1
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
2
|
Anglana C, Rojas M, Girelli CR, Barozzi F, Quiroz-Troncoso J, Alegría-Aravena N, Montefusco A, Durante M, Fanizzi FP, Ramírez-Castillejo C, Di Sansebastiano GP. Methanolic Extracts of D. viscosa Specifically Affect the Cytoskeleton and Exert an Antiproliferative Effect on Human Colorectal Cancer Cell Lines, According to Their Proliferation Rate. Int J Mol Sci 2023; 24:14920. [PMID: 37834370 PMCID: PMC10573359 DOI: 10.3390/ijms241914920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFβ signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.
Collapse
Affiliation(s)
- Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Josefa Quiroz-Troncoso
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Nicolás Alegría-Aravena
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Deer Production and Biology Group, Regional Development Institute, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA-CNR), 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmen Ramírez-Castillejo
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
3
|
Barak N, Fadeev E, Brekhman V, Aharonovich D, Lotan T, Sher D. Selecting 16S rRNA Primers for Microbiome Analysis in a Host-Microbe System: The Case of the Jellyfish Rhopilema nomadica. Microorganisms 2023; 11:microorganisms11040955. [PMID: 37110378 PMCID: PMC10144005 DOI: 10.3390/microorganisms11040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Amplicon sequencing of the 16S rRNA gene is extensively used to characterize bacterial communities, including those living in association with eukaryotic hosts. Deciding which region of the 16S rRNA gene to analyze and selecting the appropriate PCR primers remains a major decision when initiating any new microbiome study. Based on a detailed literature survey of studies focusing on cnidarian microbiomes, we compared three commonly used primers targeting different hypervariable regions of the 16S rRNA gene, V1V2, V3V4, and V4V5, using the jellyfish Rhopilema nomadica as a model. Although all primers exhibit a similar pattern in bacterial community composition, the performance of the V3V4 primer set was superior to V1V2 and V4V5. The V1V2 primers misclassified bacteria from the Bacilli class and exhibited low classification resolution for Rickettsiales, which represent the second most abundant 16S rRNA gene sequence in all the primers. The V4V5 primer set detected almost the same community composition as the V3V4, but the ability of these primers to also amplify the eukaryotic 18S rRNA gene may hinder bacterial community observations. However, after overcoming the challenges possessed by each one of those primers, we found that all three of them show very similar bacterial community dynamics and compositions. Nevertheless, based on our results, we propose that the V3V4 primer set is potentially the most suitable for studying jellyfish-associated bacterial communities. Our results suggest that, at least for jellyfish samples, it may be feasible to directly compare microbial community estimates from different studies, each using different primers but otherwise similar experimental protocols. More generally, we recommend specifically testing different primers for each new organism or system as a prelude to large-scale 16S rRNA gene amplicon analyses, especially of previously unstudied host-microbe associations.
Collapse
Affiliation(s)
- Noga Barak
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dikla Aharonovich
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Daniel Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
4
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
5
|
Jellyfish as Food: A Narrative Review. Foods 2022; 11:foods11182773. [PMID: 36140901 PMCID: PMC9498191 DOI: 10.3390/foods11182773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Studies toward a sustainable future conducted by international organizations uniformly agree about having to change some of our present consumer behaviors. Regarding food, suggestions include eating locally farmed, less industrialized and renewable food to promote health and circularity, and limiting waste. Jellyfish are frequently sorted and discarded after being caught with fish in fishing nets and gear. In contrast, we propose utilizing this by-catch as food. This review discusses the economic value and sustainability of jellyfish, the technologies used to prepare them for human consumption, their nutritional profile and health impacts and, finally, consumer acceptability and sensory evaluation of jellyfish food products. This discussion is critical for promoting jellyfish as an important aquatic resource to support blue and circular economies.
Collapse
|
6
|
Stabili L, Rizzo L, Caprioli R, Leone A, Piraino S. Jellyfish Bioprospecting in the Mediterranean Sea: Antioxidant and Lysozyme-Like Activities from Aurelia coerulea (Cnidaria, Scyphozoa) Extracts. Mar Drugs 2021; 19:md19110619. [PMID: 34822490 PMCID: PMC8625557 DOI: 10.3390/md19110619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Marine invertebrates represent a vast, untapped source of bioactive compounds. Cnidarians are represented by nearly 10,000 species that contain a complex mixture of venoms, collagen, and other bioactive compounds, including enzymes, oligosaccharides, fatty acids, and lipophilic molecules. Due to their high abundance in coastal waters, several jellyfish taxa may be regarded as candidate targets for the discovery of novel lead molecules and biomaterials and as a potential source of food/feed ingredients. The moon jellyfish Aurelia coerulea is one of the most common jellyfish worldwide and is particularly abundant in sheltered coastal lagoons and marinas of the Mediterranean Sea, where it first appeared—as an alien species—in the last century, when Pacific oyster cultivation began. In the present study, the antioxidant and lysozyme antibacterial activities associated with extracts from different medusa compartments—namely the umbrella, oral arms, and secreted mucus—were investigated. Extracts from the oral arms of A. coerulea displayed significant antioxidant activity. Similarly, lysozyme-like activity was the highest in extracts from oral arms. These findings suggest that A. coerulea outbreaks may be used in the search for novel cytolytic and cytotoxic products against marine bacteria. The geographically wide occurrence and the seasonally high abundance of A. coerulea populations in coastal waters envisage and stimulate the search for biotechnological applications of jellyfish biomasses in the pharmaceutical, nutritional, and nutraceutical sectors.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
- Institute of Water Research, National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.)
| | - Lucia Rizzo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.)
| | - Rosa Caprioli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
| | - Antonella Leone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via Prov.le Lecce Monteroni, 72100 Lecce, Italy;
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Roma, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (R.C.); (S.P.)
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Roma, Italy
| |
Collapse
|
7
|
Trace Metals Do Not Accumulate Over Time in The Edible Mediterranean Jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) from Urban Coastal Waters. WATER 2021. [DOI: 10.3390/w13101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Jellyfish as food represent a millennial tradition in Asia. Recently, jellyfish have also been proposed as a valuable source of protein in Western countries. To identify health risks associated with the potential human consumption of jellyfish as food, trace element accumulation was assessed in the gonads and umbrella tissues of the Mediterranean Rhizostoma pulmo (Macri, 1778), sampled over a period of 16 months along the shallow coastal waters a short distance from the city of Taranto, an area affected by metallurgic and oil refinery sources of pollution. Higher tissue concentrations of trace elements were usually detected in gonads than in umbrella tissue. In particular, significant differences in the toxic metalloid As, and in the metals Mn, Mo, and Zn, were observed among different tissues. The concentrations of vanadium were slightly higher in umbrella tissues than in gonads. No positive correlation was observed between element concentration and jellyfish size, suggesting the lack of bioaccumulation processes. Moreover, toxic element concentrations in R. pulmo were found below the threshold levels for human consumption allowed by Australian, USA, and EU Food Regulations. These results corroborate the hypothesis that R. pulmo is a safe, potentially novel food source, even when jellyfish are harvested from coastal areas affected by anthropogenic impacts.
Collapse
|
8
|
Mammone M, Ferrier-Pagés C, Lavorano S, Rizzo L, Piraino S, Rossi S. High photosynthetic plasticity may reinforce invasiveness of upside-down zooxanthellate jellyfish in Mediterranean coastal waters. PLoS One 2021; 16:e0248814. [PMID: 33739995 PMCID: PMC7978352 DOI: 10.1371/journal.pone.0248814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/06/2021] [Indexed: 12/05/2022] Open
Abstract
Ecological profiling of non-native species is essential to predict their dispersal and invasiveness potential across different areas of the world. Cassiopea is a monophyletic taxonomic group of scyphozoan mixotrophic jellyfish including C. andromeda, a recent colonizer of sheltered, shallow-water habitats of the Mediterranean Sea, such as harbors and other light-limited, eutrophic coastal habitats. To assess the ecophysiological plasticity of Cassiopea jellyfish and their potential to spread across the Mare Nostrum by secondary introductions, we investigated rapid photosynthetic responses of jellyfish to irradiance transitions—from reduced to increased irradiance conditions (as paradigm of transition from harbors to coastal, meso/oligotrophic habitats). Laboratory incubation experiments were carried out to compare oxygen fluxes and photobiological variables in Cassiopea sp. immature specimens pre-acclimated to low irradiance (PAR = 200 μmol photons m−2 s−1) and specimens rapidly exposed to higher irradiance levels (PAR = 500 μmol photons m−2 s−1). Comparable photosynthetic potential and high photosynthetic rates were measured at both irradiance values, as also shown by the rapid light curves. No significant differences were observed in terms of symbiont abundance between control and treated specimens. However, jellyfish kept at the low irradiance showed a higher content in chlorophyll a and c (0.76±0.51SD vs 0.46±0.13SD mg g-1 AFDW) and a higher Ci (amount of chlorophyll per cell) compared to jellyfish exposed to higher irradiance levels. The ratio between gross photosynthesis and respiration (P:R) was >1, indicating a significant input from the autotrophic metabolism. Cassiopea sp. specimens showed high photosynthetic performances, at both low and high irradiance, demonstrating high potential to adapt to sudden changes in light exposure. Such photosynthetic plasticity, combined with Cassiopea eurythermal tolerance and mixotrophic behavior, jointly suggest the upside-down jellyfish as a potentially successful invader in the scenario of a warming Mediterranean Sea.
Collapse
Affiliation(s)
- Marta Mammone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- * E-mail: (MM); (SP); (SR)
| | | | | | - Lucia Rizzo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
- * E-mail: (MM); (SP); (SR)
| | - Sergio Rossi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
- Labomar, Universidade Federal do Ceará, Fortaleza, Brazil
- * E-mail: (MM); (SP); (SR)
| |
Collapse
|
9
|
Olguín-Jacobson C, Pitt KA, Carroll AR, Melvin SD. Polyps of the Jellyfish Aurelia aurita Are Unaffected by Chronic Exposure to a Combination of Pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1685-1692. [PMID: 32418248 DOI: 10.1002/etc.4750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are a major contaminant in coastal waters and can cause adverse effects in marine invertebrates such as jellyfish. Most studies have investigated short-term responses of organisms to unrealistically high concentrations of pesticides; however, chronic exposure to persistent low concentrations, which are more likely to occur in the environment, are rarely analyzed. We tested the response of polyps of the moon jellyfish Aurelia aurita to environmental concentrations of the herbicide atrazine and the insecticide chlorpyrifos, individually and in combination, over 9 wk. We hypothesized that exposure to individual pesticides would reduce rates of asexual reproduction and alter polyps' metabolite profiles, and that the results would be more severe when polyps were exposed to the combined pesticides. Polyps survived and reproduced (through budding) in all treatments, and no differences among treatments were observed. Proton nuclear magnetic resonance spectroscopy revealed no difference in profiles of polar metabolites of polyps exposed to the individual or combined pesticides. Our results suggest that A. aurita polyps are unaffected by chronic exposure to atrazine and chlorpyrifos at concentrations recommended as being protective by current Australian water quality guidelines. Environ Toxicol Chem 2020;39:1685-1692. © 2020 SETAC.
Collapse
Affiliation(s)
- Carolina Olguín-Jacobson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Kylie A Pitt
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, Queensland, Australia
| | - Steve D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
10
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
11
|
Angilè F, Del Coco L, Girelli CR, Basso L, Rizzo L, Piraino S, Stabili L, Fanizzi FP. 1H NMR Metabolic Profile of Scyphomedusa Rhizostoma pulmo (Scyphozoa, Cnidaria) in Female Gonads and Somatic Tissues: Preliminary Results. Molecules 2020; 25:molecules25040806. [PMID: 32069847 PMCID: PMC7070884 DOI: 10.3390/molecules25040806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean basin is one of the regions heavily affected by jellyfish bloom phenomena, mainly due to the presence of scyphozoans, such as Rhizostoma pulmo. The jellyfish have few natural predators, and their bodies represent an organic-rich substrate that can support rapid bacterial growth with great impact on the structure of marine food webs. In Asiatic countries, jellyfish are widely studied for their health benefits, but their nutritional and nutraceutical values still remain poorly characterized. In this study, the differences in the 1H NMR spectroscopy metabolic profiles of R. pulmo female gonads and body fractions (including umbrella and oral arms), in different sampling periods, were studied. For each body compartment both lipid and aqueous extracts were characterized and their 1H NMR metabolic profiles subjected to multivariate analysis. From a statistical analysis of the extracts, a higher contents of ω-3 polyunsaturated fatty acids (PUFAs), amino acid and osmolytes (homarine, betaine, taurine) with important roles in marine invertebrates were observed in female gonads, whereas umbrella and oral arms showed similar metabolic profiles. These results support a sustainable exploitation of the jellyfish for the extraction of bioactive compounds useful in nutraceutical, nutricosmetics, and functional food fields.
Collapse
Affiliation(s)
- Federica Angilè
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
| | - Lucia Rizzo
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- Water Research Institute of the National Research Council, (IRSA-CNR), Via Roma 3, 74123 Taranto, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.A.); (L.D.C.); (C.R.G.); (L.B.); (S.P.); (L.S.)
- CIRCMSB, Piazza Umberto I, 1, 70121 Bari, Italy
- Correspondence: ; Tel.: +39-0832-299265
| |
Collapse
|
12
|
Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:305-318. [PMID: 31349170 DOI: 10.1016/j.scitotenv.2019.07.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.
Collapse
Affiliation(s)
- Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Marianna Intranuovo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Water Research Institute of the National Research Council, (IRSA-CNR), Taranto, Italy.
| |
Collapse
|