1
|
de Oliveira RVF, Garrido LM, Padilla G. Decontamination of DNA sequences from a Streptomyces genome for optimal genome mining. Braz J Microbiol 2025; 56:79-89. [PMID: 39812972 PMCID: PMC11885714 DOI: 10.1007/s42770-024-01598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp. BRB040, generated using the HiSeq System platform (Illumina Inc., San Diego, USA), were contaminated with the DNA of Bacillus licheniformis. To eliminate the contamination in Streptomyces sp. BRB040, a combination of tools available on the Galaxy platform and other web-based resources were used (MeDuSa and Blast). The contaminated reads were treated as a metagenome to isolate the genome of the contaminating organism. They were assembled using the metaSPAdes, resulting in a large scaffold of 4.187 Mb, which was identified as Bacillus licheniformis. After the identification of the contaminating organism, its genome was used as a filter to remove sequencing reads that could align using then Bowtie 2 software for this step. Once the contaminated reads were removed a new assembly was performed using the Unicycler software, yielding 117 contigs with a total size of 7.9 Mb. The completeness of this genome was assessed through BUSCO, resulting in a completeness of 95.9%. We also used an alternative tool (BBduk) to eliminate contaminated reads and the resulting assembly by Unicycler generated 85 contigs with a total size of 8.3 Mb and completeness of 99.5%. These results were better than the assembly obtained via SPAdes, which generated less complete genomes (maximum of 97.8% completeness) compared to Unicycler and which was unable to perform an adequate assembly of the data obtained from decontamination by BBduk. When compared with the uncontaminated BRB040 genome, which has a total size of 8.2 Mb and completeness of 99.8%, this pipeline revealed that the assembly performed with the decontaminated reads via BBduk presented better results, with completeness 0.3% lower than the reference. The genome mining of both genomes using antiSMASH 7.0 revealed the number of 24 Biosynthetic Gene Clusters (BGCs) for BBduk data as well as in the control assembly of the BRB040. In silico decontamination process allows the genome mining of BGCs despite the loss of nucleotides. These findings show that contamination can be effectively removed from a genome using readily available online tools, while preserving a dataset suitable for extracting valuable insights into the secondary metabolism of the target organism. This approach is particularly beneficial in scenarios where resequencing samples is not immediately feasible.
Collapse
Affiliation(s)
- Raul Vitor Ferreira de Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil
| | - Leandro Maza Garrido
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil
| | - Gabriel Padilla
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
2
|
Chevrette MG, Gavrilidou A, Mantri S, Selem-Mojica N, Ziemert N, Barona-Gómez F. The confluence of big data and evolutionary genome mining for the discovery of natural products. Nat Prod Rep 2021; 38:2024-2040. [PMID: 34787598 DOI: 10.1039/d1np00013f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers literature between 2003-2021The development and application of genome mining tools has given rise to ever-growing genetic and chemical databases and propelled natural products research into the modern age of Big Data. Likewise, an explosion of evolutionary studies has unveiled genetic patterns of natural products biosynthesis and function that support Darwin's theory of natural selection and other theories of adaptation and diversification. In this review, we aim to highlight how Big Data and evolutionary thinking converge in the study of natural products, and how this has led to an emerging sub-discipline of evolutionary genome mining of natural products. First, we outline general principles to best utilize Big Data in natural products research, addressing key considerations needed to provide evolutionary context. We then highlight successful examples where Big Data and evolutionary analyses have been combined to provide bioinformatic resources and tools for the discovery of novel natural products and their biosynthetic enzymes. Rather than an exhaustive list of evolution-driven discoveries, we highlight examples where Big Data and evolutionary thinking have been embraced for the evolutionary genome mining of natural products. After reviewing the nascent history of this sub-discipline, we discuss the challenges and opportunities of genomic and metabolomic tools with evolutionary foundations and/or implications and provide a future outlook for this emerging and exciting field of natural product research.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Athina Gavrilidou
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Shrikant Mantri
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany. .,Computational Biology Laboratory, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Nelly Selem-Mojica
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Francisco Barona-Gómez
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
3
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
4
|
Kim WE, Charov K, Džunková M, Becraft ED, Brown J, Schulz F, Woyke T, La Clair JJ, Stepanauskas R, Burkart MD. Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chem Biol 2021; 16:813-819. [PMID: 33955744 PMCID: PMC9884146 DOI: 10.1021/acschembio.1c00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While thousands of environmental metagenomes have been mined for the presence of novel biosynthetic gene clusters, such computational predictions do not provide evidence of their in vivo biosynthetic functionality. Using fluorescent in situ enzyme assay targeting carrier proteins common to polyketide (PKS) and nonribosomal peptide synthetases (NRPS), we applied fluorescence-activated cell sorting to tunicate microbiome to enrich for microbes with active secondary metabolic capabilities. Single-cell genomics uncovered the genetic basis for a wide biosynthetic diversity in the enzyme-active cells and revealed a member of marine Oceanospirillales harboring a novel NRPS gene cluster with high similarity to phylogenetically distant marine and terrestrial bacteria. Interestingly, this synthase belongs to a larger class of siderophore biosynthetic gene clusters commonly associated with pestilence and disease. This demonstrates activity-guided single-cell genomics as a tool to guide novel biosynthetic discovery.
Collapse
Affiliation(s)
- Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Eric D. Becraft
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,University of North Alabama, Florence AL 35632, United States
| | - Julia Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,Corresponding authors: (M.D.B) and (R.S.)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States,Corresponding authors: (M.D.B) and (R.S.)
| |
Collapse
|
5
|
Abstract
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Collapse
Affiliation(s)
- Emilee E Shine
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Current affiliation: Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA; .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Helfrich EJN, Ueoka R, Chevrette MG, Hemmerling F, Lu X, Leopold-Messer S, Minas HA, Burch AY, Lindow SE, Piel J, Medema MH. Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria. Nat Commun 2021; 12:1422. [PMID: 33658492 PMCID: PMC7930024 DOI: 10.1038/s41467-021-21163-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-acyltransferase polyketide synthases (trans-AT PKSs) are bacterial multimodular enzymes that biosynthesize diverse pharmaceutically and ecologically important polyketides. A notable feature of this natural product class is the existence of chemical hybrids that combine core moieties from different polyketide structures. To understand the prevalence, biosynthetic basis, and evolutionary patterns of this phenomenon, we developed transPACT, a phylogenomic algorithm to automate global classification of trans-AT PKS modules across bacteria and applied it to 1782 trans-AT PKS gene clusters. These analyses reveal widespread exchange patterns suggesting recombination of extended PKS module series as an important mechanism for metabolic diversification in this natural product class. For three plant-associated bacteria, i.e., the root colonizer Gynuella sunshinyii and the pathogens Xanthomonas cannabis and Pseudomonas syringae, we demonstrate the utility of this computational approach for uncovering cryptic relationships between polyketides, accelerating polyketide mining from fragmented genome sequences, and discovering polyketide variants with conserved moieties of interest. As natural combinatorial hybrids are rare among the more commonly studied cis-AT PKSs, this study paves the way towards evolutionarily informed, rational PKS engineering to produce chimeric trans-AT PKS-derived polyketides.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Institute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Xiaowen Lu
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Adrien Y Burch
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Lukoseviciute L, Lebedeva J, Kuisiene N. Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases Revealed Through Metagenomic Analysis of a Deep Oligotrophic Cave. MICROBIAL ECOLOGY 2021; 81:110-121. [PMID: 32638044 DOI: 10.1007/s00248-020-01554-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Caves are considered to be extreme and challenging environments. It is believed that the ability of microorganisms to produce secondary metabolites enhances their survivability and adaptiveness in the energy-starved cave environment. Unfortunately, information on the genetic potential for the production of secondary metabolites, such as polyketides and nonribosomal peptides, is limited. In the present study, we aimed to identify and characterize genes responsible for the production of secondary metabolites in the microbial community of one of the deepest caves in the world, Krubera-Voronja Cave (43.4184 N 40.3083 E, Western Caucasus). The analysed sample materials included sediments, drinkable water from underground camps, soil and clay from the cave walls, speleothems and coloured spots from the cave walls. The type II polyketide synthases (PKSs) ketosynthases α and β and the adenylation domains of nonribosomal peptide synthetases (NRPSs) were investigated using a metagenomic approach. Taxonomic diversity analysis showed that most PKS sequences could be attributed to Actinobacteria followed by unclassified bacteria and Acidobacteria, while the NRPS sequences were more taxonomically diverse and could be assigned to Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Chloroflexi, etc. Only three putative metabolites could be predicted: an angucycline group polyketide, a massetolide A-like cyclic lipopeptide and a surfactin-like lipopeptide. The absolute majority of PKS and NRPS sequences showed low similarity with the sequences of the reference biosynthetic pathways, suggesting that these sequences could be involved in the production of novel secondary metabolites.
Collapse
Affiliation(s)
- Laima Lukoseviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
8
|
Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments. Antibiotics (Basel) 2020; 9:antibiotics9040190. [PMID: 32316471 PMCID: PMC7235713 DOI: 10.3390/antibiotics9040190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, further accelerated by the misuse of antibiotics in humans and animals. Our recent studies have shown that gut bacteria of animals living in polluted environments are a potential source of antibacterials. Gut bacteria of cockroaches, water monitor lizards and the turtle exhibited molecules such as curcumenol, docosanedioic acid, N-acyl-homoserine lactone, L-homotyrosine and Di-rhamnolipids. Using purified compounds, assays were performed to determine their antibacterial properties using serial dilution method, cytotoxic effects using lactate dehydrogenase release, and cell viability using MTT assay. The results revealed that the purified compounds exhibited significant antibacterial activities (p < 0.05) against selected Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Streptococcus pyogenes) with effective MIC50 and MIC90 at µg concentrations, and with minimal effects on human cells as observed from LDH and MTT assays. These findings are significant and provide a basis for the rational development of therapeutic antibacterials. Future studies are needed to determine in vivo effects of the identified molecules together with their mode of action, which could lead to the development of novel antibacterial(s).
Collapse
|
9
|
Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome in a Multipartite Beetle Microbiome. mBio 2020; 11:e02430-19. [PMID: 32098813 PMCID: PMC7042692 DOI: 10.1128/mbio.02430-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Symbiotic mutualisms of bacteria and animals are ubiquitous in nature, running a continuum from facultative to obligate from the perspectives of both partners. The loss of functions required for living independently but not within a host gives rise to reduced genomes in many symbionts. Although the phenomenon of genome reduction can be explained by existing evolutionary models, the initiation of the process is not well understood. Here, we describe the microbiome associated with the eggs of the beetle Lagria villosa, consisting of multiple bacterial symbionts related to Burkholderia gladioli, including a reduced-genome symbiont thought to be the exclusive producer of the defensive compound lagriamide. We show that the putative lagriamide-producing symbiont is the only member of the microbiome undergoing genome reduction and that it has already lost the majority of its primary metabolism and DNA repair pathways. The key step preceding genome reduction in the symbiont was likely the horizontal acquisition of the putative lagriamide lga biosynthetic gene cluster. Unexpectedly, we uncovered evidence of additional horizontal transfers to the symbiont's genome while genome reduction was occurring and despite a current lack of genes needed for homologous recombination. These gene gains may have given the genome-reduced symbiont a selective advantage in the microbiome, especially given the maintenance of the large lga gene cluster despite ongoing genome reduction.IMPORTANCE Associations between microorganisms and an animal, plant, or fungal host can result in increased dependence over time. This process is due partly to the bacterium not needing to produce nutrients that the host provides, leading to loss of genes that it would need to live independently and to a consequent reduction in genome size. It is often thought that genome reduction is aided by genetic isolation-bacteria that live in monocultures in special host organs, or inside host cells, have less access to other bacterial species from which they can obtain genes. Here, we describe exposure of a genome-reduced beetle symbiont to a community of related bacteria with nonreduced genomes. We show that the symbiont has acquired genes from other bacteria despite going through genome reduction, suggesting that isolation has not yet played a major role in this case of genome reduction, with horizontal gene gains still offering a potential route for adaptation.
Collapse
Affiliation(s)
- Samantha C Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenburg University, Mainz, Germany
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Caldera EJ, Chevrette MG, McDonald BR, Currie CR. Local Adaptation of Bacterial Symbionts within a Geographic Mosaic of Antibiotic Coevolution. Appl Environ Microbiol 2019; 85:e01580-19. [PMID: 31676475 PMCID: PMC6881802 DOI: 10.1128/aem.01580-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022] Open
Abstract
The geographic mosaic theory of coevolution (GMC) posits that coevolutionary dynamics go beyond local coevolution and are comprised of the following three components: geographic selection mosaics, coevolutionary hot spots, and trait remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene transfer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test key GMC predictions in an antibiotic-producing bacterial symbiont (genus Pseudonocardia) that protects the crops of neotropical fungus-farming ants (Apterostigma dentigerum) from a specialized pathogen (genus Escovopsis). We found that Pseudonocardia antibiotic inhibition of common Escovopsis pathogens was elevated in A. dentigerum colonies from Panama compared to those from Costa Rica. Furthermore, a Panama Canal Zone population of Pseudonocardia on Barro Colorado Island (BCI) was locally adapted, whereas two neighboring populations were not, consistent with a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas of maladaptation. Maladaptation was shaped by incongruent Pseudonocardia-Escovopsis population genetic structure, whereas local adaptation was facilitated by geographic isolation on BCI after the flooding of the Panama Canal. Genomic assessments of antibiotic potential of 29 Pseudonocardia strains identified diverse and unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the core genome. The strength of antibiotic inhibition was not correlated with the presence/absence of individual biosynthetic gene clusters or with parasite location. Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that the trait remixing dynamics conferring the long-term maintenance of antibiotic potency rely on evolutionary genetic changes within already-present biosynthetic gene clusters and not simply on the horizontal acquisition of novel genetic elements or pathways.IMPORTANCE Recently, coevolutionary theory in macroorganisms has been advanced by the geographic mosaic theory of coevolution (GMC), which considers how geography and local adaptation shape coevolutionary dynamics. Here, we test GMC in an ancient symbiosis in which the ant Apterostigma dentigerum cultivates fungi in an agricultural system analogous to human farming. The cultivars are parasitized by the fungus Escovopsis The ants maintain symbiotic actinobacteria with antibiotic properties that help combat Escovopsis infection. This antibiotic symbiosis has persisted for tens of millions of years, raising the question of how antibiotic potency is maintained over these time scales. Our study tests the GMC in a bacterial defensive symbiosis and in a multipartite symbiosis framework. Our results show that this multipartite symbiotic system conforms to the GMC and demonstrate that this theory is applicable in both microbes and indirect symbiont-symbiont interactions.
Collapse
Affiliation(s)
- Eric J Caldera
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Costessi A, van den Bogert B, May A, Ver Loren van Themaat E, Roubos JA, Kolkman MAB, Butler D, Pirovano W. Novel sequencing technologies to support industrial biotechnology. FEMS Microbiol Lett 2019; 365:4982775. [PMID: 30010862 DOI: 10.1093/femsle/fny103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Industrial biotechnology develops and applies microorganisms for the production of bioproducts and enzymes with applications ranging from food and feed ingredients and processing to bio-based chemicals, biofuels and pharmaceutical products. Next generation DNA sequencing technologies play an increasingly important role in improving and accelerating microbial strain development for existing and novel bio-products via screening, gene and pathway discovery, metabolic engineering and additional optimization and understanding of large-scale manufacturing. In this mini-review, we describe novel DNA sequencing and analysis technologies with a focus on applications to industrial strain development, enzyme discovery and microbial community analysis.
Collapse
Affiliation(s)
- Adalberto Costessi
- Next Generation Sequencing Department, BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, The Netherlands
| | | | - Ali May
- Bioinformatics Department, BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, The Netherlands
| | | | - Johannes A Roubos
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2600 MA, Delft, The Netherlands
| | - Marc A B Kolkman
- Division of Industrial Biosciences, DuPont, Archimedesweg 30, 2300 AE, Leiden, The Netherlands
| | - Derek Butler
- Bianomics Business Unit, BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, The Netherlands
| | - Walter Pirovano
- Bioinformatics Department, BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
12
|
Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J, Kerby RL, Rey FE, Kwan JC. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res 2019; 47:e57. [PMID: 30838416 PMCID: PMC6547426 DOI: 10.1093/nar/gkz148] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Shotgun metagenomics is a powerful, high-resolution technique enabling the study of microbial communities in situ. However, species-level resolution is only achieved after a process of 'binning' where contigs predicted to originate from the same genome are clustered. Such culture-independent sequencing frequently unearths novel microbes, and so various methods have been devised for reference-free binning. As novel microbiomes of increasing complexity are explored, sometimes associated with non-model hosts, robust automated binning methods are required. Existing methods struggle with eukaryotic contamination and cannot handle highly complex single metagenomes. We therefore developed an automated binning pipeline, termed 'Autometa', to address these issues. This command-line application integrates sequence homology, nucleotide composition, coverage and the presence of single-copy marker genes to separate microbial genomes from non-model host genomes and other eukaryotic contaminants, before deconvoluting individual genomes from single metagenomes. The method is able to effectively separate over 1000 genomes from a metagenome, allowing the study of previously intractably complex environments at the level of single species. Autometa is freely available at https://bitbucket.org/jason_c_kwan/autometa and as a docker image at https://hub.docker.com/r/jasonkwan/autometa under the GNU Affero General Public License 3 (AGPL 3).
Collapse
Affiliation(s)
- Ian J Miller
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Jennifer Ross
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Izaak Miller
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Jared Baxa
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Juan Lopera
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
13
|
Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE, Barns KJ, Book AJ, Cagnazzo J, Carlos C, Flanigan W, Grubbs KJ, Horn HA, Hoffmann FM, Klassen JL, Knack JJ, Lewin GR, McDonald BR, Muller L, Melo WGP, Pinto-Tomás AA, Schmitz A, Wendt-Pienkowski E, Wildman S, Zhao M, Zhang F, Bugni TS, Andes DR, Pupo MT, Currie CR. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516. [PMID: 30705269 PMCID: PMC6355912 DOI: 10.1038/s41467-019-08438-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial resistance is a global health crisis and few novel antimicrobials have been discovered in recent decades. Natural products, particularly from Streptomyces, are the source of most antimicrobials, yet discovery campaigns focusing on Streptomyces from the soil largely rediscover known compounds. Investigation of understudied and symbiotic sources has seen some success, yet no studies have systematically explored microbiomes for antimicrobials. Here we assess the distinct evolutionary lineages of Streptomyces from insect microbiomes as a source of new antimicrobials through large-scale isolations, bioactivity assays, genomics, metabolomics, and in vivo infection models. Insect-associated Streptomyces inhibit antimicrobial-resistant pathogens more than soil Streptomyces. Genomics and metabolomics reveal their diverse biosynthetic capabilities. Further, we describe cyphomycin, a new molecule active against multidrug resistant fungal pathogens. The evolutionary trajectories of Streptomyces from the insect microbiome influence their biosynthetic potential and ability to inhibit resistant pathogens, supporting the promise of this source in augmenting future antimicrobial discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, 53706, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Caitlin M Carlson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Humberto E Ortega
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Chris Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Gene E Ananiev
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Kenneth J Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Adam J Book
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Julian Cagnazzo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Will Flanigan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Kirk J Grubbs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - F Michael Hoffmann
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269, CT, USA
| | - Jennifer J Knack
- Department of Biology, Large Lakes Observatory, University of Minnesota-Duluth, Duluth, 55812, MN, USA
| | - Gina R Lewin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Laura Muller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Weilan G P Melo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Adrián A Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, 10102, Costa Rica
| | - Amber Schmitz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | | | - Scott Wildman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 53705, WI, USA
| | - Fan Zhang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, 53705, WI, USA
| | - Monica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706, WI, USA.
| |
Collapse
|
14
|
Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2018; 46:257-271. [PMID: 30269177 DOI: 10.1007/s10295-018-2085-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Antibiotics revolutionized medicine and remain its cornerstone. Despite their global importance and the continuous threat of resistant pathogens, few antibiotics have been discovered in recent years. Natural products, especially the secondary metabolites of Actinobacteria, have been the traditional discovery source of antibiotics. In nature, the chemistry of antibiotic natural products is shaped by the unique evolution and ecology of their producing organisms, yet these influences remain largely unknown. Here, we highlight the ecology of antibiotics employed by microbes in defensive symbioses and review the evolutionary processes underlying the chemical diversity and activity of microbe-derived antibiotics, including the dynamics of vertical and lateral transmission of biosynthetic pathways and the evolution of efficacy, targeting specificity, and toxicity. We argue that a deeper understanding of the ecology and evolution of microbial interactions and the metabolites that mediate them will allow for an alternative, rational approach to discover new antibiotics.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 2018; 9:2478. [PMID: 29946103 PMCID: PMC6018673 DOI: 10.1038/s41467-018-04955-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Microbial symbionts are often a source of chemical novelty and can contribute to host defense against antagonists. However, the ecological relevance of chemical mediators remains unclear for most systems. Lagria beetles live in symbiosis with multiple strains of Burkholderia bacteria that protect their offspring against pathogens. Here, we describe the antifungal polyketide lagriamide, and provide evidence supporting that it is produced by an uncultured symbiont, Burkholderia gladioli Lv-StB, which is dominant in field-collected Lagria villosa. Interestingly, lagriamide is structurally similar to bistramides, defensive compounds found in marine tunicates. We identify a gene cluster that is probably involved in lagriamide biosynthesis, provide evidence for horizontal acquisition of these genes, and show that the naturally occurring symbiont strains on the egg are protective in the soil environment. Our findings highlight the potential of microbial symbionts and horizontal gene transfer as influential sources of ecological innovation.
Collapse
Affiliation(s)
- Laura V Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Ian J Miller
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Jason C Kwan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
- Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| |
Collapse
|
16
|
The Who, Why, and How of Small-Molecule Production in Invertebrate Microbiomes: Basic Insights Fueling Drug Discovery. mSystems 2018; 3:mSystems00186-17. [PMID: 29556536 PMCID: PMC5850076 DOI: 10.1128/msystems.00186-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Bacteria have supplied us with many bioactive molecules for use in medicine and agriculture. However, rates of discovery have decreased as the biosynthetic capacity of the culturable biosphere has been continuously mined for many decades. Bacteria have supplied us with many bioactive molecules for use in medicine and agriculture. However, rates of discovery have decreased as the biosynthetic capacity of the culturable biosphere has been continuously mined for many decades. The as-yet-uncultured biosphere is likely to hold far greater biosynthetic potential, especially where ecological niches favor the selection of therapeutically useful bioactivities. I outline here how metagenomics and other systems biology approaches can be used to gain insight into small-molecule biosynthesis and the selective forces which shape it. I also argue that we need a greater understanding of the function of small molecules in complex microbiomes and rational synthetic biology methods to functionally reconstruct large biosynthetic pathways in heterologous hosts.
Collapse
|
17
|
Adnani N, Chevrette MG, Adibhatla SN, Zhang F, Yu Q, Braun DR, Nelson J, Simpkins SW, McDonald BR, Myers CL, Piotrowski JS, Thompson CJ, Currie CR, Li L, Rajski SR, Bugni TS. Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin. ACS Chem Biol 2017; 12:3093-3102. [PMID: 29121465 DOI: 10.1021/acschembio.7b00688] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in genomics and metabolomics have made clear in recent years that microbial biosynthetic capacities on Earth far exceed previous expectations. This is attributable, in part, to the realization that most microbial natural product (NP) producers harbor biosynthetic machineries not readily amenable to classical laboratory fermentation conditions. Such "cryptic" or dormant biosynthetic gene clusters (BGCs) encode for a vast assortment of potentially new antibiotics and, as such, have become extremely attractive targets for activation under controlled laboratory conditions. We report here that coculturing of a Rhodococcus sp. and a Micromonospora sp. affords keyicin, a new and otherwise unattainable bis-nitroglycosylated anthracycline whose mechanism of action (MOA) appears to deviate from those of other anthracyclines. The structure of keyicin was elucidated using high resolution MS and NMR technologies, as well as detailed molecular modeling studies. Sequencing of the keyicin BGC (within the Micromonospora genome) enabled both structural and genomic comparisons to other anthracycline-producing systems informing efforts to characterize keyicin. The new NP was found to be selectively active against Gram-positive bacteria including both Rhodococcus sp. and Mycobacterium sp. E. coli-based chemical genomics studies revealed that keyicin's MOA, in contrast to many other anthracyclines, does not invoke nucleic acid damage.
Collapse
Affiliation(s)
- Navid Adnani
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Marc G. Chevrette
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department
of Genetics, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Srikar N. Adibhatla
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fan Zhang
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Qing Yu
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Justin Nelson
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Scott W. Simpkins
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bradon R. McDonald
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Chad L. Myers
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Department
of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | | | | | - Cameron R. Currie
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Increased Biosynthetic Gene Dosage in a Genome-Reduced Defensive Bacterial Symbiont. mSystems 2017; 2:mSystems00096-17. [PMID: 29181447 PMCID: PMC5698493 DOI: 10.1128/msystems.00096-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. A symbiotic lifestyle frequently results in genome reduction in bacteria; the isolation of small populations promotes genetic drift and the fixation of deletions and deleterious mutations over time. Transitions in lifestyle, including host restriction or adaptation to an intracellular habitat, are thought to precipitate a wave of sequence degradation events and consequent proliferation of pseudogenes. We describe here a verrucomicrobial symbiont of the tunicate Lissoclinum sp. that appears to be undergoing such a transition, with low coding density and many identifiable pseudogenes. However, despite the overall drive toward genome reduction, this symbiont maintains seven copies of a large polyketide synthase (PKS) pathway for the mandelalides (mnd), cytotoxic compounds that likely constitute a chemical defense for the host. There is evidence of ongoing degradation in a small number of these repeats—including variable borders, internal deletions, and single nucleotide polymorphisms (SNPs). However, the gene dosage of most of the pathway is increased at least 5-fold. Correspondingly, this single pathway accounts for 19% of the genome by length and 25.8% of the coding capacity. This increased gene dosage in the face of generalized sequence degradation and genome reduction suggests that mnd genes are under strong purifying selection and are important to the symbiotic relationship. IMPORTANCE Secondary metabolites, which are small-molecule organic compounds produced by living organisms, provide or inspire drugs for many different diseases. These natural products have evolved over millions of years to provide a survival benefit to the producing organism and often display potent biological activity with important therapeutic applications. For instance, defensive compounds in the environment may be cytotoxic to eukaryotic cells, a property exploitable for cancer treatment. Here, we describe the genome of an uncultured symbiotic bacterium that makes such a cytotoxic metabolite. This symbiont is losing genes that do not endow a selective advantage in a hospitable host environment. Secondary metabolism genes, however, are repeated multiple times in the genome, directly demonstrating their selective advantage. This finding shows the strength of selective forces in symbiotic relationships and suggests that uncultured bacteria in such relationships should be targeted for drug discovery efforts. Author Video: An author video summary of this article is available.
Collapse
|