1
|
Ranjbar-Mohammadi M, Tajdar F, Esmizadeh E, Arab Z. Co electrospinning -poly (vinyl alcohol)-chitosan/gelatin-poly ( ϵ-caprolacton) nanofibers for diabetic wound-healing application. Biomed Mater 2024; 19:045017. [PMID: 38768605 DOI: 10.1088/1748-605x/ad4df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
With the increasing prevalence of diabetes, the healing of diabetic wounds has become a significant challenge for both healthcare professionals and patients. Recognizing the urgent need for effective solutions, it is crucial to develop suitable scaffolds specifically tailored for diabetic wound healing. In line with this objective, we have developed novel hybrid nanofibrous scaffolds by combining polyvinyl alcohol/chitosan (PVA/CS) and gelatin/poly(ε-caprolactone) (Gel/PCL) polymers through a double-nozzle electrospinning technique. In this study, we investigated the influence of the Gel/PCL blend ratio on the properties of the resulting nanofibers. Three different hybrid scaffold structures were examined: Gel/PCL (80:20)-PVA/CS (80:20), Gel/PCL (50:50)-PVA/CS (80:20), and Gel/PVA (20:80)-PVA/CS (80:20). Our findings demonstrate that the electrospun nanofibers of PVA/CS (80:20)-Gel/PCL (80:20) exhibited optimal mechanical performance, with a contact angle of approximately 54° and a diameter of 183 nm. Considering the crucial role of inhibiting bacterial adhesion in the success of implanted materials, we evaluated the cytocompatibility of the hybrid electrospun nanofibers using mouse fibroblast cells (L-929 cells). The in vitro cytotoxicity results obtained from L-929 fibroblast cell culture on the hybrid scaffolds revealed enhanced cell proliferation and appropriate cell morphology on the PVA/CS (80:20)-Gel/PCL (80:20) sample, indicating its capability to support tissue cell integration. Based on the information obtained from this study, the fabricated hybrid scaffold holds great promise for diabetic ulcer healing. Its optimal mechanical properties, suitable contact angle, and favorable cytocompatibility highlight its potential as a valuable tool in the field of diabetic wound healing. The development of such hybrid scaffolds represents a significant step forward in addressing the challenges associated with diabetic wound care.
Collapse
Affiliation(s)
| | - Farideh Tajdar
- Textile group, Faculty of Engineering, University of Bonab, Postal Code 5551761167, Bonab, Iran
| | - Elnaz Esmizadeh
- Construction Research Center, National Research Council Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
| | - Zahra Arab
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Barros Araújo CB, da Silva Soares IL, da Silva Lima DP, Barros RM, de Lima Damasceno BPG, Oshiro-Junior JA. Polyvinyl Alcohol Nanofibers Blends as Drug Delivery System in Tissue Regeneration. Curr Pharm Des 2023; 29:1149-1162. [PMID: 37157221 DOI: 10.2174/1381612829666230508144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Ingrid Larissa da Silva Soares
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| | - Diego Paulo da Silva Lima
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Rafaella Moreno Barros
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| |
Collapse
|
3
|
Almas T, Haider R, Malik J, Mehmood A, Alvi A, Naz H, Satti DI, Zaidi SMJ, AlSubai AK, AlNajdi S, Alsufyani R, Ramtohul RK, Almesri A, Alsufyani M, H. Al-Bunnia A, Alghamdi HAS, Sattar Y, Alraies MC, Raina S. Nanotechnology in interventional cardiology: A state-of-the-art review. IJC HEART & VASCULATURE 2022; 43:101149. [DOI: 10.1016/j.ijcha.2022.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
|
4
|
Marson D, Aulic S, Fermeglia A, Laurini E, Pricl S. Nanovesicles for the delivery of cardiovascular drugs. APPLICATIONS OF NANOVESICULAR DRUG DELIVERY 2022:341-369. [DOI: 10.1016/b978-0-323-91865-7.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Rezaei A, Aligholi H, Zeraatpisheh Z, Gholami A, Mirzaei E. Collagen/chitosan-functionalized graphene oxide hydrogel provide a 3D matrix for neural stem/precursor cells survival, adhesion, infiltration and migration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To have therapeutic promise of neural stem/precursor cells (NS/PCs) an appropriate scaffold is mostly essential. This study was conducted to fabricate collagen (Col)/chitosan-functionalized graphene oxide (CSGO) nanocomposite hydrogel and evaluated it as scaffold for NS/PCs. Graphene oxide was first functionalized with chitosan and the obtained CSGO was then added to Col solution and the solution underwent hydrogel formation. GO sheets were exfoliated after CS functionalization and the CSGO was homogenously dispersed in Col hydrogel. CSGO addition resulted in hydrogels with higher porosity and smaller Col fibers. Furthermore, CSGO increased the gelation time and water absorption capacity while the degradation was decreased. Cell studies demonstrated higher viability of NS/PCs on Col/CSGO hydrogel comparing with Col and poly-l-lysine as control (Cnt). NS/PCs were also penetrated into the Col/CSGO hydrogel and showed more cell spreading, neurite outgrowth and inter-cell connections in comparison with Col hydrogel. In addition, the cells traveled longer distance on Col/CSGO hydrogels than on Col and Cnt, indicating excellent migration capacity of NS/PCs on Col/CSGO hydrogel. Our results indicate the potential Col/CSGO hydrogels as an appropriate scaffold for NS/PCs.
Collapse
Affiliation(s)
- Anita Rezaei
- School of Advanced Medical Sciences and Technologies, Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- School of Advanced Medical Sciences and Technologies, Department of Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- School of Advanced Medical Sciences and Technologies, Department of Neuroscience, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Science Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- School of Advanced Medical Sciences and Technologies, Department of Medical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Kulkarni P, Rawtani D, Kumar M, Lahoti SR. Cardiovascular drug delivery: A review on the recent advancements in nanocarrier based drug delivery with a brief emphasis on the novel use of magnetoliposomes and extracellular vesicles and ongoing clinical trial research. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
A V T, Mohanty S, Dinda AK, Koul V. Fabrication and evaluation of gelatin/hyaluronic acid/chondroitin sulfate/asiatic acid based biopolymeric scaffold for the treatment of second-degree burn wounds - Wistar rat model study. ACTA ACUST UNITED AC 2020; 15:055016. [PMID: 32252033 DOI: 10.1088/1748-605x/ab8721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An extracellular matrix (ECM) mimicking architecture was introduced with gelatin glycosaminoglycans like hyaluronic acid and chondroitin sulfate and a triterpenoid using asiatic acid, possessing biodegradable and biocompatible properties that mark the functionality for the treatment of second-degree burn wounds. In the present work, a foam-based scaffold was fabricated and sterilized with gamma radiation at a 2.5 Mrad dose. The scaffolds were further characterized for morphology, swelling, degradation behaviour, release of bioactive components, ATR-FTIR, mechanical, thermal properties and compared with control. In vitro cytocompatibility of the developed scaffold was studied with L929 mouse fibroblast cells and human mesenchymal stem cells based on deoxyribonucleic acid and lactate dehydrogenase assay. Additionally, the developed scaffold was evaluated for its biocompatibility on the Wistar rat to assess any toxicity induced to the animal based on blood biochemistry and histopathology analysis. Finally, we assessed the efficacy of developed foam scaffolds on the second-degree burn wound-induced Wistar rat with a scaffold alone and a scaffold seeded with human bone-marrow-derived mesenchymal stem cells in a wound healing study for 28 d. The wound contraction assay, histopathology, immunohistochemistry analysis and pro-healing marker quantification using hexosamine, hydroxyproline, and pro-inflammatory markers like TNF-α and MMP-2 were carried out and compared with the commercially available wound dressing. The results revealed that foam-based ECM mimic was cytocompatible, biocompatible and biodegradable in 18 ± 3 d in in vivo conditions and the scaffold fostered the process of healing of second-degree burns within 28 d of treatment. The obtained result proved that the scaffold has a potential for clinical settings in second-degree burn wound treatment.
Collapse
Affiliation(s)
- Thanusha A V
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India. Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
8
|
Binotto JP, Mendes LG, Gaspi FODG, Esquisatto MAM, Andrade TAMD, Mendonça FAS, Santos GMT. Poly (Lactic Acid) membrane and Sedum dendroideum extract favors the repair of burns in rats. Acta Cir Bras 2020; 35:e202000302. [PMID: 32401908 PMCID: PMC7217594 DOI: 10.1590/s0102-865020200030000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose: To evaluate the healing potential of the electrospinning membranes of Poly (Lactic Acid) (PLA) associated with Sedum dendroideum extract in burn injuries in rats. Methods: Seventy-five rats were submitted to burn injury on their back skin: (C) untreated; (F) with daily topical application of S. dendroideum extract; (M) with electrospinning membranes of PLA; (MF10) with electrospinning membranes of PLA with 10% S. dendroideum extract; (MF25) with electrospinning membranes of PLA with 25% S. dendroideum extract. Tissue samples were taken after 2, 6 and 14 days of the burn injury and were subjected to histomorfometric analysis of quantification of fibroblasts, collagen fibers, blood vessels, and inflammatory infiltrate Results: The histomorphometric analysis showed an increase in the number of fibroblasts, collagen fibers and blood vessels in the burns treated with membranes of PLA, associated or not with the 10% and 25% extract. The extract of S. dendroideum promoted the increase of collagen fibers. Conclusion: The electrospinning PLA membrane, isolated or associated with the S. dendrodeum extract, favored the healing of burn injuries in this experimental model, with an increase of fibroblasts, collagen fibers, and blood vessels. S. dendroideum isolated only stimulated the collagenesis.
Collapse
|
9
|
Recent Advances in Carbon Nanotubes for Nervous Tissue Regeneration. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6861205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regenerative medicine has taken advantage of several nanomaterials for reparation of diseased or damaged tissues in the nervous system involved in memory, cognition, and movement. Electrical, thermal, mechanical, and biocompatibility aspects of carbon-based nanomaterials (nanotubes, graphene, fullerenes, and their derivatives) make them suitable candidates to drive nerve tissue repair and stimulation. This review article focuses on key recent advances on the use of carbon nanotube- (CNT-) based technologies on nerve tissue engineering, outlining how neurons interact with CNT interfaces for promoting neuronal differentiation, growth and network reconstruction. CNTs still represent strong candidates for use in therapies of neurodegenerative pathologies and spinal cord injuries.
Collapse
|
10
|
Pereira H, Fatih Cengiz I, Gomes S, Espregueira-Mendes J, Ripoll PL, Monllau JC, Reis RL, Oliveira JM. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev 2019; 4:279-295. [PMID: 31210969 PMCID: PMC6549113 DOI: 10.1302/2058-5241.4.180103] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clinical management of meniscal injuries has changed radically in recent years. We have moved from the model of systematic tissue removal (meniscectomy) to understanding the need to preserve the tissue.Based on the increased knowledge of the basic science of meniscal functions and their role in joint homeostasis, meniscus preservation and/or repair, whenever indicated and possible, are currently the guidelines for management.However, when repair is no longer possible or when facing the fact of the previous partial, subtotal or total loss of the meniscus, meniscus replacement has proved its clinical value. Nevertheless, meniscectomy remains amongst the most frequent orthopaedic procedures.Meniscus replacement is currently possible by means of meniscal allograft transplantation (MAT) which provides replacement of the whole meniscus with or without bone plugs/slots. Partial replacement has been achieved by means of meniscal scaffolds (mainly collagen or polyurethane-based). Despite the favourable clinical outcomes, it is still debatable whether MAT is capable of preventing progression to osteoarthritis. Moreover, current scaffolds have shown some fundamental limitations, such as the fact that the newly formed tissue may be different from the native fibrocartilage of the meniscus.Regenerative tissue engineering strategies have been used in an attempt to provide a new generation of meniscal implants, either for partial or total replacement. The goal is to provide biomaterials (acellular or cell-seeded constructs) which provide the biomechanical properties but also the biological features to replace the loss of native tissue. Moreover, these approaches include possibilities for patient-specific implants of correct size and shape, as well as advanced strategies combining cells, bioactive agents, hydrogels or gene therapy.Herein, the clinical evidence and tips concerning MAT, currently available meniscus scaffolds and future perspectives are discussed. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180103.
Collapse
Affiliation(s)
- Hélder Pereira
- Orthopedic Department of Póvoa de Varzim - Vila do Conde Hospital Centre, Vila do Conde, Portugal
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ibrahim Fatih Cengiz
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sérgio Gomes
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
| | - João Espregueira-Mendes
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal
- Orthopedic Department, University of Minho, Braga, Portugal
| | - Pedro L. Ripoll
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
| | - Joan C. Monllau
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rui L. Reis
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| | - J. Miguel Oliveira
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| |
Collapse
|
11
|
Singla R, Abidi SMS, Dar AI, Acharya A. Nanomaterials as potential and versatile platform for next generation tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 107:2433-2449. [PMID: 30690870 DOI: 10.1002/jbm.b.34327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
Tissue engineering (TE) is an emerging field where alternate/artificial tissues or organ substitutes are implanted to mimic the functionality of damaged or injured tissues. Earlier efforts were made to develop natural, synthetic, or semisynthetic materials for skin equivalents to treat burns or skin wounds. Nowadays, many more tissues like bone, cardiac, cartilage, heart, liver, cornea, blood vessels, and so forth are being engineered using 3-D biomaterial constructs or scaffolds that could deliver active molecules such as peptides or growth factors. Nanomaterials (NMs) due to their unique mechanical, electrical, and optical properties possess significant opportunities in TE applications. Traditional TE scaffolds were based on hydrolytically degradable macroporous materials, whereas current approaches emphasize on controlling cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix. This review article gives a comprehensive outlook of different organ specific NMs which are being used for diversified TE applications. Varieties of NMs are known to serve as biological alternatives to repair or replace a portion or whole of the nonfunctional or damaged tissue. NMs may promote greater amounts of specific interactions stimulated at the cellular level, ultimately leading to more efficient new tissue formation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2433-2449, 2019.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
12
|
Salih SI, Al-Falahi NH, Saliem AH, Abedsalih AN. Effectiveness of platelet-rich fibrin matrix treated with silver nanoparticles in fracture healing in rabbit model. Vet World 2018; 11:944-952. [PMID: 30147264 PMCID: PMC6097570 DOI: 10.14202/vetworld.2018.944-952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/04/2018] [Indexed: 12/04/2022] Open
Abstract
Aim: The current study was conducted to evaluate the effect of platelet-rich fibrin matrix (PRFM) treated with silver nanoparticles (AgNPs) on enhancing the healing of the experimentally induced bone gap in a rabbit model. Materials and Methods: Twenty healthy male local rabbits aged between 6 and 8 months, their weights between 1.5 and 2 kg were used in this study and divided randomly into four equal groups, under general anesthesia (1 cm), bone gap was induced in the tibia bone to create a critical bone defect and leave it without any treatment in the first group (control group). While in the second group the bone gap was filled with PRFM; in the third group, the gap was filled with 0.3 ml AgNPs; and in the fourth group, the gap was filled with PRFM treated with AgNPs. Results: There was no infection at the operation site in all experimental animals, and the radiograph images showed periosteal and endosteal reaction; the gaps were bridged faster in the fourth group as compared with the other groups. The histological examination showed lamellar bone with haversian canal completely filled the fracture gap and contact with old bone in the fourth group as compared to other groups. Conclusion: Using a combination of PRFM and single nucleotide polymorphisms together gave better acceleration in the bone healing process than using each one of them separately.
Collapse
Affiliation(s)
| | - Nadia H Al-Falahi
- Department of Surgery and Obstetrics, University of Baghdad, Baghdad, Iraq
| | - Ali H Saliem
- Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq
| | - Ahmed N Abedsalih
- Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
Kankala RK, Zhu K, Sun XN, Liu CG, Wang SB, Chen AZ. Cardiac Tissue Engineering on the Nanoscale. ACS Biomater Sci Eng 2018; 4:800-818. [DOI: 10.1021/acsbiomaterials.7b00913] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P. R. China
| | - Xiao-Ning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
14
|
Martins JP, Ferreira MP, Ezazi NZ, Hirvonen JT, Santos HA, Thrivikraman G, França CM, Athirasala A, Tahayeri A, Bertassoni LE. 3D printing: prospects and challenges. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018:299-379. [DOI: 10.1016/b978-0-323-48063-5.00004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Kim D, Kim SM, Lee S, Yoon MH. Investigation of neuronal pathfinding and construction of artificial neuronal networks on 3D-arranged porous fibrillar scaffolds with controlled geometry. Sci Rep 2017; 7:7716. [PMID: 28798490 PMCID: PMC5552865 DOI: 10.1038/s41598-017-08231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, diameters, and microbead islands, and demonstrated the development of 3D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
16
|
Namdari M, Cheraghi M, Negahdari B, Eatemadi A, Daraee H. Recent advances in magnetoliposome for heart drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1-7. [PMID: 28272903 DOI: 10.1080/21691401.2017.1299159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic nanoparticles (NPs) also have been subject of interest to the therapeutic and imaging field because of their unique magnetic properties. Magnetoliposomes (MLs) are made up of a combination of liposomes and magnetic NPs, and they have been proven to be a potential biomaterial to fields like magnetic-targeted drug delivery, MRI, etc. The efficiency of a drug delivery system to the heart determines the treatment strategy for most of the heart diseases. In this review article, we summarize the recent development and updates in the application of MLs as a drug delivery system for heart/cardiac diseases.
Collapse
Affiliation(s)
- Mehrdad Namdari
- a Department of Cardiology , Lorestan University of Medical Sciences , Khoramabad , Iran
| | - Mostafa Cheraghi
- a Department of Cardiology , Lorestan University of Medical Sciences , Khoramabad , Iran
| | - Babak Negahdari
- b Department of Medical Biotechnology , School of advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Eatemadi
- b Department of Medical Biotechnology , School of advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran.,c Department of Medical Biotechnology , School of Medicine, Lorestan University of Medical Sciences , Khoramabad , Iran
| | - Hadis Daraee
- b Department of Medical Biotechnology , School of advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran.,c Department of Medical Biotechnology , School of Medicine, Lorestan University of Medical Sciences , Khoramabad , Iran
| |
Collapse
|
17
|
Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0025-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Khashan KS, Sulaiman GM, Mahdi R. Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1699-1709. [PMID: 28147710 DOI: 10.1080/21691401.2017.1282498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antimicrobial activity was investigated for iron oxide IO nanoparticles (NPs)-decorated carbon nanotubes CNT prepared successfully by Nd:YAG-pulsed laser ablation in the liquid process. TEM reveals the composite NP and exhibits semispherical of iron oxide NPs, which aggregate around rolled and unrolled graphene sheet. XRD pattern proved the presence of carbon and different phases of IO NPs. Then, the antibacterial activity of the NPs was examined against different bacteria using nutrient broth and nutrient agar methods, which was enhanced using IO. In addition, the wound-healing activity for the best antibacterial concentration is tested by using animal models successfully.
Collapse
Affiliation(s)
- Khawla S Khashan
- a Division of Laser Physics, Department of Applied Science , University of Technology , Baghdad , Iraq
| | - Ghassan M Sulaiman
- b Division of Biotechnology, Department of Applied Science , University of Technology , Baghdad , Iraq
| | - Rafal Mahdi
- a Division of Laser Physics, Department of Applied Science , University of Technology , Baghdad , Iraq
| |
Collapse
|
19
|
Synthesis of thiolated polysaccharides for formation of polyelectrolyte multilayers with improved cellular adhesion. Carbohydr Polym 2016; 157:1205-1214. [PMID: 27987824 DOI: 10.1016/j.carbpol.2016.10.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 12/27/2022]
Abstract
Intrinsic cross-linking is not only useful for increasing stability, but also for tailoring mechanical properties of polyelectrolyte multilayers (PEM) on implants and tissue engineering scaffolds. Here, a novel route for synthesizing thiolated chitosan (t-Chi) based on the application of 3,3'-dithiodipropionic acid was applied, while thiolated chondroitin sulfate (t-CS) was conjugated by 3,3'-dithiobis (propanoic hydrazide). Both products were subsequently reduced to obtain the free thiols. The thiol content, structural changes and degree of substitution were studied by UV-vis, FTIR, Raman and 1H NMR spectroscopy, respectively. Chi and CS can be used for PEM formation with the layer-by-layer method, due to the cationic nature of Chi at pH values below 5.0 and the anionic character of CS. Comparative studies on the formation of native Chi/CS versus t-Chi/t-CS PEM with surface plasmon resonance and ellipsometry revealed higher layer mass. We also found that the PEM composed of t-Chi/t-CS had superior cell adhesion properties for human keratinocytes in comparison to the native PEM.
Collapse
|
20
|
Zielinska E, Tukaj C, Radomski MW, Inkielewicz-Stepniak I. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. PLoS One 2016; 11:e0164137. [PMID: 27716791 PMCID: PMC5055295 DOI: 10.1371/journal.pone.0164137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). METHODS AND RESULT Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium. CONCLUSION These results unambiguously demonstrate that increased expression of iNOS and generation of NO as well as NO-derived reactive species is involved in AgNPs-induced osteoblast cell death. Our findings may help in development of new strategies to protect bone from AgNPs-induced cytotoxicity and increase the safety of orthopaedic tissue repair.
Collapse
Affiliation(s)
- Ewelina Zielinska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Kardio-Med Silesia, Zabrze, Poland
| | | |
Collapse
|
21
|
Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE AND ENGINEERING: C 2016; 65:425-432. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
22
|
Kyle DJT, Oikonomou A, Hill E, Vijayaraghavan A, Bayat A. Fabrication and modelling of fractal, biomimetic, micro and nano-topographical surfaces. BIOINSPIRATION & BIOMIMETICS 2016; 11:046009. [PMID: 27454401 DOI: 10.1088/1748-3190/11/4/046009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Natural surface topographies are often self-similar with hierarchical features at the micro and nanoscale, which may be mimicked to overcome modern tissue engineering and biomaterial design limitations. Specifically, a cell's microenvironment within the human body contains highly optimised, fractal topographical cues, which directs precise cell behaviour. However, recreating biomimetic, fractal topographies in vitro is not a trivial process and a number of fabrication methods have been proposed but often fail to precisely control the spatial resolution of features at different lengths scales and hence, to provide true biomimetic properties. Here, we propose a method of accurately reproducing the self-similar, micro and nanoscale topography of a human biological tissue into a synthetic polymer through an innovative fabrication process. The biological tissue surface was characterised using atomic force microscopy (AFM) to obtain spatial data in X, Y and Z, which was converted into a grayscale 'digital photomask'. As a result of maskless grayscale optical lithography followed by modified deep reactive ion etching and replica molding, we were able to accurately reproduce the fractal topography of acellular dermal matrix (ADM) into polydimethylsiloxane (PDMS). Characterisation using AFM at three different length scales revealed that the nano and micro-topographical features, in addition to the fractal dimension, of native ADM were reproduced in PDMS. In conclusion, it has been shown that the fractal topography of biological surfaces can be mimicked in synthetic materials using the novel fabrication process outlined, which may be applied to significantly enhance medical device biocompatibility and performance.
Collapse
Affiliation(s)
- Daniel J T Kyle
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK. School of Computer Science, Centre for Mesoscience and Nanotechnology, The University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
23
|
Novel electrospun poly(glycerol sebacate)–zein fiber mats as candidate materials for cardiac tissue engineering. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Chan KW, Liao CZ, Wong HM, Kwok Yeung KW, Tjong SC. Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Adv 2016. [DOI: 10.1039/c5ra22134j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The WST-1 assay shows that the PEEK/15 vol% nHA–1.9 vol% CNF hybrid composite has excellent biocompatibility.
Collapse
Affiliation(s)
- Kai Wang Chan
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Cheng Zhu Liao
- Department of Materials Science and Engineering
- South University of Science and Technology of China
- Shenzhen
- China
| | - Hoi Man Wong
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- Hong Kong
| | - Kelvin Wai Kwok Yeung
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- Hong Kong
| | - Sie Chin Tjong
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- Hong Kong
| |
Collapse
|
25
|
Schmidt C, Storsberg J. Nanomaterials-Tools, Technology and Methodology of Nanotechnology Based Biomedical Systems for Diagnostics and Therapy. Biomedicines 2015; 3:203-223. [PMID: 28536408 PMCID: PMC5344240 DOI: 10.3390/biomedicines3030203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Nanomedicine helps to fight diseases at the cellular and molecular level by utilizing unique properties of quasi-atomic particles at a size scale ranging from 1 to 100 nm. Nanoparticles are used in therapeutic and diagnostic approaches, referred to as theranostics. The aim of this review is to illustrate the application of general principles of nanotechnology to select examples of life sciences, molecular medicine and bio-assays. Critical aspects relating to those examples are discussed.
Collapse
Affiliation(s)
- Christian Schmidt
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| | - Joachim Storsberg
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| |
Collapse
|
26
|
Chen PH, Liao HC, Hsu SH, Chen RS, Wu MC, Yang YF, Wu CC, Chen MH, Su WF. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra12486c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A high mechanical strength and biomimetic scaffold is electrospun from a blend of polyurethane and ethyl cellulose, being promising in applications for therapeutic purposes as a cardiac graft for reconstructing or regeneration of damaged myocardium.
Collapse
Affiliation(s)
- Po-Hsuen Chen
- Institute of Oral Biology
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Hsueh-Chung Liao
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Sheng-Hao Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine
- National Taiwan University Hospital
- Taipei 10002
- Taiwan
| | - Chau-Chung Wu
- Department of Primary Care Medicine
- College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
27
|
Sun B, Jiang XJ, Zhang S, Zhang JC, Li YF, You QZ, Long YZ. Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B 2015; 3:5389-5410. [DOI: 10.1039/c5tb00472a] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in electrospun anisotropic architectures and porous structures, as well as their applications in tissue engineering, are presented.
Collapse
Affiliation(s)
- Bin Sun
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Xue-Jun Jiang
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Shuchao Zhang
- Department of Blood Transfusion
- the Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
- Department of Immunology
| | - Jun-Cheng Zhang
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Yi-Feng Li
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Qin-Zhong You
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Yun-Ze Long
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| |
Collapse
|
28
|
Alpaslan E, Webster TJ. Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies. Int J Nanomedicine 2014; 9 Suppl 1:7-12. [PMID: 24872699 PMCID: PMC4024972 DOI: 10.2147/ijn.s58384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns.
Collapse
Affiliation(s)
- Ece Alpaslan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. J Clin Med 2014; 3:39-87. [PMID: 26237251 PMCID: PMC4449663 DOI: 10.3390/jcm3010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/28/2013] [Accepted: 11/16/2013] [Indexed: 12/25/2022] Open
Abstract
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.
Collapse
Affiliation(s)
- Patrick Babczyk
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Clelia Conzendorf
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Jens Klose
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Margit Schulze
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Kathrin Harre
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Edda Tobiasch
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| |
Collapse
|