer cases. It is necessary to have more clinical trials focused on complex implant cases and non-dental fields in the future.
Collapse
Affiliation(s)
- Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| |
Collapse
|
33
|
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J Funct Biomater 2022; 13:jfb13030143. [PMID: 36135578 PMCID: PMC9503392 DOI: 10.3390/jfb13030143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces.
Collapse
|
34
|
Huang HH, Chen ZH, Nguyen DT, Tseng CM, Chen CS, Chang JH. Blood Coagulation on Titanium Dioxide Films with Various Crystal Structures on Titanium Implant Surfaces. Cells 2022; 11:cells11172623. [PMID: 36078030 PMCID: PMC9454428 DOI: 10.3390/cells11172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Titanium (Ti) is one of the most popular implant materials, and its surface titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants plays a key role in wound healing and cell growth at the implant site; however, researchers have yet to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined the means by which blood coagulation was affected by the crystal structure of TiO2 thin films (thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron spectrometer, and crystal structure using transmission electron microscopy. The surface energy and dielectric constant of the surface films were measured using a contact angle goniometer and the parallel plate method, respectively. Blood coagulation properties (including clotting time, factor XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile structures was associated with a higher dielectric constant, which induced the activation of factor XII, the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti implant surfaces.
Collapse
Affiliation(s)
- Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Zhi-Hwa Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chuan-Ming Tseng
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chiang-Sang Chen
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
- Correspondence: (H.-H.H.); (C.-S.C.)
| | - Jean-Heng Chang
- Dental Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| |
Collapse
|
35
|
Micro X-ray Spectral Analysis and Comprehensive In Vivo Study of Modified Titanium Implants. Bull Exp Biol Med 2022; 173:500-504. [DOI: 10.1007/s10517-022-05570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 10/14/2022]
|
36
|
López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Role of chitosan in titanium coatings. trends and new generations of coatings. Front Bioeng Biotechnol 2022; 10:907589. [PMID: 35935477 PMCID: PMC9354072 DOI: 10.3389/fbioe.2022.907589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
Survival studies of dental implants currently reach high figures. However, considering that the recipients are middle-aged individuals with associated pathologies, research is focused on achieving bioactive surfaces that ensure osseointegration. Chitosan is a biocompatible, degradable polysaccharide with antimicrobial and anti-inflammatory properties, capable of inducing increased growth and fixation of osteoblasts around chitosan-coated titanium. Certain chemical modifications to its structure have been shown to enhance its antibacterial activity and osteoinductive properties and it is generally believed that chitosan-coated dental implants may have enhanced osseointegration capabilities and are likely to become a commercial option in the future. Our review provided an overview of the current concepts and theories of osseointegration and current titanium dental implant surfaces and coatings, with a special focus on the in vivo investigation of chitosan-coated implants and a current perspective on the future of titanium dental implant coatings.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Antonio López-Valverde,
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I‐Edifício Central Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
37
|
Lim BS, Cho HR, Choe HC. Nanotube shape changes on Ti-6Al-4 V alloy via various applied potential for bio-implants. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Cruz MB, Silva N, Marques JF, Mata A, Silva FS, Caramês J. Biomimetic Implant Surfaces and Their Role in Biological Integration-A Concise Review. Biomimetics (Basel) 2022; 7:74. [PMID: 35735590 PMCID: PMC9220941 DOI: 10.3390/biomimetics7020074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The increased use of dental implants in oral rehabilitation has been followed by the development of new biomaterials as well as improvements in the performance of biomaterials already in use. This triggers the need for appropriate analytical approaches to assess the biological and, ultimately, clinical benefits of these approaches. AIMS To address the role of physical, chemical, mechanical, and biological characteristics in order to determine the critical parameters to improve biological responses and the long-term effectiveness of dental implant surfaces. DATA SOURCES AND METHODS Web of Science, MEDLINE and Lilacs databases were searched for the last 30 years in English, Spanish and Portuguese idioms. RESULTS Chemical composition, wettability, roughness, and topography of dental implant surfaces have all been linked to biological regulation in cell interactions, osseointegration, bone tissue and peri-implant mucosa preservation. CONCLUSION Techniques involving subtractive and additive methods, especially those involving laser treatment or embedding of bioactive nanoparticles, have demonstrated promising results. However, the literature is heterogeneous regarding study design and methodology, which limits comparisons between studies and the definition of the critical determinants of optimal cell response.
Collapse
Affiliation(s)
- Mariana Brito Cruz
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - Neusa Silva
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| | - Joana Faria Marques
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - António Mata
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
- Cochrane Portugal, Instituto de Saúde Baseada na Evidência (ISBE), Faculdade de Medicina Dentária, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Felipe Samuel Silva
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal;
| | - João Caramês
- Bone Physiology Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| |
Collapse
|
39
|
Kim UG, Choi JY, Lee JB, Yeo ISL. Platelet-rich plasma alone is unable to trigger contact osteogenesis on titanium implant surfaces. Int J Implant Dent 2022; 8:25. [PMID: 35666399 PMCID: PMC9170848 DOI: 10.1186/s40729-022-00427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Osseointegration consists of bidirectional bone formation around modified implant surfaces by contact osteogenesis and distance osteogenesis. This study tested whether contact osteogenesis on the surface of a modified titanium (Ti) implant is stimulated by cytokines in the blood. METHODS In the first two types of experiments, sandblasted, large-grit, acid-etched Ti implants and turned Ti tubes were inserted into rabbit tibiae. To exclude the influence of distance osteogenesis, the tubes were inserted into the tibiae, and implants were placed inside the tubes. In a third type of experiment, the implants and tubes were inserted into the rabbit tibiae, and platelet-rich plasma (PRP) or recombinant human bone morphogenetic protein-2 (rhBMP-2) was applied topically. Four weeks after implantation, undecalcified specimens were prepared for histomorphometry. Bone-to-implant contact (BIC) and bone area per tissue (BA) were measured, and the data were analysed using one-way ANOVA at a significance level of 0.05. RESULTS When the response of bone to Ti tubes with implants was compared to that without implants (first experiment), little bone formation was found inside the tubes. The mean BIC of implant specimens inside the tubes was 21.41 ± 13.81% in a second experiment that evaluated bone responses to implants with or without Ti tubes. This mean BIC value was significantly lower than that in the implant-only group (without tubes) (47.32 ± 12.09%, P = 0.030). The third experiment showed that rhBMP-2 significantly increased contact osteogenesis on the implant surface, whereas PRP had no effect (mean BIC: 66.53 ± 14.06% vs. 16.34 ± 15.98%, P = 0.004). CONCLUSIONS Platelet-rich plasma alone is unable to trigger contact osteogenesis on the modified titanium implant surface.
Collapse
Affiliation(s)
- Ung-Gyu Kim
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Jung-You Choi
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jun-Beom Lee
- Department of Periodontology, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea. .,Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
40
|
Kim JC, Lee M, Yeo ISL. Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. MATERIALS HORIZONS 2022; 9:1387-1411. [PMID: 35293401 DOI: 10.1039/d1mh01621k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anatomically, the human tooth has structures both embedded within and forming part of the exterior surface of the human body. When a tooth is lost, it is often replaced by a dental implant, to facilitate the chewing of food and for esthetic purposes. For successful substitution of the lost tooth, hard tissue should be integrated into the implant surface. The microtopography and chemistry of the implant surface have been explored with the aim of enhancing osseointegration. Additionally, clinical implant success is dependent on ensuring that a barrier, comprising strong gingival attachment to an abutment, does not allow the infiltration of oral bacteria into the bone-integrated surface. Epithelial and connective tissue cells respond to the abutment surface, depending on its surface characteristics and the materials from which it is made. In particular, the biomechanics of the implant-abutment connection structure (i.e., the biomechanics of the interface between implant and abutment surfaces, and the screw mechanics of the implant-abutment assembly) are critical for both the soft tissue seal and hard tissue integration. Herein, we discuss the clinical importance of these three interfaces: bone-implant, gingiva-abutment, and implant-abutment.
Collapse
Affiliation(s)
- Jeong Chan Kim
- Department of Periodontology, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Min Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongro-Gu, Seoul 03080, Korea.
| |
Collapse
|
41
|
Effects of Magnetic Stimulation on Dental Implant Osseointegration: A Scoping Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This PRISMA-ScR driven scoping review aims to evaluate the influence of magnetic field stimulation on dental implant osseointegration. Seven databases were screened adopting ad-hoc strings. All clinical and preclinical studies analyzing the effects of magnetic fields on dental implant osseointegration were included. From 3124 initial items, on the basis of the eligibility criteria, 33 articles, regarding both Pulsed ElectroMagnetic Fields (PEMF) and Static magnetic Fields from permanent Magnets (SFM) were finally included and critically analyzed. In vitro studies showed a positive effect of PEMF, but contrasting effects of SFM on bone cell proliferation, whereas cell adhesion and osteogenic differentiation were induced by both types of stimulation. In vivo studies showed an increased bone-to-implant contact rate in different animal models and clinical studies revealed positive effects on implant stability, under magnetic stimulation. In conclusion, although positive effects of magnetic exposure on osteogenesis activity and osseointegration emerged, this scoping review highlighted the need for further preclinical and clinical studies. More standardized designs, accurate choice of stimulation parameters, adequate methods of evaluation of the outcomes, greater sample size and longer follow-ups are needed to clearly assess the effect of magnetic fields on dental implant osseointegration.
Collapse
|
42
|
Leelatian L, Chunhabundit P, Charoonrut P, Asvanund P. Induction of Osseointegration by Nacre in Pigs. Molecules 2022; 27:molecules27092653. [PMID: 35566000 PMCID: PMC9105096 DOI: 10.3390/molecules27092653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
Nacre is a biomaterial that has shown osteoinductive and osteoconductive properties in vitro and in vivo. These properties make nacre a material of interest for inducing bone regeneration. However, information is very limited regarding the introduction of nacre to dental implant surgery for promoting osteogenesis. This study investigated the potential of nacre powder for peri-implant bone regeneration in a porcine model. Ninety-six dental implants were placed into the tibia of twelve male domestic pigs. The dental implants were coated with nacre powder from the giant oyster before implantation. Implantations without nacre powder were used as control groups. Euthanization took place at 2, 4 and 6 weeks after implantation, after which we measured bone-to-implant contact (BIC) and bone volume density (BVD) of the implanted bone samples using micro-computed tomography (micro-CT), and examined the histology of the surrounding bone using histological sections stained with Stevenel’s blue and Alizarin red S. The micro-CT analyses showed that the BIC of dental implantations with nacre powder were significantly higher than those without nacre powder, by 7.60%. BVD of implantations with nacre powder were significantly higher than those without nacre powder, by 12.48% to 13.66% in cortical bone, and by 3.37% to 6.11% in spongy bone. Histological study revealed more peri-implant bone regeneration toward the surface of the dental implants after implantation with nacre powder. This was consistent with the micro-CT results. This study demonstrates the feasibility of using nacre to promote peri-implant bone regeneration in dental implantation.
Collapse
Affiliation(s)
- Leena Leelatian
- Ph.D. Student, Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Panjit Chunhabundit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-0900903672
| | - Phingphol Charoonrut
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | | |
Collapse
|
43
|
Hadzik J, Kubasiewicz-Ross P, Simka W, Gębarowski T, Barg E, Cieśla-Niechwiadowicz A, Trzcionka Szajna A, Szajna E, Gedrange T, Kozakiewicz M, Dominiak M, Jurczyszyn K. Fractal Dimension and Texture Analysis in the Assessment of Experimental Laser-Induced Periodic Surface Structures (LIPSS) Dental Implant Surface-In Vitro Study Preliminary Report. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2713. [PMID: 35454406 PMCID: PMC9027964 DOI: 10.3390/ma15082713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Laser-induced periodic surface structures (LIPSS) are the sub-wavelength periodic nanostructures generated by the femtosecond laser. Implant topography and its nanostructural changes can be important for biomedical applications. In order to compare the surface topography of different implants, appropriate mathematical and physical descriptive methods should be provided. The aim of the study was to evaluate the experimental LIPSS-based-Low Spatial Frequency LIPSS (LSFL) dental implant surfaces. Novel methods of surface analysis, such as Fractal Dimension Analysis and Texture Analysis, were compared to the standard surface roughness evaluation. Secondary, cell viability, and attachment tests were applied in order to evaluate the biological properties of the new titanium surface and to compare their correlation with the physical properties of the new surfaces. A Normal Human Dermal Fibroblast (NHDF) cytotoxicity test did not show an impact on the vitality of the cells. Our study has shown that the laser LIPSS implant surface modifications significantly improved the cell adhesion to the tested surfaces. We observed a strong correlation of adhesion and the growth of cells on the tested surface, with an increase in implant surface roughness with the best results for the moderately rough (2 μm) surfaces. Texture and fractal dimension analyses are promising methods to evaluate dental implants with complex geometry.
Collapse
Affiliation(s)
- Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aneta Cieśla-Niechwiadowicz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | | | | | - Tomasz Gedrange
- Department of Orthodontics, TU Dresden, 01062 Dresden, Germany
| | - Marcin Kozakiewicz
- Department of Maxillofacial Surgery, Faculty of Military Medicine, Medical University of Lodz, 90-151 Łódź, Poland
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| | - Kamil Jurczyszyn
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, ul. Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
44
|
Improvement in Osseointegration of Titanium Dental Implants after Exposure to Ultraviolet-C Light for Various Times: an Experimental Study in Beagle Dogs. J Oral Maxillofac Surg 2022; 80:1389-1397. [DOI: 10.1016/j.joms.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 12/11/2022]
|
45
|
Using Cu as a Spacer to Fabricate and Control the Porosity of Titanium Zirconium Based Bulk Metallic Glass Foams for Orthopedic Implant Applications. MATERIALS 2022; 15:ma15051887. [PMID: 35269119 PMCID: PMC8911586 DOI: 10.3390/ma15051887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
In this study, a porous titanium zirconium (TiZr)-based bulk metallic foam was successfully fabricated using the Cu spacer by employing the hot press method. TiZr-based bulk metallic foams with porosities ranging from 0% to 50% were fabricated and analyzed. The results indicate that thermal conductivity increased with the addition of Cu spacer; the increased thermal conductivity reduced the holding time in the hot press method. Moreover, the compressive strength decreased from 1261 to 76 MPa when the porosity of the TiZr-based bulk metallic foam increased to 50%, and the compressive strength was predictable. In addition, the foam demonstrated favorable biocompatibility in cell viability, cell migration capacity, and calcium deposition tests. Moreover, the pore size of the porous TiZr-based bulk metallic foam was around 120 µm. In conclusion, TiZr-based bulk metallic foam has favorable biocompatibility, mechanical property controllability, and porous structure for bone ingrowth and subsequent enhanced osteointegration. This porous TiZr-based bulk metallic foam has great potential as an orthopedic implant to enhance bone healing and decrease healing time.
Collapse
|
46
|
Belén F, Gravina AN, Pistonesi MF, Ruso JM, García NA, Prado FD, Messina PV. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5843-5855. [PMID: 35048694 DOI: 10.1021/acsami.1c22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.
Collapse
Affiliation(s)
- Federico Belén
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - A Noel Gravina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Marcelo Fabián Pistonesi
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicolás A García
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Fernando Daniel Prado
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Paula V Messina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| |
Collapse
|
47
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
48
|
Ma X, Gao Y, Zhao D, Zhang W, Zhao W, Wu M, Cui Y, Li Q, Zhang Z, Ma C. Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:47. [PMID: 35009997 PMCID: PMC8746425 DOI: 10.3390/nano12010047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems-such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease-sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field.
Collapse
|
49
|
Mathew A, Abraham S, Stephen S, Babu AS, Gowd SG, Vinod V, Biswas R, Nair MB, Unni AKK, Menon D. Superhydrophilic multifunctional nanotextured titanium dental implants: in vivo short and long-term response in a porcine model. Biomater Sci 2021; 10:728-743. [PMID: 34935788 DOI: 10.1039/d1bm01223a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current clinical demand in dental implantology is for a multifunctional device with optimum mechanical properties, improved biocompatibility and bioactivity, and having differential interactions with cells and pathogenic agents. This would minimise bacterial infection, biofilm formation and modulate inflammation, leading to a fast and durable osseointegration. The present study intends to establish the multifunctional behaviour of surface modified titanium dental implants that are superhydrophilic, with unique micro-nano or nanoscale topographies, developed by a facile hydrothermal technique. Here, the short and long-term performances of these textured implants are tested in a split mouth design using a porcine model, in pre- and post-loaded states. Quantitative and qualitative analyses of the bone implant interphase are performed through μ-CT and histology. Parameters that evaluate bone mineral density, bone contact volume and bone implant contact reveal enhanced bone apposition with better long-term response for the nano and micro-nano textured surfaces, compared to the commercial microtextured implant. Concurrently, the nanoscale surface features on implants reduced bacterial attachment by nearly 90% in vivo, outperforming the commercial variant. This preclinical evaluation data thus reveal the superiority of nano/micro-nano textured designs for clinical application and substantiate their improved osseointegration and reduced bacterial adhesion, thus proposing a novel dental implant with multifunctional characteristics.
Collapse
Affiliation(s)
- Anil Mathew
- Amrita School of Dentistry, Kochi, Kerala, India
| | | | - Shamilin Stephen
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | | | - Siddaramana G Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Vivek Vinod
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - Manitha B Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| | - A K K Unni
- Central Animal Facility, Amrita Vishwa Vidyapeetham, Ponekkara P. O., Cochin 682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Kochi, Kerala, India.
| |
Collapse
|
50
|
Enhanced Extracellular Matrix Deposition on Titanium Implant Surfaces: Cellular and Molecular Evidences. Biomedicines 2021; 9:biomedicines9111710. [PMID: 34829938 PMCID: PMC8615957 DOI: 10.3390/biomedicines9111710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The surface structure of the titanium dental implants can modulate the activity of mesenchymal stem cells in order to promote the upregulation of osteoblastic related genes and the release of extracellular matrix (ECM) components. The present work was focused on the in vitro evaluation of the interaction of human periodontal ligament stem cells (hPDLSCs) and two different implant titanium surfaces topography (CTRL and TEST). This study was aimed at analyzing the cytotoxicity of the dental implant surfaces, the cellular adhesion capacity, and the improvement in the release of ECM molecules in an in vitro model. These parameters were carried out by means of the microscopic evaluation, viability assays, immunofluorescence, Western blot and RT-PCR investigations. The knowledge of the cell/implant interaction is essential for implant healing in order to obtain a more performing surfaces that promote the ECM release and provide the starting point to initiate the osseointegration process.
Collapse
|