1
|
Tavčar Verdev P, Dolinar M. A Pipeline for the Isolation and Cultivation of Microalgae and Cyanobacteria from Hypersaline Environments. Microorganisms 2025; 13:603. [PMID: 40142496 PMCID: PMC11945091 DOI: 10.3390/microorganisms13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Microorganisms in high-salinity environments play a critical role in biogeochemical cycles, primary production, and the biotechnological exploitation of extremozymes and bioactive compounds. The main challenges in current research include isolating and cultivating these microorganisms under laboratory conditions and understanding their complex adaptive mechanisms to high salinity. Currently, universally recognized protocols for isolating microalgae and cyanobacteria from salt pans, salterns, and similar natural habitats are lacking. Establishing axenic laboratory cultures is essential for identifying new species thriving in high-salinity environments and for exploring the synthesis of high-value metabolites by these microorganisms ex situ. Our ongoing research primarily focuses on photosynthetic microorganisms with significant biotechnological potential, particularly for skincare applications. By integrating data from the existing literature with our empirical findings, we propose a standardized pipeline for the isolation and laboratory cultivation of microalgae and cyanobacteria originating from aqueous environments characterized by elevated salt concentrations, such as solar salterns. This approach will be particularly useful for researchers working with microorganisms adapted to hypersaline waters.
Collapse
Affiliation(s)
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Yovchevska L, Gocheva Y, Stoyancheva G, Miteva-Staleva J, Dishliyska V, Abrashev R, Stamenova T, Angelova M, Krumova E. Halophilic Fungi-Features and Potential Applications. Microorganisms 2025; 13:175. [PMID: 39858943 PMCID: PMC11767630 DOI: 10.3390/microorganisms13010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extremophiles are of significant scientific interest due to their unique adaptation to harsh environmental conditions and their potential for diverse biotechnological applications. Among these extremophiles, filamentous fungi adapted to high-salt environments represent a new and valuable source of enzymes, biomolecules, and biomaterials. While most studies on halophiles have focused on bacteria, reports on filamentous fungi remain limited. This review compiles information about salt-adapted fungi and details their distribution, adaptation mechanisms, and potential applications in various societal areas. Understanding the adaptive mechanisms of halophilic fungi not only sheds light on the biology of extremophilic fungi but also leads to promising biotechnological applications, including the development of salt-tolerant enzymes and strategies for bioremediation of saline habitats. To fully realize this potential, a comprehensive understanding of their ecology, diversity and physiology is crucial. In addition, understanding their survival mechanisms in saline environments is important for the development of astrobiology. The significant potential of applications of halophilic fungi is highlighted.
Collapse
Affiliation(s)
- Lyudmila Yovchevska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Yana Gocheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (Y.G.); (G.S.)
| | - Galina Stoyancheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (Y.G.); (G.S.)
| | - Jeny Miteva-Staleva
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Vladislava Dishliyska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Radoslav Abrashev
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Tsvetomira Stamenova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Maria Angelova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| | - Ekaterina Krumova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.26, 1113 Sofia, Bulgaria; (L.Y.); (J.M.-S.); (V.D.); (R.A.); (T.S.); (M.A.)
| |
Collapse
|
3
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2025; 55:112-130. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Kadam P, Barvkar VT, Darshetkar AM, Zinjarde S. The tropical marine actinomycete Nocardiopsis dassonvillei NCIM 5124 as novel source of ectoine: Genomic and transcriptomic insights. Gene 2024; 930:148860. [PMID: 39151675 DOI: 10.1016/j.gene.2024.148860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level. There were 4950 differentially expressed genes with 25 transcripts being significantly upregulated in Test samples. NaCl induced upregulation of the ectoine biosynthesis cluster and some other genes (stress response, chaperone/Clp protease, cytoplasm, ribonucleoprotein and protein biosynthesis). The production of ectoine as a stress response molecule was experimentally validated via LCMS analysis. The investigation sheds light on the responses exhibited by this actinomycete in coping up with salt stress and provides a foundation for understanding salt induced molecular interactions.
Collapse
Affiliation(s)
- Pratik Kadam
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India
| | | | | | - Smita Zinjarde
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
5
|
Han Z, Moh ESX, Ge X, Luo X, Wang H, Ma J, Shi S, Ye J. Mangrove fungi in action: Novel bioremediation strategy for high-chloride wastewater. BIORESOURCE TECHNOLOGY 2024; 414:131629. [PMID: 39414162 DOI: 10.1016/j.biortech.2024.131629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Bioremediation of extremely high-chloride wastewater poses significant challenges due to the adverse effects of elevated salt concentrations on most microorganisms, where chloride levels can be as high as 7% (w/v). Mangrove wetlands derived fungus, Aspergillus aculeatus, emerged as a promising candidate, capable of removing approximately 40% of chloride ions in environments with concentration of 15% (w/v), representative of industrial wastewater conditions. Transcriptomics and biochemical assays conducted under increasing salt conditions revealed that elevated chloride concentrations induce the expression and activity of S-adenosyl methionine-dependent methyltransferase, which facilitates the conversion of chloride into chloromethane. This is the first report characterizing the biological mechanism behind high salt tolerance and chloride removal capacity of Aspergillus aculeatus. This salt remediation mechanism may work as a starter for developing future bioremediation strategies to treat high-chloride wastewater using fungi, offering an eco-friendly alternative to traditional physical or chemical methods.
Collapse
Affiliation(s)
- Zhiping Han
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Edward S X Moh
- ARC Centre of Excellence for Synthetic Biology, Macquarie University, School of Natural Sciences, Sydney, Australia
| | - Xin Ge
- Network and Information Technology Center, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Xingqian Luo
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Haizhou Wang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jie Ma
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Sien Shi
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jianzhi Ye
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| |
Collapse
|
6
|
Narang K, Nath A, Hemstrom W, Chu SKS. HaloClass: Salt-Tolerant Protein Classification with Protein Language Models. Protein J 2024; 43:1035-1044. [PMID: 39432175 PMCID: PMC11543744 DOI: 10.1007/s10930-024-10236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Salt-tolerant proteins, also known as halophilic proteins, have unique adaptations to function in high-salinity environments. These proteins have naturally evolved in extremophilic organisms, and more recently, are being increasingly applied as enzymes in industrial processes. Due to an abundance of salt-tolerant sequences and a simultaneous lack of experimental structures, most computational methods to predict stability are sequence-based only. These approaches, however, are hindered by a lack of structural understanding of these proteins. Here, we present HaloClass, an SVM classifier that leverages ESM-2 protein language model embeddings to accurately identify salt-tolerant proteins. On a newer and larger test dataset, HaloClass outperforms existing approaches when predicting the stability of never-before-seen proteins that are distal to its training set. Finally, on a mutation study that evaluated changes in salt tolerance based on single- and multiple-point mutants, HaloClass outperforms existing approaches, suggesting applications in the guided design of salt-tolerant enzymes.
Collapse
Affiliation(s)
- Kush Narang
- College of Biological Sciences, University of California, Davis, USA.
| | - Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, USA
| | - Simon K S Chu
- Biophysics Graduate Program, University of California, Davis, USA
| |
Collapse
|
7
|
Trenozhnikova LP, Baimakhanova GB, Baimakhanova BB, Balgimbayeva AS, Daugaliyeva ST, Faizulina ER, Tatarkina LG, Spankulova GA, Berillo DA, Beutler JA. Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon 2024; 10:e40371. [PMID: 39641013 PMCID: PMC11617725 DOI: 10.1016/j.heliyon.2024.e40371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Extreme ecosystems are a rich source of specialized metabolites that can overcome multidrug resistance. However, the low efficiency of traditional exploratory research in discovering new antibiotics remains a major limitation. We hypothesized that actinomycetes may have the ability to produce antibiotics in the extremes of a changing natural environment. This study introduces a novel approach to screening natural antibiotic producers from extreme habitats based on the relationship between organisms' adaptive traits and their metabolic activities. The antibacterial and antifungal properties of 667 actinomycete isolates, obtained from 160 samples of Kazakhstan's diverse extreme habitats, were studied under neutral, saline, and alkaline conditions against MRSA, E. coli, C. albicans, and A. niger. Among these isolates, 113 exhibited antibacterial properties, and 109 demonstrated antifungal properties. Notably, one-fifth of the antagonist isolates could produce active substances solely under extreme growth conditions. Fifty-three antagonistic actinomycetes, possessing these characteristics, have been categorized into groups and warrant further investigation as potential producers of new natural antibiotics. Molecular genetic analysis of the selected isolates revealed a high prevalence of Streptomyces and Nocardiopsis strains. Furthermore, 83.4 % of obtained isolates demonstrated the ability to thrive in all studied habitats-neutral, saline, and alkaline. 96.3 % of actinomycetes isolated from extreme environments exhibited adaptation to neutral conditions, highlighting their inherent versatility. Our findings underscore the nearly complete potential (99.7 %) of isolates to overcome the salinity barrier of 3.5 % NaCl, indicating their capacity to inhabit oceanic environments. We assert that actinomycetes should be perceived as a cohesive, globally adaptive group, capable of migrating between changing conditions or remaining stable within them. These studies lay the groundwork for the development of a new platform for screening natural antibiotics.
Collapse
Affiliation(s)
- Lyudmila P. Trenozhnikova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gul B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Baiken B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Assya S. Balgimbayeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Saule T. Daugaliyeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Elmira R. Faizulina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Larisa G. Tatarkina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gulzhan A. Spankulova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Dmitriy A. Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty, Republic of Kazakhstan, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan, Kazakhstan
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
8
|
Zakaria MR, Vodovnik M, Zorec M, Liew KJ, Tokiman L, Chong CS. A description of Joostella sp. strain CR20 with potential biotechnological applications. Antonie Van Leeuwenhoek 2024; 118:38. [PMID: 39613983 DOI: 10.1007/s10482-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The underexplored halophilic genus Joostella within the Flavobacteriaceae family consists of only two species, both of which have received little attention for their potential biotechnological applications. In this study, we report the isolation and characterisation of a novel halophilic bacterium, strain CR20, using a genomic approach to investigate its biotechnological potential. Analysis of the 16S rRNA gene revealed that strain CR20 shares 97.5% and 96.2% sequence similarity with Joostella marina DSM 19592 T and Joostella atrarenae M1-2 T, respectively. Strain CR20 exhibited average nucleotide identity and digital DNA-DNA hybridisation values of 76.8-79.1% and 20.8-22.8%, respectively, with Joostella spp., which fall below the species delineation thresholds. Additionally, strain CR20 demonstrated average amino acid identity and percentage of conserved proteins values of 81.3-84.0% and 71.7-75.3%, respectively, with Joostella spp., above the genus delineation thresholds. Meanwhile, the average amino acid identity and percentage of conserved proteins values of strain CR20 against Galbibacter spp. are 73.9-80.0% and 61.3-72.3%, respectively, also above the genus delineation thresholds. These findings indicated strain CR20 has a close relationship with both genera. Chemotaxonomic analysis of strain CR20 identified predominant fatty acids, including iso-C17:0 3OH (25.3%), iso-C15:0 (14%), and C16:1 ω6c/C16:1 ω7c (12.2%). The assembled genome comprises 62 contigs, with a size of approximately 3,168,727 bp and a G + C content of 35.1%. Among 2,804 predicted genes, 2,559 were classified into 25 COG functional groups. A total of 68 genes with potential industrial applications were identified, including 1 β-mannanase, 2 β-xylosidases, 1 polysaccharide deacetylase, 4 other hemicellulases, 6 β-glucosidases, 25 proteases, and 29 phosphate-solubilising enzymes. Hydrolytic assays confirmed that strain CR20 produces these enzymes extracellularly. These findings highlight strain CR20 has potential for industrial applications.
Collapse
Affiliation(s)
- Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Maša Vodovnik
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maša Zorec
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575, Iskandar Puteri, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
9
|
Qiao L, Shen G, Han R, Wang R, Gao X, Xing J, Lin Y, Zhu D. Expression of ABC transporters negatively correlates with ectoine biosynthesis in Halomonas campaniensis under NaCl and ultraviolet mutagenesis treatments revealed by transcriptomic and proteomics combined analysis. BMC Genomics 2024; 25:1114. [PMID: 39567869 PMCID: PMC11577897 DOI: 10.1186/s12864-024-11003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Halomonas species are renowned for their production of organic compatible solutes, particularly ectoine. However, the identification of key regulatory genes governing ectoine production in Halomonas remains limited. In this study, we conducted a combined transcriptome-proteome analysis to unveil additional regulatory genes influencing ectoine biosynthesis, particularly under ultraviolet (UV) and salt conditions. NaCl induction resulted in a 20-fold increase, while UV treatment led to at least 2.5-fold increases in ectoine production. The number of overlapping genes between transcriptomic and proteomic analyses for three comparisons, i.e., non-UV with NaCl (UV0-NaCl) vs. non-UV without NaCl (UV0), UV strain 1 (UV1-NaCl) vs. UV0-NaCl, and UV strain 2 (UV2-NaCl) vs. UV0-NaCl were 137, 19, and 21, respectively. The overlapped Gene Ontology (GO) enrichments between transcriptomic and proteomic analyses include ATPase-coupled organic phosphonate, phosphonate transmembrane transporter activity, and ATP-binding cassette (ABC) transport complex in different comparisons. Furthermore, five common genes exhibited different expression patterns at mRNA and protein levels across the three comparisons. These genes included orf01280, orf00986, orf01283, orf01282 and orf01284. qPCR verification confirmed that three of the five common genes were notably under-expressed following NaCl and UV treatments. This study highlighted the potential role of these five common genes in regulating ectoine production in Halomonas strains.
Collapse
Affiliation(s)
- Lijuan Qiao
- College of Life Sciences, Northwest A&F University, Yangling, 810016, China
| | - Guoping Shen
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Rui Han
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Rong Wang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Xiang Gao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, 810016, China.
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China.
| |
Collapse
|
10
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 PMCID: PMC11576836 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
11
|
Nadodkar SD, Karande M, Pawar GM, Dhume AV, Sharma A, Salgaonkar BB. Deciphering the salt induced morphogenesis and functional potentials of Hortaea werneckii; a black pigmented halotolerant yeast isolated from solar saltern. Fungal Biol 2024; 128:2113-2126. [PMID: 39384281 DOI: 10.1016/j.funbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/11/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024]
Abstract
An intense black pigmented halotolerant yeast GUBPC1, was obtained from the solar salterns of Nerul, Goa-India. The isolate could tolerate 0 to 20 % NaCl. FE-SEM analysis revealed its polymorphic nature, exhibiting oval cells at higher salt concentrations and filamentous spindle like shapes at lower concentrations. Initially, the cells appear oval, yeast like in shape but gradually after 15 days of incubation, it becomes elongated and undergoes budding, exhibiting various budding patterns, from single polar bud to bipolar buds with annellidic ring, to lateral buds and eventually forming filamentous hyphae. The intracellular black pigment was identified as melanin based on ultraviolet-visible spectroscopy analysis. The molecular identification of the culture showed closest similarity with Hortaea werneckii. Plant polymer-degrading enzymatic activities such as cellulase, laccase, chitinase, xylanase, pectinase, amylase and protease were exhibited by the isolate GUBPC1. To further understand and explore its biotechnological potential, we performed whole-genome sequencing and analysis. The obtained genome size was 26.93 Mb with 686 contigs and a GC content of 53.24 %. We identified 9383 protein-coding genes, and their functional annotation revealed the presence of 435 CAZyme genes and 16 functional genes involved in secondary metabolite synthesis, thus providing a basis for its potential value in various biotechnological applications.
Collapse
Affiliation(s)
- Siddhi Deelip Nadodkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Mrunal Karande
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| | - Gandisha Masso Pawar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Aishwarya Vinayak Dhume
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India; School of Agriculture, Graphic Era Hill University, Dehradun, 248002, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
12
|
Enuh BM, Aytar Çelik P, Angione C. Genome-Scale Metabolic Modeling of Halomonas elongata 153B Explains Polyhydroxyalkanoate and Ectoine Biosynthesis in Hypersaline Environments. Biotechnol J 2024; 19:e202400267. [PMID: 39380500 DOI: 10.1002/biot.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Halomonas elongata thrives in hypersaline environments producing polyhydroxyalkanoates (PHAs) and osmoprotectants such as ectoine. Despite its biotechnological importance, several aspects of the dynamics of its metabolism remain elusive. Here, we construct and validate a genome-scale metabolic network model for H. elongata 153B. Then, we investigate the flux distribution dynamics during optimal growth, ectoine, and PHA biosynthesis using statistical methods, and a pipeline based on shadow prices. Lastly, we use optimization algorithms to uncover novel engineering targets to increase PHA production. The resulting model (iEB1239) includes 1534 metabolites, 2314 reactions, and 1239 genes. iEB1239 can reproduce growth on several carbon sources and predict growth on previously unreported ones. It also reproduces biochemical phenotypes related to Oad and Ppc gene functions in ectoine biosynthesis. A flux distribution analysis during optimal ectoine and PHA biosynthesis shows decreased energy production through oxidative phosphorylation. Furthermore, our analysis unveils a diverse spectrum of metabolic alterations that extend beyond mere flux changes to encompass heightened precursor production for ectoine and PHA synthesis. Crucially, these findings capture other metabolic changes linked to adaptation in hypersaline environments. Bottlenecks in the glycolysis and fatty acid metabolism pathways are identified, in addition to PhaC, which has been shown to increase PHA production when overexpressed. Overall, our pipeline demonstrates the potential of genome-scale metabolic models in combination with statistical approaches to obtain insights into the metabolism of H. elongata. Our platform can be exploited for researching environmental adaptation, and for designing and optimizing metabolic engineering strategies for bioproduct synthesis.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| |
Collapse
|
13
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
14
|
Wang M, Zheng Z, Hu Z, Fan B, Liu J, Xu Q. Three nona-2,7-dienoic acid derivatives from saltern derived Micromonospora sp. FXY415. Nat Prod Res 2024; 38:2681-2687. [PMID: 37132421 DOI: 10.1080/14786419.2023.2200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Three new compounds, apocimycin A-C, were identified from a saltern-derived Micromonospora sp. strain FXY415, isolated from Dongshi saltern, Fujian, China. Their planar structures and relative configuration were confirmed mainly by analysis of 1D- and 2D- NMR spectra. Three compounds belong to 4,6,8-trimythyl nona-2,7-dienoic acid derivatives, apocimycin A also has a phenoxazine nucleus. Apocimycin A-C exhibited weak cytotoxic and antimicrobial activities. Our research showed again that microbial communities in extreme environments are a potential resource in looking for new and bioactive led compounds.
Collapse
Affiliation(s)
- Meiling Wang
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhonghui Zheng
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhiyu Hu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Binbin Fan
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiexi Liu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qingyan Xu
- Xiamen Engineering and Technological Research Center of Marine Microbial drug, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Saleem AA, Balakrishnan G, Nandhagopal M. Secondary Metabolites of Halobacillus sp.: Antimicrobial and Antioxidant Activity, Biological Compatibility, and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis. Cureus 2024; 16:e67246. [PMID: 39310646 PMCID: PMC11414998 DOI: 10.7759/cureus.67246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background The rise of infectious diseases and the emergence of resistant pathogens pose significant challenges to human health. In response to this global threat, researchers are exploring novel sources of bioactive compounds for effective antimicrobial therapies. One avenue of investigation is the study of halophilic bacteria and their secondary metabolites. These bacteria thrive under extreme conditions and produce valuable bioactive metabolites, which have the potential for therapeutic applications. Methods In this study, the potent bacterial cultures obtained from the Payanur salt pan, Tamil Nadu, were analyzed for the antimicrobial activity of their metabolites. The secondary metabolites were obtained from the halophilic bacteria by culturing the bacteria in 8% NaCl. The resultant secondary metabolites produced were extracted using ethyl acetate and their antimicrobial property was studied using the well diffusion method. The minimum inhibitory concentration (MIC) of these metabolites against five clinical pathogens, namely, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans was determined. Their antioxidant property was studied using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method and biological compatibility was determined by hemolytic assay of the secondary metabolites. Results The potent halophilic bacteria isolated from salt pan bacteria were phenotypically and genotypically identified as Halobacillus sp. The secondary metabolites extracted from these bacteria yielded 110 mg of crude metabolites. The antimicrobial activity of crude metabolites shows a moderate zone of inhibition of 14 mm for P. aeruginosa, 13 mm for E. coli and C. albicans, and 11 mm for S. aureus. The minimum inhibitory concentration was 128 µg/mL for E. coli, P. aeruginosa, and C. albicans, which was found to be the best growth inhibition concentration. The DPPH scavenging activity shows a higher activity till the concentration of 64 µg/mL. The hemolytic activity of 25% is obtained at 128 µg/mL and below 64 µg/mL, there is no hemolytic activity. The gas chromatography-mass spectrometry (GC-MS) analysis of the secondary metabolites shows the presence of 17 compounds. Among them, there were four major compounds: (i) cyclo(L-prolyl-L-valine) (probability of 95.63%), (ii) pyrrolo[1,2-a]pyrazine- 1,4-dione,hexahydro-3-(2-methylpropl) (probability of 94.45%), (iii) 2,5-piperazinedione,3,6-bis(2-methylpropyl) (probability of 71.94%) and (iv) pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl) (probability of 88.01%). Conclusion In conclusion, the isolated bacterium is confirmed to be Halobacillus sp. and the secondary metabolites produced by this bacterium could be the potential source for the development of novel antimicrobial and antioxidant compounds that are highly biologically compatible. Further research may help to develop novel compounds in the pharmaceutical industry.
Collapse
Affiliation(s)
- Aayisha Aathila Saleem
- Biocontrol and Microbial Products Lab, Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Gayathri Balakrishnan
- Biocontrol and Microbial Products Lab, Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Manivannan Nandhagopal
- Biocontrol and Microbial Products Lab, Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
16
|
Sheokand P, Tiwari SK. Characterization of carotenoids extracted from Haloferax larsenii NCIM 5678 isolated from Pachpadra salt lake, Rajasthan. Extremophiles 2024; 28:33. [PMID: 39037576 DOI: 10.1007/s00792-024-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD600 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.
Collapse
Affiliation(s)
- Pardeep Sheokand
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India.
| |
Collapse
|
17
|
Guerra-Camacho MÁ, Magaña-Tzuc MC, Vargas-Díaz AA, Silva-Rojas HV, Gamboa-Angulo M. [Identification and antifungal activity of halophilic bacteria isolated from saline soils in Campeche, México]. Rev Argent Microbiol 2024; 56:298-311. [PMID: 38614909 DOI: 10.1016/j.ram.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/05/2023] [Accepted: 02/03/2024] [Indexed: 04/15/2024] Open
Abstract
Phytopathogenic fungi Alternaria alternata and Colletotrichum gloeosporioides cause diseases in plant tissues as well as significant postharvest losses. The use of chemical fungicides for their control has negative effects on health and the environment. Secondary metabolites from halophilic bacteria are a promising alternative for new antifungal compounds. In the present study, halophilic bacteria were isolated and characterized from two sites with saline soils called branquizales in Campeche, Mexico. A total of 64 bacteria were isolated. Agrobacterium, Bacillus, Inquilinus, Gracilibacillus, Metabacillus, Neobacillus, Paenibacillus, Priestia, Staphylococcus, Streptomyces and Virgibacillus were among the identified genera. The antifungal potential of the culture supernatant (CS) of 39 halophilic bacteria was investigated against C. gloeosporioides and A. alternata. The bacteria showing the greatest inhibition of mycelial growth corresponded to Bacillus subtilis CPO 4292, Metabacillus sp. CPO 4266, Bacillus sp. CPO 4295 and Bacillus sp. CPO 4279. The CS of Bacillus sp. CPO 4279 exhibited the highest activity and its ethyl acetate extract (AcOEt) inhibited the germination of C. gloeosporioides, with IC50 values of 8,630μg/ml and IC90 of 10,720μg/ml. The organic partition of the AcOEt extract led to three fractions, with acetonitrile (FAcB9) showing the highest antifungal activity, with values exceeding 66%. Halophilic bacteria from 'blanquizales' soils of the genus Bacillus sp. produce metabolites with antifungal properties that inhibit the phytopathogenic fungus C. gloeosporioides.
Collapse
Affiliation(s)
| | | | - Arely A Vargas-Díaz
- CONAHCYT-Colegio de Postgraduados, Champotón, Campus Campeche, Campeche, México.
| | - Hilda V Silva-Rojas
- Colegio de Postgraduados, Posgrado en Producción de Semillas, Campus Montecillo, Texcoco, Estado de México, México
| | - Marcela Gamboa-Angulo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México
| |
Collapse
|
18
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
19
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
20
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
21
|
Gan L, Huang X, He Z, He T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int J Biol Macromol 2024; 264:130731. [PMID: 38471615 DOI: 10.1016/j.ijbiomac.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.
Collapse
Affiliation(s)
- Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
22
|
Liao LX, Huang JG, Liu QP, Yao M, Wang WJ, Yang XL. Two new quinazoline alkaloids produced by Aspergillus versicolor and their antimicrobial activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:320-327. [PMID: 37455565 DOI: 10.1080/10286020.2023.2230895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Two new quinazoline alkaloids versicomides G-H (1 and 2), together with seven known compounds, were isolated from Aspergillus versicolor HYQZ-215 obtained from the sediment of Qarhan Salt Lake. Their structures were elucidated by NMR, HRESIMS, and quantum chemical ECD calculations data. The antimicrobial activities of these compounds were evaluated against seven agricultural pathogenic fungi and eight clinically drug-resistant bacteria.
Collapse
Affiliation(s)
- Liang-Xiu Liao
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jun-Guo Huang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Qing-Pei Liu
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ming Yao
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Jing Wang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Long Yang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
23
|
Gao X, jing X, Li J, Guo M, Liu L, Li Z, Liu K, Zhu D. Exploitation of inland salt lake water by dilution and nutrient enrichment to cultivate Vischeria sp. WL1 (Eustigmatophyceae) for biomass and oil production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00823. [PMID: 38179180 PMCID: PMC10765011 DOI: 10.1016/j.btre.2023.e00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Salt lakes are significant components of global inland waters. Salt lake (SL) water can provide precious mineral resource for microbial growth. The prospect of utilizing diluted SL water for cultivation of a terrestrial oil-producing microalga Vischeria sp. WL1 was evaluated under laboratory conditions. Based on the detected mineral element composition, the water from Gouchi Salt Lake was diluted 2, 4, 6 and 8 folds and used with supplementation of additional nitrogen, phosphorus and iron (SL+ water). It was found that 4 folds diluted SL+ water was most favorable for biomass and oil production. When cultivated in this condition, Vischeria sp. WL1 gained a biomass yield of 0.82 g L-1 and an oil yield of 0.56 g L-1 after 24 days of cultivation, which is comparable to the optimum productivity we previously established. In addition, total monounsaturated fatty acid contents (64.4∼68.1 %) of the oils resulted from cultures in diluted SL+waters were higher than that in the control (55.5 %). It was also noteworthy that in all these cultures the oil contents (652.0∼681.0 mg g-1) accounted for the most of the biomass, which are far more than the protein and starch contents. This study demonstrates the feasibility of using SL water as a cost-effective mineral resource to cultivate microalgae for biomass and oil production.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jiahong Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Min Guo
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, Qinghai 810016, China
| | - Lei Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, Qinghai 810016, China
| |
Collapse
|
24
|
Rahal S, Menaa B, Chekireb D. Screening of heavy metal-resistant rhizobial and non-rhizobial microflora isolated from Trifolium sp. growing in mining areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:283. [PMID: 38372826 DOI: 10.1007/s10661-024-12445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and development with several beneficial effects, especially in challenging environmental conditions, such as the presence of toxic contaminants. In this study, 49 isolates obtained from Trifolium sp. nodules growing on a Pb/Zn mine site were characterized for PGP traits including siderophores production, phosphate solubilization, extracellular enzymes production, and antifungal activity. The isolates were also screened for their ability to grow at increasing concentrations of NaCl and heavy metals, including lead, zinc, cobalt, copper, nickel, cadmium, and chromium. The findings of our study indicated that isolates Cupriavidus paucula RSCup01-RSCup08, Providencia rettgeri RSPro01, Pseudomonas putida RSPs01, Pseudomonas thivervalensis RSPs03-RSPs09, and Acinetobacter beijerinckii RSAci01 showed several key traits crucial for promoting plant growth, thus demonstrating the greatest potential. Most isolates displayed resistance to salt and heavy metals. Notably, Staphylococcus xylosus RSSta01, Pseudomonas sp. RSPs02, Micrococcus yunnanensis RSMicc01, and Kocuria dechangensis RSKoc01 demonstrated a significant capacity to grow at salt concentrations ranging from 10 to 20%, and isolates including Cupravidus paucula RSCup01-RSCup08 exhibited resistance to high levels of heavy metals, up to 1300 mg/L Pb++, 1200 mg/L Zn++, 1000 mg/L Ni++, 1000 mg/L Cd++, 500 mg/L Cu++, 400 mg/L Co++, and 50 mg/L CrVI+. Additionally, the analysis revealed that metal-resistant genes pbrA, czcD, and nccA were exclusively detected in the Cupriavidus paucula RSCup01 strain. The results of this study provide insights into the potential of plant growth-promoting rhizobacteria strains that might be used as inoculants to improve phytoremediation in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sarah Rahal
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria.
| | - Belkis Menaa
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria
| | - Djamel Chekireb
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria
| |
Collapse
|
25
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
26
|
Joshi D, Patel H, Suthar S, Patel DH, Kikani BA. Evaluation of the efficiency of thermostable L-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World J Microbiol Biotechnol 2024; 40:92. [PMID: 38345704 DOI: 10.1007/s11274-024-03907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.
Collapse
Affiliation(s)
- Disha Joshi
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Harsh Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Sadikhusain Suthar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Darshan H Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
27
|
Kaur J, Kaur J. Comparative genomics of seven genomes of genus Idiomarina reveals important halo adaptations and genes for stress response. 3 Biotech 2024; 14:40. [PMID: 38261836 PMCID: PMC10794682 DOI: 10.1007/s13205-023-03887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The genus Idiomarina consists of halophilic and/or haloalkaliphilic organisms. We compared the complete genomes of seven strains of the genus Idiomarina to investigate its adaptation to saline environment. A total of 1,313 core genes related to salinity tolerance, stress response, antibiotic resistance genes, virulence factors, and drug targets were found. Comparative genomics revealed various genes involved in halo adaptations of these organisms, including transporters and influx or efflux systems for elements such as Fe, Cu, Zn, Pb, and Cd. In agreement with their isolation sources (such as hydrothermal vents and marine sediments) and environments abundant in heavy metals, various resistance proteins and transporters associated with metal tolerance were also identified. These included copper resistance proteins, zinc uptake transcriptional repressor Zur, MerC domain-containing protein, Cd(II)/Pb(II)-responsive transcriptional regulator, Co/Zn/Cd efflux system protein, and mercuric transporter. Interestingly, we observed that the carbohydrate metabolism pathways were incomplete in all the strains and transporters used for absorption of small sugars were also not found in them. Also, the presence of higher proportion of genes involved in protein metabolism than carbohydrate metabolism indicates that proteinaceous substrates act as the major food substrates for these bacterial strains than carbohydrates. Genomic islands were detected in some species, highlighting the role of horizontal gene transfer for acquisition in novel genes. Genomic rearrangements in terms of partially palindromic regions were detected in all strains. To our knowledge, this is the first comprehensive comparative genomics study among the genus Idiomarina revealing unique genomic features within bacterial species inhabiting different ecological niches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03887-3.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| |
Collapse
|
28
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
29
|
Antunes A, de la Haba RR, Jebbar M, Hedlund BP. Editorial: Community series-extremophiles: microbial genomics and taxogenomics, volume II. Front Microbiol 2024; 15:1371210. [PMID: 38357351 PMCID: PMC10864652 DOI: 10.3389/fmicb.2024.1371210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
- Macau Center for Space Exploration and Science, China National Space Administration (CNSA), Taipa, Macau SAR, China
- China-Portugal Belt and Road Joint Laboratory on Space and Sea Technology Advanced Research, Virtual Lab
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, EMR 6002 BIOMEX, Unité Biologie et Écologie des Écosystèmes Marins Profonds BEEP, Plouzané, France
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
30
|
Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens. Polymers (Basel) 2024; 16:376. [PMID: 38337265 DOI: 10.3390/polym16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL-1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5-15% NaCl), and PHA production (2.77-4.54 g L-1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.
Collapse
Affiliation(s)
- Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|
31
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
32
|
Molnár C, Drigla TD, Barbu-Tudoran L, Bajama I, Curean V, Cîntă Pînzaru S. Pilot SERS Monitoring Study of Two Natural Hypersaline Lake Waters from a Balneary Resort during Winter-Months Period. BIOSENSORS 2023; 14:19. [PMID: 38248396 PMCID: PMC10813592 DOI: 10.3390/bios14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Water samples from two naturally hypersaline lakes, renowned for their balneotherapeutic properties, were investigated through a pilot SERS monitoring program. Nanotechnology-based techniques were employed to periodically measure the ultra-sensitive SERS molecular characteristics of the raw water-bearing microbial community and the inorganic content. Employing the Pearson correlation coefficient revealed a robust linear relationship between electrical conductivity and pH and Raman and SERS spectral data of water samples, highlighting the interplay complexity of Raman/SERS signals and physicochemical parameters within each lake. The SERS data obtained from raw waters with AgNPs exhibited a dominant, reproducible SERS feature resembling adsorbed β-carotene at submicromole concentration, which could be related to the cyanobacteria-AgNPs interface and supported by TEM analyses. Notably, spurious SERS sampling cases showed molecular traces attributed to additional metabolites, suggesting multiplexed SERS signatures. The conducted PCA demonstrated observable differences in the β-carotene SERS band intensities between the two lakes, signifying potential variations in picoplankton abundance and composition or environmental influences. Moreover, the study examined variations in the SERS intensity ratio I245/I1512, related to the balance between inorganic (Cl--induced AgNPs aggregation) and organic (cyanobacteria population) balance, in correlation with the electrical conductivity. These findings signify the potential of SERS data for monitoring variations in microorganism concentration, clearly dependent on ion concentration and nutrient dynamics in raw, hypersaline water bodies.
Collapse
Affiliation(s)
- Csilla Molnár
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj Napoca, Romania; (T.D.D.); (I.B.)
| | - Teodora Diana Drigla
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj Napoca, Romania; (T.D.D.); (I.B.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania;
| | - Ilirjana Bajama
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj Napoca, Romania; (T.D.D.); (I.B.)
| | - Victor Curean
- Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Simona Cîntă Pînzaru
- Biomolecular Physics Department, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj Napoca, Romania; (T.D.D.); (I.B.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babes-Bolyai University, Fantanele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Sci Rep 2023; 13:22289. [PMID: 38097607 PMCID: PMC10721877 DOI: 10.1038/s41598-023-47489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719, Olsztyn, Poland.
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10726, Olsztyn, Poland
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, India
| |
Collapse
|
34
|
Srinivasan A, Sajeevan A, Rajaramon S, David H, Solomon AP. Solving polymicrobial puzzles: evolutionary dynamics and future directions. Front Cell Infect Microbiol 2023; 13:1295063. [PMID: 38145044 PMCID: PMC10748482 DOI: 10.3389/fcimb.2023.1295063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
35
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
36
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Kowalewicz-Kulbat M, Krawczyk KT, Szulc-Kielbik I, Rykowski S, Denel-Bobrowska M, Olejniczak AB, Locht C, Klink M. Cytotoxic effects of halophilic archaea metabolites on ovarian cancer cell lines. Microb Cell Fact 2023; 22:197. [PMID: 37759261 PMCID: PMC10537157 DOI: 10.1186/s12934-023-02206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most frequent and deadly gynaecological cancers, often resistant to platinum-based chemotherapy, the current standard of care. Halophilic microorganisms have been shown to produce a large variety of metabolites, some of which show toxicity to various cancer cell lines. However, none have yet been shown to be active against ovarian cancer cells. Here, we examined the effects of metabolites secreted by the halophilic archaea Halorhabdus rudnickae and Natrinema salaciae on various cancer cell lines, including ovarian cancer cell lines. RESULTS 1H NMR analyses of Hrd. rudnickae and Nnm. salaciae culture supernatants contain a complex mixture of metabolites that differ between species, and even between two different strains of the same species, such as Hrd. rudnickae strains 64T and 66. By using the MTT and the xCELLigence RTCA assays, we found that the secreted metabolites of all three halophilic strains expressed cytotoxicity to the ovarian cancer cell lines, especially A2780, as well as its cisplatin-resistant derivative A2780cis, in a dose-dependent manner. The other tested cell lines A549, HepG2, SK-OV-3 and HeLa were only minimally, or not at all affected by the archaeal metabolites, and this was only seen with the MTT assay. CONCLUSIONS The halophilic archaea Hrd. rudnickae and Nnm. salaciae, isolated from a Polish salt mine and Lake Medee in the Mediterranean Sea, respectively, secrete metabolites that are active against ovarian cancer cells, including those that are resistant to cisplatin. This opens potential new possibilities for the treatment of these frequent and deadly gynaecological cancers.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Krzysztof T Krawczyk
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | | | | | | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
38
|
Sharma A, Singh RN, Song XP, Singh RK, Guo DJ, Singh P, Verma KK, Li YR. Genome analysis of a halophilic Virgibacillus halodenitrificans ASH15 revealed salt adaptation, plant growth promotion, and isoprenoid biosynthetic machinery. Front Microbiol 2023; 14:1229955. [PMID: 37808307 PMCID: PMC10556750 DOI: 10.3389/fmicb.2023.1229955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
39
|
Aparici-Carratalá D, Esclapez J, Bautista V, Bonete MJ, Camacho M. Archaea: current and potential biotechnological applications. Res Microbiol 2023; 174:104080. [PMID: 37196775 DOI: 10.1016/j.resmic.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.
Collapse
Affiliation(s)
- David Aparici-Carratalá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| |
Collapse
|
40
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
41
|
Lach J, Krupińska M, Mikołajczyk A, Strapagiel D, Stączek P, Matera-Witkiewicz A. Novel Antimicrobial Peptides from Saline Environments Active against E. faecalis and S. aureus: Identification, Characterisation and Potential Usage. Int J Mol Sci 2023; 24:11787. [PMID: 37511545 PMCID: PMC10380286 DOI: 10.3390/ijms241411787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms inhabiting saline environments have been known for decades as producers of many valuable bioproducts. These substances include antimicrobial peptides (AMPs), the most recognizable of which are halocins produced by halophilic Archaea. As agents with a different modes of action from that of most conventionally used antibiotics, usually associated with an increase in the permeability of the cell membrane as a result of a formation of channels and pores, AMPs are a currently promising object of research focused on the investigation of antibiotics with non-standard modes of action. The aim of this study was to investigate antimicrobial activity against multidrug-resistant human pathogens of three peptides, which were synthetised based on sequences identified in metagenomes from saline environments. The investigations were performed against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Subsequently, the cytotoxicity and haemolytic properties of the tested peptides were verified. An in silico analysis of the interaction of the tested peptides with molecular targets for reference antibiotics was also carried out in order to verify whether or not they can act in a similar way. The P1 peptide manifested the growth inhibition of E. faecalis at a MIC50 of 32 µg/mL and the P3 peptide at a MIC50 of 32 µg/mL was shown to inhibit the growth of both E. faecalis and S. aureus. Furthermore, the P1 and P3 peptides were shown to have no cytotoxic or haemolytic activity against human cells.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-235 Lodz, Poland
| | - Magdalena Krupińska
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-235 Lodz, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
42
|
Das R, Tamang B, Najar IN, Thakur N, Mondal K. First report on metagenomics and their predictive functional analysis of fermented bamboo shoot food of Tripura, North East India. Front Microbiol 2023; 14:1158411. [PMID: 37125168 PMCID: PMC10130461 DOI: 10.3389/fmicb.2023.1158411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Moiya pansung, mileye amileye, moiya koshak, and midukeye are naturally fermented bamboo shoot foods of Tripura. The present study aimed to reveal the whole microbial community structure of naturally fermented moiya pangsung, mileye amileye, moiya koshak, and midukeye along with the prediction of microbial functional profiles by shotgun metagenomic sequence analysis. The metataxonomic profile of moiya pangsung, mileye amileye, moiya koshak, and midukeye samples showed different domains, viz., bacteria (97.70%) followed by the virus (0.76%), unclassified (0.09%), eukaryotes (1.46%) and archaea (0.05%). Overall, 49 phyla, 409 families, 841 genera, and 1,799 species were found in all the fermented bamboo shoot samples collected from different places of Tripura. Firmicutes was the most abundant phylum (89.28%) followed by Proteobacteria (5.13%), Bacteroidetes (4.38%), Actinobacteria (1.02%), and Fusobacteria (0.17%). Lactiplantibacillus plantarum was the most abundant species in moiya pangsung, mileye amileye, moiya koshak, and midukeye followed by Lactococcus lactis, Levilactobacillus brevis, Leuconostoc mesenteroides, Weissella paramesenteroides, Leuconostoc kimchii, Pediococcus pentosaceus, Leuconostoc gasicomitatum, and Lacticaseibacillus casei. A few phyla of fungus were found, viz., Ascomycota, Basidiomycota, and Glomeromycota, where Ascomycota was present in high abundance. Functional analysis of moiya pangsung, mileye amileye, moiya koshak, and midukeye metagenome revealed the genes for the synthesis and metabolism of a wide range of bioactive compounds including, various essential amino acids, and conjugated amino acids. The abundance profile and predictive analysis of fermented bamboo shoots revealed a huge plethora of essential microorganisms and KEGG analysis revealed genes for amino acid metabolism, pectin degradation, lipid metabolism, and many other essential pathways that can be essential for the improvement of nutritional and sensory qualities of the fermented bamboo shoot products.
Collapse
Affiliation(s)
- Rohit Das
- Department of Microbiology, Sikkim University, Gangtok, India
| | | | | | - Nagendra Thakur
- Department of Microbiology, Sikkim University, Gangtok, India
| | | |
Collapse
|
43
|
Lach J, Królikowska K, Baranowska M, Krupińska M, Strapagiel D, Matera-Witkiewicz A, Stączek P. A first insight into the Polish Bochnia Salt Mine metagenome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49551-49566. [PMID: 36780083 PMCID: PMC10104926 DOI: 10.1007/s11356-023-25770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
The Bochnia Salt Mine is one of the oldest mines in Europe. It was established in the thirteenth century, and actively operated until 1990. The mine has been placed on the UNESCO World Heritage List. Previous research describing Polish salt mines has been focused on bioaerosol characteristics and the identification of microorganisms potentially important for human health. The use of Polish salt mines as inhalation chambers for patients of health resorts has also been investigated. Nevertheless, the biodiversity of salt mines associated with biotechnological potential has not been well characterized. The present study paper examines the biodiversity of microorganisms in the Bochnia Salt Mine based on 16S rRNA gene and shotgun sequencing. Biodiversity studies revealed a significantly higher relative abundance of Chlamydiae at the first level of the mine (3.5%) compared to the other levels (< 0.1%). Patescibacteria microorganisms constituted a high percentage (21.6%) in the sample from site RA6. Shotgun sequencing identified 16 unique metagenome-assembled genomes (MAGs). Although one was identified as Halobacterium bonnevillei, the others have not yet been assigned to any species; it is possible that these species may be undescribed. Preliminary analyses of the biotechnological and pharmaceutical potential of microorganisms inhabiting the mine were also performed, and the biosynthetic gene cluster (BGC) profiles and antimicrobial peptide (AMP) coding genes in individual samples were characterized. Hundreds of BGCs and dozens of AMP coding genes were identified in metagenomes. Our findings indicate that Polish salt mines are promising sites for further research aimed at identifying microorganisms that are producers of potentially important substances with biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Klaudyna Królikowska
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Baranowska
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Krupińska
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Durán-Viseras A, Sánchez-Porro C, Viver T, Konstantinidis KT, Ventosa A. Discovery of the Streamlined Haloarchaeon Halorutilus salinus, Comprising a New Order Widespread in Hypersaline Environments across the World. mSystems 2023; 8:e0119822. [PMID: 36943059 PMCID: PMC10134839 DOI: 10.1128/msystems.01198-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The class Halobacteria is one of the most diverse groups within the Euryarchaeota phylum, whose members are ubiquitously distributed in hypersaline environments, where they often constitute the major population. Here, we report the discovery and isolation of a new halophilic archaeon, strain F3-133T exhibiting ≤86.3% 16S rRNA gene identity to any previously cultivated archaeon, and, thus, representing a new order. Analysis of available 16S rRNA gene amplicon and metagenomic data sets showed that the new isolate represents an abundant group in intermediate-to-high salinity ecosystems and is widely distributed across the world. The isolate presents a streamlined genome, which probably accounts for its ecological success in nature and its fastidious growth in culture. The predominant osmoprotection mechanism appears to be the typical salt-in strategy used by other haloarchaea. Furthermore, the genome contains the complete gene set for nucleotide monophosphate degradation pathway through archaeal RuBisCO, being within the first halophilic archaea representatives reported to code this enzyme. Genomic comparisons with previously described representatives of the phylum Euryarchaeota were consistent with the 16S rRNA gene data in supporting that our isolate represents a novel order within the class Halobacteria for which we propose the names Halorutilales ord. nov., Halorutilaceae fam. nov., Halorutilus gen. nov. and Halorutilus salinus sp. nov. IMPORTANCE The discovery of the new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota clearly enables insights into the microbial dark matter, expanding the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis performed on this new taxon revealed one of the first known examples of an Halobacteria representative coding the archaeal RuBisCO gene and with a streamlined genome, being ecologically successful in nature and explaining its previous non-isolation. Altogether, this research brings light into the understanding of the physiology of the Halobacteria class members, their ecological distribution, and capacity to thrive in hypersaline environments.
Collapse
Affiliation(s)
- Ana Durán-Viseras
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
45
|
Ibrahim IM, Fedonenko YP, Sigida EN, Kokoulin MS, Grinev VS, Mokrushin IG, Burygin GL, Zakharevich AM, Shirokov AA, Konnova SA. Structural characterization and physicochemical properties of the exopolysaccharide produced by the moderately halophilic bacterium Chromohalobacter salexigens, strain 3EQS1. Extremophiles 2023; 27:4. [PMID: 36715826 DOI: 10.1007/s00792-023-01289-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L-1) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9 × 106 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β-D-(2 → 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 µg mL-1. The EPS had high emulsifying activity (E24, %) against kerosene (31.2 ± 0.4%), sunflower oil (76.9 ± 1.3%), and crude oil (98.9 ± 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of C. salexigens 3EQS1 may be useful in various biotechnological processes.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.,Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Yuliya P Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - Elena N Sigida
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Maxim S Kokoulin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 let Vladivostoku, Vladivostok, 690022, Russia
| | - Vyacheslav S Grinev
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | | | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Andrey M Zakharevich
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia
| | - Alexander A Shirokov
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - Svetlana A Konnova
- Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, 410049, Russia
| |
Collapse
|
46
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
47
|
Yoo Y, Lee H, Khim JS, Xu X, Kim B, Choi IG, Kim JJ. Halomonas getboli sp. nov., a halotolerant bacteria isolated from a salt flat. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748432 DOI: 10.1099/ijsem.0.005634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel Gram-stain-negative, rod-shaped, cream-coloured, motile, halotolerant bacterium, designated as YJPS3-2T, was isolated from saltern sediment of the Yellow sea in Yongyu-do, Republic of Korea. Strain YJPS3-2T grew at pH 5.0-10.0 (optimum, pH 7.0), 4-40 °C (optimum, 30 °C) and with 1-15% (w/v) NaCl (optimum 3 %). The 16S rRNA gene sequence analysis indicated that strain YJPS3-2T was closely related to those of Halomonas halophila F5-7T (98.75 %), Halomonas salina F8-11T (98.74 %), Halomonas smyrnensis AAD6T (98.66 %), Halomonas organivorans G-16.1T (98.34 %), Halomonas koreensis SS20T (97.98 %) and Halomonas beimenensis NTU-107T (96.93 %). The average nucleotide identity and digital DNA-DNA hybridization values between YJPS3-2T and related type strains were 86.9-91.6 % and 32.0-44.8 %. Strain YJPS3-2T was characterized as having Q-9 as the predominant respiratory quinone and the principal fatty acids (>10 %) were C16 : 0 (31.4 %), C19 : 0 ω8c cyclo (16.3 %), C17 : 0 cyclo (11.9 %) and C12 : 0 3-OH (10.4 %). The polar lipids consisted of phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain YJPS3-2T is 68.1mol %. Based on the polyphasic taxonomic evidence presented in this study, YJPS3-2T should be classified as representing a novel species within the genus Halmonas, for which name Halomonas getboli is proposed, with the type strain YJPS3-2T (= KCTC 92124T=KACC 22561T=JCM 35085T).
Collapse
Affiliation(s)
- Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Xiaoyue Xu
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Bogun Kim
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, School of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
48
|
Lee JY, Kim DH. Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18 T and NC20. J Microbiol Biotechnol 2022; 32:1427-1434. [PMID: 36330756 PMCID: PMC9720073 DOI: 10.4014/jmb.2208.08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Two novel, halotolerant strains of Martelella soudanensis, NC18T and NC20, were isolated from deep subsurface sediment, deeply sequenced, and comparatively analyzed with related strains. Based on a phylogenetic analysis using 16S rRNA gene sequences, the two strains grouped with members of the genus Martelella. Here, we sequenced the complete genomes of NC18T and NC20 to understand the mechanisms of their halotolerance. The genome sizes and G+C content of the strains were 6.1 Mb and 61.8 mol%, respectively. Moreover, NC18T and NC20 were predicted to contain 5,849 and 5,830 genes, and 5,502 and 5,585 protein-coding genes, respectively. Both strains contain the identically predicted 6 rRNAs and 48 tRNAs. The harboring of halotolerant-associated genes revealed that strains NC18T and NC20 might tolerate high salinity through the accumulation of potassium ions in a "salt-in" strategy induced by K+ uptake protein (kup) and the K+ transport system (trkAH and kdpFABC). These two strains also use the ectoine transport system (dctPQM), the glycine betaine transport system (proVWX), and glycine betaine uptake protein (opu) to accumulate "compatible solutes," such as ectoine and glycine betaine, to protect cells from salt stress. This study reveals the halotolerance mechanism of strains NC18T and NC20 in high salt environments and suggests potential applications for these halotolerant and halophilic strains in environmental biotechnology.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Department of Biological Science and Biotechnology, Microbiology and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dong-Hun Kim
- Groundwater Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea,Corresponding author Phone: +82-42-868-3113 Fax: +82-42-868-3414 E-mail:
| |
Collapse
|
49
|
Rationally tailoring the halophilicity of an amylolytic enzyme for application in dehydrating conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Molecular Characterization and Biocompatibility of Exopolysaccharide Produced by Moderately Halophilic Bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers (Basel) 2022; 14:polym14193986. [PMID: 36235941 PMCID: PMC9570845 DOI: 10.3390/polym14193986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The use of natural polysaccharides as biomaterials is gaining importance in tissue engineering due to their inherent biocompatibility. In this direction, the present study aims to explore the structure and biocompatibility of the EPS produced by Virgibacillus dokdonensis VITP14. This marine bacterium produces 17.3 g/L of EPS at 96 h of fermentation. The EPS was purified using ion exchange and gel permeation chromatographic methods. The porous web-like structure and elemental composition (C, O, Na, Mg, P, S) of the EPS were inferred from SEM and EDX analysis. AFM analysis revealed spike-like lumps with a surface roughness of 84.85 nm. The zeta potential value of −10 mV indicates the anionic nature of the EPS. Initial molecular characterization showed that the EPS is a heteropolysaccharide composed of glucose (25.8%), ribose (18.6%), fructose (31.5%), and xylose (24%), which are the monosaccharide units in the HPLC analysis. The FTIR spectrum indicates the presence of functional groups/bonds typical of EPSs (O-H, C-H, C-O-H, C-O, S=O, and P=O). The polymer has an average molecular weight of 555 kDa. Further, NMR analysis revealed the monomer composition, the existence of two α- and six β-glycosidic linkages, and the branched repeating unit as → 1)[α-D-Xylp-(1 → 2)-α-D-Glcp-(1 → 6)-β-D-Glcp-(1 → 5)]-β-D-Frup-(2 → 2)[β-D-Xylp-(1 → 4)]-β-D-Xylp-(1 → 6)-β-D-Fruf-(2 → 4)-β-D-Ribp-(1 →. The EPS is thermally stable till 251.4 °C. X-ray diffraction analysis confirmed the semicrystalline (54.2%) nature of the EPS. Further, the EPS exhibits significant water solubility (76.5%), water-holding capacity (266.8%), emulsifying index (66.8%), hemocompatibility (erythrocyte protection > 87%), and cytocompatibility (cell viability > 80% on RAW264.7 and keratinocyte HaCaT cells) at higher concentrations and prolongs coagulation time in APTT and PT tests. Our research unveils the significant biocompatibility of VITP14 EPS for synthesizing a variety of biomaterials.
Collapse
|