1
|
Lee HR, Jee HJ, Jung YS. Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells. Biomol Ther (Seoul) 2025; 33:286-296. [PMID: 39933959 PMCID: PMC11893500 DOI: 10.4062/biomolther.2024.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
While glutamate, a key neurotransmitter in the central nervous system, is fundamental to neuronal viability and normal brain function, its excessive accumulation leads to oxidative stress, contributing to neuronal damage and neurodegenerative diseases. In this study, we investigated the effect of β-lapachone (β-Lap), a naturally occurring naphthoquinone, on glutamate-induced injury in HT22 cells and explored the underlying mechanism involved. Our results show that β-Lap significantly improved cell viability in a dose-dependent manner. Additionally, β-Lap exhibited a significant antioxidant activity, reducing intracellular reactive oxygen species levels and restoring glutathione levels. The antioxidant capacity of β-Lap was further demonstrated through 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Western blot analysis revealed that β-Lap upregulated brain-derived neurotrophic factor (BDNF) and promoted the phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response elementbinding protein (CREB), which were downregulated by glutamate. Furthermore, β-Lap enhanced the cellular antioxidant molecules, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In conclusion, β-Lap can protect HT22 cells against glutamate-induced injury by activating the BDNF/TrkB/ERK/CREB and ERK/Nrf2/HO-1 signaling pathways, suggesting its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hae Rim Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou university, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Fadaei M, Lahijan ASN, Jahanmehr D, Ahmadi A, Asadi-Golshan R. Food additives for the central nervous system, useful or harmful? An evidence-based review. Nutr Neurosci 2025:1-18. [PMID: 39777413 DOI: 10.1080/1028415x.2024.2433257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
OBJECTIVES This review examines how food additives impact the central nervous system (CNS) focusing on the effects of sugars, artificial sweeteners, colorings, and preservatives. METHODS A literature search of PubMed, Scopus, and Web of Science was conducted for studies published since 2010. Key search terms included, food additives, neurotoxicity, cognition, and behavior. RESULTS It summarizes research findings on additives such as aspartame, stevia, methylene blue, azo dyes, sodium benzoate, and monosodium glutamate. It also covers mechanisms such as oxidative stress, neuroinflammation, and disruptions in neurotransmitter systems. Furthermore, it emphasizes the properties of natural compounds such as garlic (Allium sativum), tetramethylpyrazine, curcumin, licorice root extract (glycyrrhizin), and polyphenols in mitigating CNS damage caused by food additives. DISCUSSION Although ongoing studies are expanding our knowledge on the effects of these additives, future CNS research should focus on long-term investigations involving subjects to provide a more comprehensive understanding of the cumulative impacts of different additives and update regulatory standards based on new scientific findings.
Collapse
Affiliation(s)
- Mohammadmahdi Fadaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Davood Jahanmehr
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jeong YH, Li W, Yang HJ, Kim SG, Choi HM, Choi JG, Oh YC. Ethyl Acetate Fraction of Chestnut Honey Attenuates Scopolamine-Induced Cognitive Impairment in Mice and Glutamate-Induced Neurotoxicity in HT22 Cells. Antioxidants (Basel) 2024; 13:1346. [PMID: 39594488 PMCID: PMC11591166 DOI: 10.3390/antiox13111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Chestnut honey has various benefits, such as antioxidative, anti-inflammatory, immunomodulatory, antibacterial, and antiviral effects. However, the effects of chestnut honey or the ethyl acetate fraction of chestnut honey (EACH) on neurodegenerative diseases and their related cognitive impairment and neurotoxicity have not yet been established. Therefore, in this study, we investigated the mitigating effect of the EACH on scopolamine (SCO)-injected cognitive decline in mice and glutamate-exposed neurotoxicity in HT22 cells. EACH administration significantly reversed SCO-induced cognitive decline in mice, as demonstrated through the Morris water maze and passive avoidance tests. The EACH treatment showed a significant alleviation effect by recovering more than 80% of the cell viability decrease induced by glutamate exposure in the HT22 neuronal cell model. Furthermore, the EACH significantly reduced reactive oxygen species accumulation, lactate dehydrogenase release, mitochondrial depolarization, and neuronal apoptosis. The EACH regulated the level of apoptosis-related proteins, induced the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf-2) and the expression of related antioxidant proteins, and induced the phosphorylation of tropomyosin-related kinase receptor B (TrkB)/cAMP-calcium response element-binding protein (CREB) and the expression of brain-derived neurotrophic factor. These data indicate that the EACH can prevent neurons from oxidative damage and improve cognitive dysfunction by activating Nrf-2 and TrkB/CREB signaling pathways. Therefore, the EACH demonstrates potential therapeutic value in mitigating oxidative stress-induced neurotoxicity, cognitive decline, and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Hye Jin Yang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Se-Gun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-G.K.); (H.M.C.)
| | - Hong Min Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-G.K.); (H.M.C.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| |
Collapse
|
4
|
Guo HT, Lee ZX, Magalingam KB, Radhakrishnan AK, Bhuvanendran S. Carotenoids modulate antioxidant pathways in In vitro models of Parkinson's disease: A comprehensive scoping review. Neurochem Int 2024; 180:105857. [PMID: 39293662 DOI: 10.1016/j.neuint.2024.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and it has affected the living quality of elderly people significantly. PD is characterised by the accumulation of α-Synuclein and progressive loss of dopaminergic neurons at the substantia nigra pars compacta. In the pathogenesis of Parkinson's disease, α-Synuclein, oxidative stress, and electron transport chain (ETC) are the three main factors that contribute to the production of reactive oxygen species (ROS). Currently, there is no commercial disease-modifying agent available for PD; the first-line treatment, Levodopa (l-DOPA), could only relieve the symptoms of PD, with many side effects. Carotenoids, which encompass red, orange, and yellow pigments found in nature and contribute to the colouration of plants, have been associated with various health benefits, including anti-cancer and neuroprotective effects due to their antioxidant properties. This scoping review delves into the impact and underlying mechanisms of carotenoids on cell-based models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Han Ting Guo
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Zi Xin Lee
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia.
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| |
Collapse
|
5
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
6
|
Lv J, Ma S, Wang X, Dang J, Ma F. PSMD12 promotes non-small cell lung cancer progression through activating the Nrf2/TrxR1 pathway. Genes Genomics 2024; 46:263-277. [PMID: 38243044 DOI: 10.1007/s13258-023-01484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) contributes to the vast majority of cancer-related deaths. Proteasome 26S subunit, non-ATPase 12 (PSMD12), a subunit of 26S proteasome complex, is known to play the tumor-promoting role in several types of cancer but its function in NSCLC remains elusive. OBJECTIVE To explore the role and underlying mechanisms of PSMD12 in NSCLC. METHODS The PSMD12 expression in human normal lung epithelial cell line (BEAS-2B) and four NSCLC cell lines (A549, NCI-H1299, NCI-H1975, Calu-1) were determined by qRT-PCR and western blot. Malignant phenotypes of NSCLC cells were detected by CCK-8, EdU staining, immunofluorescence staining for E-cadherin, flow cytometry, and Transwell assays to assess cell viability, proliferation, epithelial-mesenchymal transition (EMT), apoptosis, migration and invasion. Dual luciferase assay was used to verify the regulatory role of transcription factor on the promoter. RESULTS We identified the upregulation of PSMD12 in NSCLC tissues based on the GEO datasets, which further verified in NSCLC and BEAS-2B cell lines. PSMD12 knockdown significantly suppressed malignant behaviors of NSCLC cells, including cell growth, invasion, and migration, while PSMD12 overexpression presented the opposite effects. Interestingly, we found that PSMD12 upregulated the tumor-promoting factor TrxR1 mRNA expression. For its potential mechanisms, we demonstrated that PSMD12 elevated transcription factor Nrf2 protein level and promoted Nrf2 nuclear translocation. And Nrf2 further increased TrxR1 promoter activity and enhanced TrxR1 transcription. Meanwhile, we proved that TrxR1 overexpression erased the inhibitory effect of PSMD12 knockdown. CONCLUSION PSMD12 promotes NSCLC progression by activating the Nrf2/TrxR1 pathway, providing a novel prognostic and therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Junqi Lv
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China.
| | - Shengmao Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Xiaowen Wang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Jifang Dang
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| | - Fuchun Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, No. 301, Zhengyuan North Street, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
7
|
Zhao L, Tao X, Wang Q, Yu X, Dong D. Diosmetin alleviates neuropathic pain by regulating the Keap1/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2024; 170:116067. [PMID: 38150877 DOI: 10.1016/j.biopha.2023.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Neuropathic pain, a chronic condition with a high incidence, imposes psychological burdens on both patients and society. It is urgent to improve pain management and develop new analgesic drugs. Traditional Chinese medicine has gained popularity as a method for pain relief. Diosmetin (Dio) is mainly found in Chinese herbal medicines with effective antioxidant, anti-cancer, and anti-inflammatory properties. There are few known mechanisms underlying the effectiveness of Dio in treating neuropathic pain. However, the complete understanding of its therapeutic effect is missing. PURPOSE This study aimed to evaluate Dio's therapeutic effects on neuropathic pain models and determine its possible mechanism of action. We hypothesized that Dio may activate antioxidants and reduce inflammation, inhibit the activation of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-k-gene binding (NF-κB), promote the metastasis of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of heme oxygenase 1 (HO-1), thus alleviating the neuropathic pain caused by spinal nerve ligation. METHODS Chronic nociceptive pain mouse models were established in vivo by L4 spinal nerve ligation (SNL). Different dosages of Dio (10, 50, 100 mg/kg) were intragastrically administered daily from the third day after the establishment of the SNL model. Allodynia, caused by mechanical stimuli, and hyperalgesia, caused by heat, were assessed using the paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL), respectively. Cold allodynia were assessd by acetone test. RT-PCR was used to detect the content of interleukin-(IL)- 1β, IL-6 and tumor necrosis factor (TNF)-a. Immunofluorescence and western blotting were employed to assess the expression levels of Glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), Keap1, Nrf2, HO-1, and NF-κB p-p65 protein. RESULTS Dio administration relieved SNL-induced transient mechanical and thermal allodynia in mice. The protective effect of Dio in the SNL model was associated with its anti-inflammatory and anti-glial responses in the spinal cord. Dio inhibited both inflammatory factors and macrophage activation in the DRG. Furthermore, Dio regulated the Keap1/Nrf2/NF-κB signaling pathway. HO-1 and Nrf2 were upregulated following Dio administration, which also decreased the levels of Keap1 and NF-κB p65 protein. CONCLUSION Mice with SNL-induced neuropathic pain were therapeutically treated with Dio. Dio may protect against pain by inhibiting inflammatory responses and improved Keap1/Nrf2/NF-κB pathway. These results highlight the potential therapeutic effect of Dio for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, People's Republic of China
| | - Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
8
|
Zhang L, Gao M, Zhao Y, Yin Y, Zhang X, Zhou S, Wang X, Wang X, Zhao Y. N-Acetylserotonin Alleviates Retinal Autophagy via TrkB/AKT/Nrf2 Signaling Pathway in Retinal Ischemia-Reperfusion Injury Rats. Ophthalmic Res 2023; 67:125-136. [PMID: 38128509 DOI: 10.1159/000535786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The objective of this study was to investigate the impact of N-acetylserotonin (NAS) on the autophagy of retinal cells in rats with retinal ischemia-reperfusion injury (RIRI) and to explore the mechanisms by which NAS administration can alleviate RIRI through the tropomyosin-related kinase receptor B (TrkB)/protein kinase B (Akt)/nuclear factor erythroid-derived factor 2-related factor (Nrf2) signaling pathway. METHODS Healthy adult male rats were randomly assigned to four groups: sham, RIRI, RIRI+NAS, and RIRI+NAS+ANA-12. The RIRI group was induced by elevating intraocular pressure, and changes in retinal structure and edema were assessed using H&E staining. The RIRI+NAS and RIRI+NAS+ANA-12 groups received intraperitoneal injections of NAS before and after modeling. The RIRI+NAS+ANA-12 group was also administered ANA-12, a TrkB antagonist. Immunohistochemical staining and Western blot analysis were used to evaluate phosphorylated TrkB (p-TrkB), phosphorylated Akt (p-Akt), Nrf2, sequestosome 1 (P62), and microtubule-associated protein 1 light chain 3 (LC3-II) levels in the retinas of each group. Electroretinogram was recorded to detect retinal function in each group of rats 24 h after modeling. RESULTS The RIRI+NAS group had a thinner retina and more retinal ganglion cells (RGCs) than RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Immunohistochemical staining and Western blot results showed that p-TrkB, p-Akt, n-Nrf2, and P62 levels in the RIRI+NAS group were higher compared with those in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Also, lower LC3-II levels were observed in the RIRI+NAS group compared with that in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Electroretinogram recording results showed that 24 h after retinal ischemia-reperfusion, the magnitude of b-wave changes was attenuated in the RIRI+NAS group compared with the RIRI group (p < 0.05). CONCLUSION The administration of NAS activates the TrkB/Akt/Nrf2 signaling pathway, reduces autophagy, alleviates retinal edema, promotes the survival of retinal ganglion cells (RGCs), and provides neuroprotection against retinal injury.
Collapse
Affiliation(s)
- Luming Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Meng Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuze Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yi Yin
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuening Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Shuanhu Zhou
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, China
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Oh YC, Jeong YH, Yang HJ, Li W, Ma JY. Lumbricus Extract Prevents LPS-Induced Inflammatory Activation of BV2 Microglia and Glutamate-Induced Hippocampal HT22 Cell Death by Suppressing MAPK/NF-κB/NLRP3 Signaling and Oxidative Stress. Curr Issues Mol Biol 2023; 45:9926-9942. [PMID: 38132466 PMCID: PMC10742620 DOI: 10.3390/cimb45120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| | | | | | | | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| |
Collapse
|
10
|
Phoraksa O, Chimkerd C, Thiyajai P, Judprasong K, Tuntipopipat S, Tencomnao T, Charoenkiatkul S, Muangnoi C, Sukprasansap M. Neuroprotective Effects of Albizia lebbeck (L.) Benth. Leaf Extract against Glutamate-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Microglial Cells. Pharmaceuticals (Basel) 2023; 16:989. [PMID: 37513900 PMCID: PMC10384906 DOI: 10.3390/ph16070989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress caused by excessive glutamate in the central nervous system leads to neurodegeneration. Albizia lebbeck (L.) Benth. has been reported to possess neuroprotective properties. We aimed to investigate the effect and mechanism of A. lebbeck leaf extracts on glutamate-induced neurotoxicity and apoptosis linked to ER stress using human microglial HMC3 cells. A. lebbeck leaves were extracted using hexane (AHE), mixed solvents, and ethanol. Each different extract was evaluated for cytotoxic effects on HMC3 cells, and then non-cytotoxic concentrations of the extracts were pretreated with the cells, followed by glutamate. Our results showed that AHE treatment exhibited the highest protective effect and was thus selected for finding the mechanistic approach. AHE inhibited the specific ER stress proteins (calpain1 and caspase-12). AHE also suppressed the apoptotic proteins (Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3); however, it also increased the antiapoptotic Bcl-2 protein. Remarkably, AHE increased cellular antioxidant activities (SOD, CAT, and GPx). To support the activation of antioxidant defense and inhibition of apoptosis in our HMC3 cell model, the bioactive phytochemicals within AHE were identified by HPLC analysis. We found that AHE had high levels of carotenoids (α-carotene, β-carotene, and lutein) and flavonoids (quercetin, luteolin, and kaempferol). Our novel findings indicate that AHE can inhibit glutamate-induced neurotoxicity via ER stress and apoptosis signaling pathways by activating cellular antioxidant enzymes in HMC3 cells, suggesting a potential mechanism for neuroprotection. As such, A. lebbeck leaf might potentially represent a promising source and novel alternative approach for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Onuma Phoraksa
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Chimkerd
- Center of Analysis for Product Quality (Natural Products Division), Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Parunya Thiyajai
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Kunchit Judprasong
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Siriporn Tuntipopipat
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Food Chemistry Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| |
Collapse
|
11
|
Jeong YH, Oh YC, Kim TI, Ma JY. Neuroprotective and Anti-Neuroinflammatory Properties of Vignae Radiatae Semen in Neuronal HT22 and Microglial BV2 Cell Lines. Nutrients 2022; 14:nu14245265. [PMID: 36558424 PMCID: PMC9786594 DOI: 10.3390/nu14245265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.
Collapse
|
12
|
The Neuroprotective Effects of Arecae Pericarpium against Glutamate-Induced HT22 Cell Cytotoxicity. Curr Issues Mol Biol 2022; 44:5902-5914. [PMID: 36547063 PMCID: PMC9776483 DOI: 10.3390/cimb44120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.
Collapse
|
13
|
Han EJ, Zhang C, Kim HS, Kim JY, Park SM, Jung WK, Ahn G, Cha SH. Sargachromenol Isolated from Sargassum horneri Attenuates Glutamate-Induced Neuronal Cell Death and Oxidative Stress through Inhibition of MAPK/NF-κB and Activation of Nrf2/HO-1 Signaling Pathway. Mar Drugs 2022; 20:710. [PMID: 36421988 PMCID: PMC9695719 DOI: 10.3390/md20110710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress-induced neuronal cell loss is considered to be the major mechanism underlying the pathogenesis of neurodegenerative diseases, which could be induced by a high concentration of glutamate. In this study, sargachromenol (SC) was isolated from a marine brown seaweed Sargassum horneri (S. horneri) and its neuroprotective effects against glutamate-induced oxidative stress in HT22 cells were investigated. An MTT assay was applied to assess the cytotoxicity of the SC, and the efficacies of SC were determined by flow cytometry, an analysis of ROS production, quantitative Real-Time PCR, and the Western blot assay. Our results showed that the pretreatment of SC reduced glutamate-induced apoptosis in HT22 cells via inhibiting the sub-G1 population, DNA fragmentation, and nuclear condensation, as well as up-regulating anti-apoptotic protein (Bcl-2) and down-regulating apoptotic proteins (Bax, p53, cleaved-PARP, caspase-3, caspase-9, and cytochrome c). Additionally, SC attenuated glutamate-induced oxidative stress by suppressing mitogen-activated protein kinases (MAPKs;ERK, JNK, and p38) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling (IκBα and NF-κB p65), while activating nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling (Nrf2; HO-1, and NQO-1). Our results suggest that SC could be used as a pharmacological candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Chunying Zhang
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon-kun 33662, Korea
| | - Sang-Muyn Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, New Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 32158, Korea
| |
Collapse
|
14
|
The Mechanism of TNF- α-Mediated Accumulation of Phosphorylated Tau Protein and Its Modulation by Propofol in Primary Mouse Hippocampal Neurons: Role of Mitophagy, NLRP3, and p62/Keap1/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8661200. [PMID: 35993019 PMCID: PMC9391138 DOI: 10.1155/2022/8661200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Background Neuroinflammation-induced phosphorylated Tau (p-Tau) deposition in central nervous system contributes to neurodegenerative disorders. Propofol possesses neuroprotective properties. We investigated its impacts on tumor necrosis factor-α (TNF-α)-mediated p-Tau deposition in neurons. Methods Mouse hippocampal neurons were exposed to propofol followed by TNF-α. Cell viability, p-Tau, mitophagy, reactive oxygen species (ROS), NOD-like receptor protein 3 (NLRP3), antioxidant enzymes, and p62/Keap1/Nrf2 pathway were investigated. Results TNF-α promoted p-Tau accumulation in a concentration- and time-dependent manner. TNF-α (20 ng/mL, 4 h) inhibited mitophagy while increased ROS accumulation and NLRP3 activation. It also induced glycogen synthase kinase-3β (GSK3β) while inhibited protein phosphatase 2A (PP2A) phosphorylation. All these effects were attenuated by 25 μM propofol. In addition, TNF-α-induced p-Tau accumulation was attenuated by ROS scavenger, NLRP3 inhibitor, GSK3β inhibitor, or PP2A activator. Besides, compared with control neurons, 100 μM propofol decreased p-Tau accumulation. It also decreased ROS and NLRP3 activation, modulated GSK3β/PP2A phosphorylation, leaving mitophagy unchanged. Further, 100 μM propofol induced p62 expression, reduced Keap1 expression, triggered the nuclear translocation of Nrf2, and upregulated superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) expression, which was abolished by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Consistently, the inhibitory effect of 100 μM propofol on ROS and p-Tau accumulation was mitigated by p62 knockdown, Keap1 overexpression, or Nrf2 inhibitor. Conclusions In hippocampal neurons, TNF-α inhibited mitophagy, caused oxidative stress and NLRP3 activation, leading to GSK3β/PP2A-dependent Tau phosphorylation. Propofol may reduce p-Tau accumulation by reversing mitophagy and oxidative stress-related events. Besides, propofol may reduce p-Tau accumulation by modulating SOD and HO-1 expression through p62/Keap1/Nrf2 pathway.
Collapse
|
15
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
16
|
R L S, Mini S. Neuroprotective effect of Morin via TrkB/Akt pathway against diabetes mediated oxidative stress and apoptosis in neuronal cells. Toxicol Mech Methods 2022; 32:695-704. [PMID: 35414346 DOI: 10.1080/15376516.2022.2065225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long term Diabetes mellitus results in neuronal damage by increased intracellular glucose leading to oxidative stress. This condition is known as diabetic encephalopathy. Morin is a bioflavonoid, has significant antidiabetic, antioxidant and anti-inflammatory activities. The present study investigated whether the antioxidant properties of morin has beneficial effects on structural brain damage, neuronal apoptosis and dysregulation of TrkB/Akt signalling associated with diabetes. Adult male Sprague Dawley rats were induced diabetes by an intraperitoneal injection of 40mg/kg of streptozotocin and kept untreated for 30 days to induce DE. Cognitive performance was assessed using the Morris water maze test followed by morin and metformin administration at the doses of 50 and 100mg/kg, respectively, for 60 days. After 60 days of treatment, animals were subjected to the behavioural test and sacrificed to collect blood and brain and checked biochemical parameters.The treatment with Morin could significantly reduce the escape latency time in Morris water maze test, blood glucose level, HbA1C, toxicity markers, lipid peroxidation products and protein carbonyl content, downregulated the expression of Bax, Caspase 3 and Cytochrome C and upregulated Bcl-2, Bcl-XL, Akt, BDNF and TrkB expressions. Besides, enhanced the activities of antioxidant enzymes, plasma insulin level. Histomorphological observations also confirmed the protective effect of morin on neuronal degeneration. Morin 50mg once daily for 60 days was the most effective dose with a significant reduction in diabetes mediated complications in the brain associated with neuronal apoptosis and dysregulation of TrkB/Akt signalling.
Collapse
Affiliation(s)
- Shyma R L
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - S Mini
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Nguyen CD, Yoo J, Hwang SY, Cho SY, Kim M, Jang H, No KO, Shin JC, Kim JH, Lee G. Bee Venom Activates the Nrf2/HO-1 and TrkB/CREB/BDNF Pathways in Neuronal Cell Responses against Oxidative Stress Induced by Aβ 1-42. Int J Mol Sci 2022; 23:ijms23031193. [PMID: 35163115 PMCID: PMC8835940 DOI: 10.3390/ijms23031193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Honeybee venom has recently been considered an anti-neurodegenerative agent, primarily due to its anti-inflammatory effects. The natural accumulation of amyloid-beta (Aβ) in the brain is reported to be the natural cause of aging neural ability downfall, and oxidative stress is the main route by which Aβ ignites its neural toxicity. Anti-neural oxidative stress is considered an effective approach for neurodegenerative therapy. To date, it is unclear how bee venom ameliorates neuronal cells in oxidative stress induced by Aβ. Here, we evaluated the neuroprotective effect of bee venom on Aβ-induced neural oxidative stress in both HT22 cells and an animal model. Our results indicate that bee venom protected HT22 cells against apoptosis induced by Aβ1–42. This protective effect was explained by the increased nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2), consequently upregulating the production of heme oxygenase-1 (HO-1), a critical cellular instinct antioxidant enzyme that neutralizes excessive oxidative stress. Furthermore, bee venom treatment activated the tropomyosin-related kinase receptor B (TrkB)/cAMP response element-binding (CREB)/brain-derived neurotrophic factor (BDNF), which is closely related to the promotion of cellular antioxidant defense and neuronal functions. A mouse model with cognitive deficits induced by Aβ1–42 intracerebroventricular (ICV) injections was also used. Bee venom enhanced animal cognitive ability and enhanced neural cell genesis in the hippocampal dentate gyrus region in a dose-dependent manner. Further analysis of animal brain tissue and serum confirmed that bee venom reduced oxidative stress, cholinergic system activity, and intercellular neurotrophic factor regulation, which were all adversely affected by Aβ1–42. Our study demonstrates that bee venom exerts antioxidant and neuroprotective actions against neural oxidative stress caused by Aβ1–42, thereby promoting its use as a therapeutic agent for neurodegenerative disorders.
Collapse
Affiliation(s)
- Cong Duc Nguyen
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Jaehee Yoo
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Gwangju Korean Medicine Hospital, 141 Wolsan-ro Nam-gu, Gwangju 61619, Korea
| | - Sun-Young Hwang
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Sung-Young Cho
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Myeonghun Kim
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Hyemin Jang
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Kyoung Ok No
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Jeong Cheol Shin
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Mokpo Korean Medicine Hospital, 313 Baengnyeon-daero, Mokpo 58665, Korea
| | - Jae-Hong Kim
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Gwangju Korean Medicine Hospital, 141 Wolsan-ro Nam-gu, Gwangju 61619, Korea
- Correspondence: (J.-H.K.); (G.L.)
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
- Correspondence: (J.-H.K.); (G.L.)
| |
Collapse
|
18
|
Nguyen CD, Lee G. Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ 25-35 in In Vitro and In Vivo Models. Antioxidants (Basel) 2021; 10:antiox10111654. [PMID: 34829525 PMCID: PMC8614890 DOI: 10.3390/antiox10111654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Melittin, a 26-amino acid peptide, is the main component of the venom of four honeybee species and exhibits neuroprotective actions. However, it is unclear how melittin ameliorates neuronal cells in oxidative stress and how it affects memory impairment in an in vivo model. We evaluated the neuroprotective effect of melittin on Aβ25–35-induced neuro-oxidative stress in both in vitro HT22 cells and in vivo animal model. Melittin effectively protected against HT22 cell viability and significantly deregulated the Aβ25–35-induced overproduction of intracellular reactive oxygen species. Western blot analysis showed that melittin suppressed cell apoptosis and regulated Bax/Bcl-2 ratio, as well as the expression of proapoptotic related factors: Apoptosis-inducing factor (AIF), Calpain, Cytochrome c (CytoC), Cleaved caspase-3 (Cleacas3). Additionally, melittin enhanced the antioxidant defense pathway by regulating the nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2) thus upregulated the production of the heme oxygenase-1 (HO-1), a major cellular antioxidant enzyme combating neuronal oxidative stress. Furthermore, melittin treatment activated the Tropomyosin-related kinase receptor B (TrkB)/cAMP Response Element-Binding (CREB)/Brain-derived neurotrophic factor (BDNF), contributing to neuronal neurogenesis, and regulating the normal function of synapses in the brain. In our in vivo experiment, melittin was shown to enhance the depleted learning and memory ability, a novel finding. A mouse model with cognitive deficits induced by Aβ25–35 intracerebroventricular injection was used. Melittin had dose-dependently enhanced neural-disrupted animal behavior and enhanced neurogenesis in the dentate gyrus hippocampal region. Further analysis of mouse brain tissue and serum confirmed that melittin enhanced oxidant–antioxidant balance, cholinergic system activity, and intercellular neurotrophic factors regulation, which were all negatively altered by Aβ25–35. Our study shows that melittin exerts antioxidant and neuroprotective actions against neural oxidative stress. Melittin can be a potential therapeutic agent for neurodegenerative disorders.
Collapse
|
19
|
Jeong YH, Kim TI, Oh YC, Ma JY. Chrysanthemum indicum Prevents Hydrogen Peroxide-Induced Neurotoxicity by Activating the TrkB/Akt Signaling Pathway in Hippocampal Neuronal Cells. Nutrients 2021; 13:nu13113690. [PMID: 34835946 PMCID: PMC8618340 DOI: 10.3390/nu13113690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - You-Chang Oh
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| | - Jin Yeul Ma
- Correspondence: (Y.-C.O.); (J.Y.M.); Tel.: +82-53-940-3882 (Y.-C.O.); +82-53-940-3812 (J.Y.M.)
| |
Collapse
|
20
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
21
|
Baek SY, Li FY, Kim JH, Ahn C, Kim HJ, Kim MR. Protein Hydrolysate of Silkworm Pupa Prevents Memory Impairment Induced by Oxidative Stress in Scopolamine-Induced Mice via Modulating the Cholinergic Nervous System and Antioxidant Defense System. Prev Nutr Food Sci 2020; 25:389-399. [PMID: 33505933 PMCID: PMC7813599 DOI: 10.3746/pnf.2020.25.4.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Silkworm pupae (Bombyx mori) is an edible insect that has been reported to contain high-quality proteins, lipids, minerals, and vitamins, and to possess high antioxidant activity. However, there have been no studies on the neuroprotective effects of silkworm pupae. Therefore, we investigated a water extract of silkworm pupae with protease (WSP) as a functional and therapeutic candidate for neurodegenerative disorders. First, we evaluated the effect of WSP on oxidative stress-induced mouse hippocampal neuronal cells (HT-22 cells). Cell viability diminished by addition of glutamate but was significantly recovered by WSP treatment. Furthermore, WSP significantly decreased the release of lactate dehydrogenase and generation of intracellular reactive oxygen species in oxidative stress-induced cells. In addition, in scopolamine-treated mice, WSP attenuated memory impairment, as demonstrated in the Morris water maze and passive avoidance tests, indicating protection of neuronal cells against oxidative damage. Moreover, WSP prevented scopolamine-induced increases in acetylcholinesterase activity and decreases in choline-acetyltransferase activity. Finally, treatment with WSP enhanced the antioxidant defense system by regulating the activities of antioxidant enzymes. Overall, this study showed that WSP exerted antioxidant and memory enhancing action against oxidative stress.
Collapse
Affiliation(s)
- Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Fu Yi Li
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Jong Hoon Kim
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Changwon Ahn
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Hun Jung Kim
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
22
|
Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR. Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model. Antioxidants (Basel) 2020; 9:antiox9090895. [PMID: 32967207 PMCID: PMC7555254 DOI: 10.3390/antiox9090895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Ribes diacanthum Pall, a native Mongolian medicinal plant, has been reported to show antioxidant activities due to its polyphenol and flavonoid content, and is especially rich in the ethyl acetate fraction from an 80% methanol extraction (RDP). We assessed the cytoprotective effect of RDP on glutamate-caused oxidative stress and apoptosis in mouse hippocampal neuronal cells (HT-22 cells). Cell viability was significantly recovered by RDP treatment. Also, RDP effectively decreased the glutamate-induced production of intracellular reactive oxygen species (ROS). In flow cytometric analysis, apoptotic cells and the mitochondrial membrane potential were suppressed by RDP. In the Western blotting analysis, we found that RDP not only decreased the release of apoptotic proteins but also recovered anti-apoptotic protein. Additionally, RDP enhanced the antioxidant defense system by regulating the expression of antioxidant enzymes. Furthermore, treatment with RDP activated the BDNF/TrkB pathway. In accordance with the in vitro results, RDP meliorated memory deficit by defending hippocampal neuronal cells against oxidative damage in scopolamine-injected mice. Taken together, our present study showed that RDP exerted antioxidant and neuroprotective actions against oxidative stress. Therefore, RDP might facilitate the development of candidates for functional health foods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Dai-Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Kun Jong Lee
- Department of Food and Nutrition, Soongeui Women’s College, Seoul 04628, Korea;
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and technology, Seoul 01811, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837; Fax: +82-42-821-8887
| |
Collapse
|