1
|
Putnin T, Chanarsa S, Yaiwong P, Ngamaroonchote A, Aroonyadet N, Jakmunee J, Bamrungsap S, Laocharoensuk R, Ounnunkad K. Unraveling the Impact of Polyethylenimine-Coated Gold Nanoparticle Size on the Efficiency of Sandwich-Style Electrochemical Immunosensors. ACS MEASUREMENT SCIENCE AU 2025; 5:96-108. [PMID: 39991027 PMCID: PMC11843508 DOI: 10.1021/acsmeasuresciau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Sometimes, smaller size is not always better, and looking for nanomaterials that offer better device performance requires consideration of their properties at the first stage. In this study, the effects of the size of polyethylenimine-capped AuNPs (PEI-AuNPs) and proteins on the immunosensor performances, namely, sensitivity and limit of detection, are examined. The size-effect investigation of PEI-AuNPs involves their modification on the surface of disposable screen-printed carbon electrodes to support primary antibodies and their ability to load secondary antibodies and redox probes to perform amplification in the immunosensor. The correlation of the average size, electrochemical activities, protein size, and device property of PEI-AuNPs is investigated. The synthesized PEI-AuNPs with different average diameters ranging from 4.7 to 44.9 nm are employed for the investigation. When the sensor surface forms a sandwich architecture, the detection employs the current response of Ag+ ions on the PEI-AuNPs bioconjugate, which greatly increases by increasing the protein concentration. In addition, the best electrochemical signal of PEI-AuNPs or their antibody complexes with a unique AuNPs' average size allows superior signal amplification. The effect of using different sizes of target proteins on their devices is not significantly observed. Although in general small-sized nanomaterials offer high active surface areas, which can improve the electrode surface, reactivity, and device performance, we observe that the medium size of PEI-AuNPs (16.3 nm) gives the best sensitivity and detection limit of this sensor type. Therefore, the finding is useful for considering and optimizing their sizes for tunable voltammetric properties and acquiring a superior sensor.
Collapse
Affiliation(s)
- Thitirat Putnin
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Supakeit Chanarsa
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Patrawadee Yaiwong
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Aroonsri Ngamaroonchote
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Noppadol Aroonyadet
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Jaroon Jakmunee
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Rawiwan Laocharoensuk
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Kontad Ounnunkad
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
2
|
Soysaldı F, Dincyurek Ekici D, Soylu MÇ, Mutlugun E. Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor. BIOSENSORS 2024; 14:603. [PMID: 39727868 DOI: 10.3390/bios14120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Escherichia coli (E. coli) detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell Fe2O3@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity. Using electrochemical impedance spectroscopy (EIS) as the detection technique, the biosensor achieved a limit of detection of 2.7 × 102 CFU/mL for E. coli bacteria across a concentration range of 102-108 CFU/mL, with a relative standard deviation (RSD) of 3.5781%. From an optical perspective, as E. coli concentration increased steadily from 104 to 107 CFU/mL, quantum dot fluorescence showed over 60% lifetime quenching. This hybrid biosensor thus provides rapid, highly sensitive E. coli detection with a fast analysis time of 30 min. This study, which combines the detection advantages of electrochemical and optical biosensor systems in a graphite-based paper sensor for the first time, has the potential to meet the needs of point-of-care applications. It is thought that future studies that will aim to examine the performance of the production-optimized, portable, graphite-based sensor system on real food samples, environmental samples, and especially medical clinical samples will be promising.
Collapse
Affiliation(s)
- Furkan Soysaldı
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab), Department of Biomedical Engineering, Erciyes University, Kayseri 38030, Türkiye
- Department of Electronic and Automation, Vocational School, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Türkiye
| | - Derya Dincyurek Ekici
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri 38039, Türkiye
| | - Mehmet Çağrı Soylu
- Biological and Medical Diagnostic Sensors Laboratory (BioMeD Sensors Lab), Department of Biomedical Engineering, Erciyes University, Kayseri 38030, Türkiye
| | - Evren Mutlugun
- Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
3
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024; 10:7268-7313. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
4
|
Cotchim S, Kongkaew S, Thavarungkul P, Kanatharana P, Limbut W. An Unlabeled Electrochemical Immunosensor Uses Poly(thionine) and Graphene Quantum Dot-Modified Activated Marigold Flower Carbon for Early Prostate Cancer Detection. BIOSENSORS 2024; 14:589. [PMID: 39727854 DOI: 10.3390/bios14120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The activated carbon from marigold flowers (MG) was used to make an unlabeled electrochemical immunosensor to determine prostate cancer. MG was synthesized by hydrothermal carbonization and pyrolysis. MG had a large surface area, was highly conductive, and biocompatible. MG modified with graphene quantum dots produced excellent electron transfer for grafting poly(thionine) (PTH). The amine group of PTH bonded with anti-prostate-specific antigen (Anti-PSA) via glutaraldehyde, forming a layer that improved electron transfer. The binding affinity of the immunosensor, presented as the dissociation constant (Kd), was calculated using the Langmuir isotherm model. The results showed that a lower Kd value indicated greater antibody affinity. The immunosensor exhibited two different linear ranges under optimized conditions: 0.0125 to 1.0 ng mL-1 and 1.0 to 80.0 ng mL-1. The sensor could detect concentrations as low as 0.005 ng mL-1, and had a quantification limit of 0.017 ng mL-1. This immunosensor accurately quantified PSA levels of human serum, and the results were validated using enzyme-linked fluorescence assay (ELFA).
Collapse
Affiliation(s)
- Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
5
|
Raj D, Kumar A, Kumar D, Kant K, Mathur A. Gold-Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. BIOSENSORS 2024; 14:534. [PMID: 39589993 PMCID: PMC11591764 DOI: 10.3390/bios14110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Prostate cancer is one of the most prevalent cancers afflicting men worldwide, often detected at advanced stages, leading to increased mortality rates. Addressing this challenge, we present an innovative approach employing electrochemical biosensing for early-stage prostate cancer detection. This study used Indium-Tin Oxide (ITO) as a substrate and a deposited gold-graphene quantum dot (Au-GQD) nanohybrid to establish electrochemical sensing platforms for DNA-hybridization assays. A capturing DNA probe, PCA3, was covalently immobilized on the surface of the Au-GQDs and deposited electrochemically onto the ITO electrode surface. The Au-GQDs enabled the capturing of the target PCA3 biomarker probe. The sensor achieved a limit of detection (LoD) of up to 211 fM and presented a linear detection range spanning 1 µM to 100 fM. A rapid 5-min response time was also achieved. The tested shelf life of the pre-immobilized sensor was approximately 19 ± 1 days, with pronounced selectivity for its intended target amidst various interferants. The sensing device has the potential to revolutionize prostate cancer management by facilitating early-stage detection and screening with enhanced treatment efficacy.
Collapse
Affiliation(s)
- Divakar Raj
- Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (D.R.); (D.K.)
| | - Arun Kumar
- Mahavir Cancer Sansthan, and Research Centre, Patna 801505, Bihar, India;
| | - Dhruv Kumar
- Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (D.R.); (D.K.)
| | - Krishna Kant
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida 201310, Uttar Pradesh, India
- CINBIO, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
6
|
Chen JN, Hasabnis GK, Akin E, Gao G, Usha SP, Süssmuth R, Altintas Z. Developing innovative point-of-care electrochemical sensors empowered by cardiac troponin I-responsive nanocomposite materials. SENSORS AND ACTUATORS B: CHEMICAL 2024; 417:136052. [DOI: 10.1016/j.snb.2024.136052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: shaping the future landscape of biomedical advances. DISCOVER NANO 2024; 19:79. [PMID: 38695997 PMCID: PMC11065842 DOI: 10.1186/s11671-024-04028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Graphene quantum dots (GQDs) are a newly developed class of material, known as zero-dimensional nanomaterials, with characteristics derived from both carbon dots (CDs) and graphene. GQDs exhibit several ideal properties, including the potential to absorb incident energy, high water solubility, tunable photoluminescence, good stability, high drug-loading capacity, and notable biocompatibility, which make them powerful tools for various applications in the field of biomedicine. Additionally, GQDs can be incorporated with additional materials to develop nanocomposites with exceptional qualities and enriched functionalities. Inspired by the intriguing scientific discoveries and substantial contributions of GQDs to the field of biomedicine, we present a broad overview of recent advancements in GQDs-based nanocomposites for biomedical applications. The review first outlines the latest synthesis and classification of GQDs nanocomposite and enables their use in advanced composite materials for biomedicine. Furthermore, the systematic study of the biomedical applications for GQDs-based nanocomposites of drug delivery, biosensing, photothermal, photodynamic and combination therapies are emphasized. Finally, possibilities, challenges, and paths are highlighted to encourage additional research, which will lead to new therapeutics and global healthcare improvements.
Collapse
Affiliation(s)
- Mohammad Suhaan Dar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
10
|
Schneider B, Ornaghi Jr. HL, Monticeli FM, Romanzini D. Effect of the Graphene Quantum Dot Content on the Thermal, Dynamic-Mechanical, and Morphological Properties of Epoxy Resin. Polymers (Basel) 2023; 15:4531. [PMID: 38231951 PMCID: PMC10708301 DOI: 10.3390/polym15234531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Different amounts of graphene quantum dots (CQDs) (0, 1, 2.5, and 5 wt%) were incorporated into an epoxy matrix. The thermal conductivity, density, morphology, and dynamic mechanical thermal (DMTA) properties were reused from the study of Seibert et al.. The Pearson plot showed a high correlation between mass loading, thermal conductivity, and thermal diffusivity. A poorer correlation with density and heat capacity was observed. At lower CQD concentrations (0.1 wt%), the fracture surface showed to be more heterogeneous, while at higher amounts (2.5 and 5 wt%), a more homogeneous surface was observed. The storage modulus values did not change with the CQD amount. But the extension of the glassy plateau increased with higher CQD contents, with an increase of ~40 °C for the 5 wt% compared to the 2.5 wt% and almost twice compared to the neat epoxy. This result is attributed to the intrinsic characteristics of the filler. Additionally, lower energy dissipation and a higher glass transition temperature were observed with the CQD amount. The novelty and importance are related to the fact that for more rigid matrices (corroborated with the literature), the mechanical properties did not change, because the polymer bridging mechanism was not present, in spite of the excellent CQD dispersion as well as the filler amount. On the other hand, thermal conductivity is directly related to particle size and dispersion.
Collapse
Affiliation(s)
- Bárbara Schneider
- Mantova Indústria de Tubos Plásticos Ltd.a., Rua Archimedes Manenti, 574, B. Centenário, Caxias do Sul 950450-175, RS, Brazil;
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| | - Heitor Luiz Ornaghi Jr.
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| | - Francisco Maciel Monticeli
- Department of Aerospace Structures and Materials, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
| | - Daiane Romanzini
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| |
Collapse
|
11
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Zarghami A, Dolatyari M, Mirtagioglu H, Rostami A. High-efficiency upconversion process in cobalt and neodymium doped graphene QDs for biomedical applications. Sci Rep 2023; 13:10277. [PMID: 37355717 PMCID: PMC10290654 DOI: 10.1038/s41598-023-37518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Multiphoton absorbing upconversion nanoparticles are emerging as bioimaging materials but are limited by the low quantum yield of their visible fluorescence. This article contains colloids of graphene quantum dots (GQDs), Neodymium, and Cobalt doped Graphene Quantum dots (Co-GQDs and Nd-GQDs) surrounded by carboxylic acids are synthesized which especially are suitable for bio applications; in this way, carboxylic acid groups exchanged by Amoxicillin as an antibiotic with bactericidal activity. The XRD diffraction method, TEM microscope, UV-Vis, and photoluminescence spectroscopies characterize the synthesized materials. The synthesized Quantum dots (QDs) exhibit upconversion properties and their emission is centered at 480 nm, but a red shift was observed with the increase of the excitation wavelength. In the emission spectra of synthesized QDs that can be related to the defect levels introduced by passivation of the QDs in the structure, the results show that with the interaction of the surface QDs with more carboxylic groups, the redshift is not observed. As the results indicate an increase in the intensity of upconversion emission is recorded for Co-GQDs and Nd-GQDs. The absolute quantum efficiency (QY) for Co-GQDs and Nd-GQDs were determined to be 41% and 100% more than GQDs respectively. DFT calculations indicate a strong bond between graphene and cobalt and Neodymium atoms. In doped materials, there are trap levels between the band gap of the GQDs which are responsible for increasing the intensity of the upconversion phenomenon.
Collapse
Affiliation(s)
- Armin Zarghami
- Photonics and Nanocrystal Research Lab. (PNRL), University of Tabriz, Tabriz, 5166614761, Iran
| | - Mahboubeh Dolatyari
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran
| | - Hamit Mirtagioglu
- Department of Statistics, Faculty of Science and Literature, University of Bitlis Eren, Bitlis, Turkey
| | - Ali Rostami
- Photonics and Nanocrystal Research Lab. (PNRL), University of Tabriz, Tabriz, 5166614761, Iran.
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
| |
Collapse
|
13
|
Shang H, Zhang X, Ding M, Zhang A. Dual-mode biosensor platform based on synergistic effects of dual-functional hybrid nanomaterials. Talanta 2023; 260:124584. [PMID: 37121141 DOI: 10.1016/j.talanta.2023.124584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Detection of biomarkers is very vital in the prevention, diagnosis and treatment of diseases. However, due to the poor accuracy and sensitivity of the constructed biosensors, we are now facing great challenges. In addressing these problems, nanohybrid-based dual mode biosensors including optical-optical, optical-electrochemical and electrochemical-electrochemical have been developed to detect various biomarkers. Integrating the merits of nanomaterials with abundant active sites, synergy and excellent physicochemical properties, many bi-functional nanohybrids have been reasonable designed and controllable preparation, which applied to the construction dual mode biosensors. Despite the significant progress, further efforts are still needed to develop dual mode biosensors and ensure their practical application by using portable digital devices. Therefore, the present review summarizes an in-depth evaluation of the bi-functional nanohybrids assisted dual mode biosensing platform of biomarkers. We are hoping this review could inspire further concepts in developing novel dual mode biosensors for possible detection application.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| |
Collapse
|
14
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Sadrabadi EA, Khosravi F, Benvidi A, Shiralizadeh Dezfuli A, Khashayar P, Khashayar P, Azimzadeh M. Alprazolam Detection Using an Electrochemical Nanobiosensor Based on AuNUs/Fe-Ni@rGO Nanocomposite. BIOSENSORS 2022; 12:945. [PMID: 36354454 PMCID: PMC9687846 DOI: 10.3390/bios12110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Despite all the psychological advantages of alprazolam, its long list of toxic properties and interactions has caused concern and highlighted the need for a reliable sensing method. In this study, we developed a simple, highly sensitive electrochemical nanobiosensor to determine the desirable dose of alprazolam, averting the undesirable consequences of overdose. Gold nanourchins (AuNUs) and iron-nickel reduced graphene oxide (Fe-Ni@rGO) were immobilized on a glassy carbon electrode, which was treated beforehand. The electrode surface was characterized using cyclic voltammetry, Fourier transform infrared spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and differential pulse voltammetry. The fabricated sensor showed two linear ranges (4 to 500 µg L-1 and 1 to 50 mg L-1), low limit of detection (1 µg L-1), high sensitivity, good repeatability, and good recovery. Increased -OH and carboxyl (-COOH) groups on the electrode surface, resulting in improved the adsorption of alprazolam and thus lower limit of detection. This nanobiosensor could detect alprazolam powder dissolved in diluted blood serum; we also studied other benzodiazepine drugs (clonazepam, oxazepam, and diazepam) with this nanobiosensor, and results were sensible, with a significant difference.
Collapse
Affiliation(s)
| | - Fatemeh Khosravi
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 8915818411, Iran
| | - Amin Shiralizadeh Dezfuli
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran 1439957131, Iran
- Ronash Technology Pars Company, Tehran 1439817435, Iran
| | - Pouria Khashayar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G3 8QP, UK
| | - Patricia Khashayar
- Center for Microsystem Technology, Imec and Ghent University, 9000 Gent, Belgium
| | - Mostafa Azimzadeh
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| |
Collapse
|
16
|
Dybowska-Sarapuk Ł, Sosnowicz W, Grzeczkowicz A, Krzemiński J, Jakubowska M. Ultrasonication effects on graphene composites in neural cell cultures. Front Mol Neurosci 2022; 15:992494. [PMID: 36187345 PMCID: PMC9523217 DOI: 10.3389/fnmol.2022.992494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injuries and neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and traumatic brain injuries, remain challenging to treat. Nowadays, neural stem cell therapies excite high expectations within academia. The increasing demand for innovative solutions in regenerative medicine has drawn considerable attention to graphene materials. Due to unique properties, carbon materials are increasingly used as cellular scaffolds. They provide a biological microenvironment supporting cell adhesion and proliferation. The topography and mechanical properties of the graphene culture surface influence the forces exerted by the cells on their extracellular matrix. Which consequently affects the cell proliferation and differentiation. As a result, material properties such as stiffness, elasticity and mechanical strength play an important role in stem cells’ growth and life. The ink unification process is crucial while the layer homogeneity is essential for obtaining suitable surface for specific cell growth. Different ink unification processes were tested to achieve appropriate layer homogeneity and resistivity to successfully applied the GNPs layers in neural cell electrostimulation. The GNP coatings were then used to electrostimulate mouse NE-4C neural stem cells. In this study, the authors investigated how the stimulation voltage amplitude’s value affects cell behaviour, particularly the number of cells. Sinusoidal alternating current was used for stimulation. Three different values of stimulation voltage amplitude were investigated: 5, 10, and 15 V. It was noticed that a lower stimulation voltage amplitude had the most favourable effect on the stem cell count.
Collapse
Affiliation(s)
- Łucja Dybowska-Sarapuk
- Faculty of Mechatronics, The Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw, Poland
- *Correspondence: Łucja Dybowska-Sarapuk,
| | - Weronika Sosnowicz
- Faculty of Mechatronics, The Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw, Poland
| | - Anna Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Krzemiński
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw, Poland
| | - Małgorzata Jakubowska
- Faculty of Mechatronics, The Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw, Poland
| |
Collapse
|
17
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
18
|
Zhao Y, Song X. An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8555842. [PMID: 35915620 PMCID: PMC9338848 DOI: 10.1155/2022/8555842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Point-of-care technology (POCT) is an important method in clinical testing in the future, which can achieve the purpose of rapid analysis. In this work, we assembled an electrochemical POC sensor for uric acid (UA) by surface modification of a screen-printed electrode. Copper nanowires were used as electrode modifiers to achieve high-performance electrochemical oxidation of UA. This electrochemical sensor can achieve linear detection of UA in the range of 10 μM to 2 mM. The detection limit of the sensor was calculated to be 2 μM. Although the detection performance of this sensor is not competitive with high-performance electrochemical sensors, it has been able to meet the needs of POC detection. At the same time, the sensor has excellent anti-interference performance. It has also been used successfully to test urine and serum samples from healthy and gout patients.
Collapse
Affiliation(s)
- Yuetong Zhao
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No.155 Nnajing Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xia Song
- Department of Operating Room, The First Hospital of China Medical University, No.155 Nnajing Street, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
19
|
Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. NANOMATERIALS 2022; 12:nano12111913. [PMID: 35683768 PMCID: PMC9182195 DOI: 10.3390/nano12111913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymer (MIP) is illustrated as an analogue of a natural biological antibody-antigen system. MIP is an appropriate substrate for electrochemical sensors owing to its binding sites, which match the functional groups and spatial structure of the target analytes. However, the irregular shapes and slow electron transfer rate of MIP limit the sensitivity and conductivity of electrochemical sensors. Nanomaterials, famous for their prominent electron transfer capacity and specific surface area, are increasingly employed in modifications of MIP sensors. Staying ahead of traditional electrochemical sensors, nanomaterials-based MIP sensors represent excellent sensing and recognition capability. This review intends to illustrate their advances over the past five years. Current limitations and development prospects are also discussed.
Collapse
|
20
|
Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO 2. CHEMOSPHERE 2022; 293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Given the many issues bacterial infections cause to humans and the necessity for their detection, in this work we developed a robust aptasensor for prompt, ultrasensitive, and selective analysis of staphylococcus aureus bacterium (S. aureus). A nanocomposite of Ag nanoparticles, chitosan, graphene quantum dots, and nitrogen-doped TiO2 nanoparticles (Ag-Cs-Gr QDs/NTiO2) was synthesized, and thoroughly characterized by XRD, FT-IR, and FE-SEM spectroscopic methods. The surface of screen-printed carbon electrodes modified with Ag-Cs-Gr QDs/NTiO2 nanocomposite was utilized as a compatible platform for aptamer attachment. The aptasensor accurately determined S. aureus in the dynamic range of 10-5 × 108 CFU/mL with detection limit of 3.3 CFU/mL. The monitoring of the practical performance of aptasensor in human serum samples revealed its superiority over the conventional methods (relative recovery of 96.25-103.33%). The Ag-Cs-Gr QDs/NTiO2-based aptasensor offers facile, biocompatibility, good repeatability, reproducibility (RSD = 3.66%), label free and stabile strategy for sensitive S. aureus analysis free from biomolecules interferences in actual specimens.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Negahdary M, Angnes L. Electrochemical nanobiosensors equipped with peptides: a review. Mikrochim Acta 2022; 189:94. [PMID: 35132460 DOI: 10.1007/s00604-022-05184-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Recent research in the field of electrochemical biosensors equipped with peptides and nanomaterials have been categorized, reviewed, and critically analyzed. Indeed, using these innovative biosensors can revolutionize biomedical diagnostics in the future. Saving lives, time, and money in this field will be considered as some main benefits of this type of diagnosis. Here, these biosensors have been categorized and evaluated in four main sections. In the first section, the focus is on investigating the types of electrochemical peptide-based nanobiosensors applied to detect pathogenic microorganisms, microbial toxins, and viruses. In the second section, due to the importance of rapid diagnosis and prognosis of various cancers, the electrochemical peptide-based nanobiosensors designed to detect cancer biomarkers have been reviewed and analyzed. In the third section, the electrochemical peptide-based nanobiosensors, which were applied to detect the essential and effective biomolecules in the various diseases, and health control, including enzymes, hormones, biomarkers, and other biomolecules, have been considered. Finally, using a comprehensive analysis, all the used elements in these biosensors have been presented as conceptual diagrams that can effectively guide researchers in future developments. The essential factors in evaluating and analyzing these electrochemical peptide-based nanobiosensors such as analyte, peptide sequence, functional groups interacted between the peptide sequences and other biosensing components, the applied nanomaterials, diagnostic techniques, detection range, and limit of detection have also been included. Other analyzable items such as the type of used redox marker and the location of the peptide sequence against the signal transducer were also considered.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
22
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
23
|
Centane S, Nyokong T. Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
25
|
Mustafa SM, Barzinjy AA, Hamad AH, Hamad SM. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Jokazi M, Mpeta LS, Nyokong T. Electrocatalytic activity of manganese tetra 4-aminophenyl porphyrin in the presence of graphene quantum dots. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
28
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
29
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
30
|
Pothipor C, Jakmunee J, Bamrungsap S, Ounnunkad K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021; 146:4000-4009. [PMID: 34013303 DOI: 10.1039/d1an00436k] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A label-free multiplexed electrochemical biosensor based on a gold nanoparticles/graphene quantum dots/graphene oxide (AuNPs/GQDs/GO) modified three-screen-printed carbon electrode (3SPCE) array is successfully constructed to detect miRNA-21, miRNA-155, and miRNA-210 biomarkers for the first time. Redox species (anthraquinone (AQ), methylene blue (MB), and polydopamine (PDA)) are used as redox indicators for anchoring capture miRNA probes, which hybridize with the complementary targets, miRNA-21, miRNA-155, and miRNA-210, respectively. After three target miRNAs are present, the square wave voltammetry (SWV) scan displays three well-separated peaks. Each peak indicates the presence of one miRNA, and its intensity quantitatively correlates with the concentration of the corresponding target analyte. This phenomenon results in the substantial decline of the SWV peak current of the redox probes. The developed AuNPs/GQDs/GO-based biosensor reveals excellent performance for simultaneous miRNA sensing. It offers a wide linear dynamic range from 0.001 to 1000 pM with ultrasensitive low detection limits of 0.04, 0.33, and 0.28 fM for the detection of miRNA-21, miRNA-155, and miRNA-210, respectively. It also presents high selectivity and applicability for the detection of miRNAs in human serum samples. This multiplex label-free miRNA biosensor has great potential for applications in breast cancer diagnosis.
Collapse
Affiliation(s)
- Chammari Pothipor
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and The Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
|
32
|
Editorial for the Special Issue on Nanomaterials in Health Care Diagnostics. MATERIALS 2021; 14:ma14092214. [PMID: 33925797 PMCID: PMC8123434 DOI: 10.3390/ma14092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
|
33
|
Bressi V, Ferlazzo A, Iannazzo D, Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1120. [PMID: 33925972 PMCID: PMC8146976 DOI: 10.3390/nano11051120] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
The continuous decrease in the availability of fossil resources, along with an evident energy crisis, and the growing environmental impact due to their use, has pushed scientific research towards the development of innovative strategies and green routes for the use of renewable resources, not only in the field of energy production but also for the production of novel advanced materials and platform molecules for the modern chemical industry. A new class of promising carbon nanomaterials, especially graphene quantum dots (GQDs), due to their exceptional chemical-physical features, have been studied in many applications, such as biosensors, solar cells, electrochemical devices, optical sensors, and rechargeable batteries. Therefore, this review focuses on recent results in GQDs synthesis by green, easy, and low-cost synthetic processes from eco-friendly raw materials and biomass-waste. Significant advances in recent years on promising recent applications in the field of electrochemical sensors, have also been discussed. Finally, challenges and future perspectives with possible research directions in the topic are briefly summarized.
Collapse
Affiliation(s)
| | | | | | - Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Vill. S. Agata, I-98166 Messina, Italy; (V.B.); (A.F.); (D.I.)
| |
Collapse
|
34
|
Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the increasing importance of healthcare and clinical diagnosis, as well as the growing demand for highly sensitive analytical instruments, immunosensors have received considerable attention. In this review, electrochemical immunosensor signal amplification strategies using metal nanoparticles (MNPs) and quantum dots (Qdots) as tags are overviewed, focusing on recent developments in the ultrasensitive detection of biomarkers. MNPs and Qdots can be used separately or in combination with other nanostructures, while performing the function of nanocarriers, electroactive labels, or catalysts. Thus, different functions of MNPs and Qdots as well as recent advances in electrochemical signal amplification are discussed. Additionally, the methods most often used for antibody immobilization on nanoparticles, immunoassay formats, and electrochemical methods for indirect biomarker detection are overviewed.
Collapse
|
35
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021; 181:113151. [PMID: 33740543 DOI: 10.1016/j.bios.2021.113151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Glioma is the predominant brain tumor with high death rate. The successful development of biosensor to achieve an efficient detection of glioma cells at low concentration remains a great challenge for the personalized glioma therapy. Herein, an ultrasensitive pulse induced electrochemically impedimetric biosensor for glioma cells detection has been successfully fabricated. The 4-11 nm sulfur-doped graphene quantum dots (S-GQDs) are homogeneously deposited onto gold nanoparticles decorated carbon nanospheres (Au-CNS) by Au-thiol linkage to form S-GQDs@Au-CNS nanocomposite which acts as dual functional probe for enhancing the electrochemical activity as well as conjugating the angiopep-2 (Ang-2) for glioma cell detection. Moreover, the application of an externally electrical pulse at +0.6 V expend the surface of glioma cells to accelerate the attachment of glioma cells onto the Ang-2-conjugated S-GQDs@Au-CNS nanocomposite, resulting in the enhanced sensitivity toward glioma cell detection. An ultrasensitive impedimetric detection of glioma cells with a wide linear range of 100-100,000 cells mL-1 and a limit of detection of 40 cells mL-1 is observed. Moreover, the superior selectivity with long-term stability of the developed biosensor in human serum matrix corroborates the feasibility of using S-GQDs@Au-CNS based nanomaterials as the promising sensing probe for practical application to facilitate the ultrasensitive and highly selective detection of cancer cells.
Collapse
Affiliation(s)
| | - Naresh Kumar Dega
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hai Linh Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Win Darmonto
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan; Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
| |
Collapse
|
37
|
Enzyme-Free Electrochemical Nano-Immunosensor Based on Graphene Quantum Dots and Gold Nanoparticles for Cardiac Biomarker Determination. NANOMATERIALS 2021; 11:nano11030578. [PMID: 33652547 PMCID: PMC7996554 DOI: 10.3390/nano11030578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
An ultrasensitive enzyme-free electrochemical nano-immunosensor based on a screen-printed gold electrode (SPGE) modified with graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) was engineered to detect cardiac troponin-I (cTnI) for the early diagnosis of acute myocardial infarction (AMI). The GQDs and in-house synthesized AuNPs were implanted onto the SPGE and allowed for anti-cTnI immobilization prior to quantifying cTnI. The biomarker could be determined in a wide concentration range using square-wave voltammetry (SWV), cyclic voltammetry (CV), electron impedance spectroscopy (EIS) and amperometry. The analyses were performed in buffer, as well as in human serum, in the investigation ranges of 1–1000 and 10–1000 pg mL−1, respectively. The detection time ranged from 10.5–13 min, depending on the electrochemical method employed. The detection limit was calculated as 0.1 and 0.5 pg mL−1 for buffer and serum, respectively. The sensitivity of the immunosensor was found to be 6.81 µA cm−2 pg mL−1, whereas the binding affinity was determined to be <0.89 pM. The sensor showed high specificity for cTnI with slight responses for nonspecific biomolecules. Each step of the sensor fabrication was characterized using CV, SWV, EIS and atomic force microscopy (AFM). Moreover, AuNPs, GQDs and their nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This is the first immunosensor that represents the successful determination of an analyte using four different electrochemical techniques. Such a sensor could demonstrate a promising future for on-site detection of AMI with its sensitivity, cost-effectiveness, rapidity and specificity.
Collapse
|
38
|
Kumar H, Gupta B. Development of novel electrochemical sensor for the detection of biological warfare agents: enzyme, antibody, and DNA free. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. MICROMACHINES 2020; 11:E866. [PMID: 32962061 PMCID: PMC7570118 DOI: 10.3390/mi11090866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Graphene quantum dots (GQDs) are considerably a new member of the carbon family and shine amongst other members, thanks to their superior electrochemical, optical, and structural properties as well as biocompatibility features that enable us to engage them in various bioengineering purposes. Especially, the quantum confinement and edge effects are giving GQDs their tremendous character, while their heteroatom doping attributes enable us to specifically and meritoriously tune their prospective characteristics for innumerable operations. Considering the substantial role offered by GQDs in the area of biomedicine and nanoscience, through this review paper, we primarily focus on their applications in bio-imaging, micro-supercapacitors, as well as in therapy development. The size-dependent aspects, functionalization, and particular utilization of the GQDs are discussed in detail with respect to their distinct nano-bio-technological applications.
Collapse
Affiliation(s)
| | | | | | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.K.); (B.D.M.); (N.V.S.)
| |
Collapse
|
40
|
A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The essential disadvantages of conventional glucose enzymatic biosensors such as high fabrication cost, poor stability of enzymes, pH value-dependent, and dedicated limitations, have been increasing the attraction of non-enzymatic glucose sensors research. Beneficially, patients with diabetes could use this type of sensor as a fourth-generation of glucose sensors with a very low cost and high performance. We demonstrate the most common acceptable transducer for a non-enzymatic glucose biosensor with a brief description of how it works. The review describes the utilization of graphene and its composites as new materials for high-performance non-enzymatic glucose biosensors. The electrochemical properties of graphene and the electrochemical characterization using the cyclic voltammetry (CV) technique of electrocatalysis electrodes towards glucose oxidation have been summarized. A recent synthesis method of the graphene-based electrodes for non-enzymatic glucose sensors have been introduced along with this study. Finally, the electrochemical properties such as linearity, sensitivity, and the limit of detection (LOD) for each sensor are introduced with a comparison with each other to figure out their strengths and weaknesses.
Collapse
|
41
|
Xu JF, Yang YS, Jiang AQ, Zhu HL. Detection Methods and Research Progress of Human Serum Albumin. Crit Rev Anal Chem 2020; 52:72-92. [PMID: 32723179 DOI: 10.1080/10408347.2020.1789835] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is a biological macromolecule with important physiological functions; abnormal HSA levels are associated with coronary heart disease, multiple myeloma, diabetes, nephropathy, neurometabolic disorders, liver cirrhosis and other diseases. Therefore, accurate and quantitative detection of HAS have extremely important research and application value in biological science, molecular biology, clinical medicine and other fields. As for the detection method of HSA, dye-binding method and immune method are the first to be used, and have been applied in clinical detection. In recent years, many new detection technologies have emerged, such as fluorescent probe detection method, nano-materials for HSA detection, biosensor and so on. Although there are many methods developed recently to detect HSA, comprehensive reviews for HSA detection methods are still rare. Thus, writing this review to fill in the blank is in need. In order to highlight the recent progress in the field of HSA detection, in this review, the methods used to detect HSA are summarized and sorted, the advantages and disadvantages of these detection methods are also listed, then the research progress of small molecular fluorescence probe method is emphatically introduced in this paper. Then, we briefly discussed the challenges and future development directions in this field.
Collapse
Affiliation(s)
- Jian-Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Ai-Qin Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Mucke HA. Patent highlights December 2019-January 2020. Pharm Pat Anal 2020; 9:67-74. [PMID: 32539539 DOI: 10.4155/ppa-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
43
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
44
|
Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Adv Colloid Interface Sci 2020; 278:102123. [PMID: 32087367 DOI: 10.1016/j.cis.2020.102123] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
The development of novel methods plays a fundamental role in early diagnosis and controlling of neurological disorders (NDs). Blood-brain barrier (BBB) is the most challenging barrier for the development of neuro drug delivery systems due to its inhibiting ability to enter drugs and agents into central nervous system (CNS). Carbon dots (CDs) have shown to be very promising and outstanding agents for various biomedical applications (bio imaging studies, treatment of NDs and brain tumors). They exhibit remarkable properties such as biocompatibility, small size (less than 10 nm, enabling penetration into BBB), tunable optical properties, photostability and simple synthetic procedures, allowing them to act as ideal candidates in various fields of science. Therefore, the objective of this review is to overview the recent studies on CDs for the development of neuro drug delivery systems to reach CNS via crossing of BBB. Primarily, this review briefly outlines the unique optical properties and toxicity of CDs. The development of novel neuro drug delivery systems for various neurological disorders using CDs as carriers is described. This review also covers the potential applications of CDs in brain tumors imaging and treatment of neurodegenerative diseases. Finally, the sensing applications and future prospects of CDs are summarized.
Collapse
|
45
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|